Measurement of A_x and A_z asymmetries in the quasi-elastic $^3\text{He}(\vec{e}, e'd)$ reaction

W. Bertozzi (co-spokesperson), S. Gilad, S. Širca (co-spokesperson), Z.-L. Zhou (co-spokesperson) ¹
Laboratory for Nuclear Science, Massachusetts Institute of Technology

D. W. Higinbotham (co-spokesperson), J.-P. Chen
Thomas Jefferson National Accelerator Facility

B. E. Norum (co-spokesperson), K. Wang, A. Deur
Department of Physics, University of Virginia

W. Korsch, P. Zolnierczuk
University of Kentucky

Z.-E. Meziani, N. Ploquin, P. Solvignon
Temple University

and

The Hall A Collaboration

Abstract

We propose a study of the quasi-elastic $^3\text{He}(\vec{e}, e'd)p$ reaction in Hall A with the polarized ^3He target in conjunction with the High-Resolution Spectrometers and the large-acceptance spectrometer BigBite. The purpose of this measurement is to study the S'-state contributions to the ^3He ground-state wave-function and to test the state-of-the-art Faddeev calculations of the three-body system.

Beam-target asymmetries A_x and A_z will be measured in the range of recoil momenta p_r from 0 to about 200 MeV/c, in both parallel and perpendicular kinematics. At $p_r \lesssim 70$ MeV/c, the D state will be highly suppressed and the asymmetries will be uniquely sensitive to the interference of the S and S' states. At larger recoil momenta, the contribution of the D state will be increasingly important.

Beam energy of 2.4 GeV and the polarized ^3He target of Hall A will be used. We request 520 hours of beam-time.

This proposal is based on the favourable review of the Letter of Intent by PAC 20, and has been endorsed by the entire Hall A Collaboration.

¹Contact person, e-mail: zzhou@ins.mit.edu