Proposal 4

Proposal to the
CEBAF
Program Advisory Committee

The Study of Excited Baryons at High Momentum Transfer
with the CLAS

The N* Group

-in the CLAS Collaboration-

Jenkins, D. Joyce, D. Keane, K. Kemper, W. Kim, M. Manley, J. McCarthy, B. Mecking,
M.D. Mestayer, R. Minehart, N. Mukhopadyay, B. Niczyporuk, O. Rondon-Aramayo, D.
Roper, M. Sadler, R. Sealock, E.S. Smith, P. Stoler, C. Stronach, S. Thornton, H.J. Weber,
A. Yegneswaran

P. Stoler and V. Burkert
Spokespersons

Abstract: It is proposed to measure the properties of excited nucleons at high Q^2
by means of exclusive single meson production. The motivation is to investigate short
range phenomena in the transition from the non-perturbative QCD regime, where theo-
retical descriptions have used non-relativistic, and relativized mean field models, to those
involving perturbative QCD (pQCD). Initial measurements will be carried out at $Q^2 \sim
3 - 4 \text{ GeV}^2/c^2$ at an incident electron energy of 4 GeV, utilizing the initial detection
capabilities of the CLAS spectrometer. Later measurements will be extended to higher Q^2
as electron detection acceptance and/or the electron beam energy increases. Among the
specific issues we wish to investigate are whether the form-factors of the larger amplitude
transitions approach the Q^2 dependence predicted by pQCD calculations, whether there
is significant longitudinal strength in the region of the Roper resonance, and whether the
anomalous behavior of the $S_{11}(1535)$ form factor continues at high Q^2.

1