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We propose to measure exclusive e+e− production with the SoLID detector using an 11

GeV polarized beam and a LH2 target to study the reaction γp → γ∗p′ → e+e−p′, known as

Timelike Compton Scattering (TCS), which is the timelike equivalent of (spacelike) DVCS.

Both the differential cross section, beam-spin asymmetry (BSA) with circularly polarized

photons, and moments of the weighted cross section will be measured as a function of the

four-momentum transfer −t, the outgoing photon virtuality Q′2 (up to 9 GeV2), and the

skewness η. The latter reflects the difference between the initial and final momentum fraction

carried by the struck quark, and corresponds to ξ in DVCS. In TCS, the BSA with circularly

polarized photons is sensitive to the imaginary part of the Compton form factors (CFFs),

while the unpolarized cross section is primarily sensitive to the real part. With circularly

polarized photons, the weighted moments can be sensitive to both. A comparison with DVCS

can test the universality of GPDs, while a combined fit to both DVCS and TCS observables

can reduce the uncertainty on the measured CFFs, making the two processes complementary.

The high luminosity of SoLID will make it possible to perform a mapping of the Q′2- and

η-dependence, which is essential for understanding factorization, higher-twist effects, and

NLO corrections. It is also of particular importance for global fits aimed at extracting

GPDs. This proposed experiment is complementary to the approved CLAS12 experiment

E12-12-001 [1], which will measure the t-dependence in wider bins of Q′2 and η, with the

focus on a first measurement of the so-called D-term. The CLAS12 and SoLID experiments

are further mutually supportive in that performing this new kind of measurement using two

detector setups, each with a different acceptance, will provide an essential cross check, and

could also result in reduced overall systematic uncertainties. The proposed experiment can

run in parallel with experiment E12-12-006 [2], which has been approved for 60 days. The

projections are thus shown for an effective 50 days of running.
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1. INTRODUCTION

Understanding the structure and interactions of hadrons on the basis of Quantum Chro-

modynamics (QCD) is one of the main objectives of nuclear physics. The combination of fun-

damental properties of QCD as a quantum field theory, such as relativity and causality, with

factorization theorems allows us to systematically explore the partonic structure of hadrons

through various processes using different probes. In this context, the correspondence between

spacelike and timelike processes plays a unique role.

Let us consider the Drell-Yan process, hh̄ → γ∗X → ll̄X, where γ∗ has a timelike virtuality

(Q2 > 0), h (h̄) denotes a baryon (antibaryon), and l (l̄) a lepton (antilepton). This reaction

provides important information on (anti)quark distributions in the hadrons h and h̄. The same

distributions are, however, also probed in inclusive deep inelastic scattering (DIS), lh → l′X,

mediated by an exchange of a spacelike virtual photon (Q2 < 0), γ∗h → X. A comparison

of the Drell-Yan and DIS results thus convincingly demonstrated the universality of parton

distribution functions (PDFs). In this proposal we focus on the correspondence between timelike

and spacelike deeply virtual Compton scattering (DVCS), where the former is also known as

timelike Compton scattering (TCS), and the universality of generalized parton distributions

(GPDs), measured in hard exclusive processes.

In the last 15 years, hard exclusive processes have emerged as a class of reactions providing

novel information on the quark and gluon distributions in hadrons. This information is more

complete than what can be obtained from inclusive and elastic scattering alone; for reviews,

see Refs. [3–5]. QCD factorization theorems [6, 7] make it possible to express amplitudes of

hard exclusive processes in terms of GPDs, which are expected to provide a universal (process-

independent) description of the nucleon, and have a known QCD (Q2) evolution. GPDs are

hybrid distributions that combine aspects of the usual collinear PDFs, elastic form factors,

and distribution amplitudes. As such, GPDs simultaneously encode information on parton

distributions and correlations in both momentum (in the longitudinal direction) and coordinate

(in the transverse direction) spaces. Another interesting aspect of GPDs is their connection to

the form factors of the energy-momentum tensor, which, among other things, establishes the

decomposition of the proton spin in terms of the quark and gluon contributions to the total

orbital momentum [8].

The best studied hard exclusive process is DVCS, γ∗p → γp, where the initial-state virtual

photon is spacelike (Q2 < 0), and the final-state photon is real. From a theoretical point of

view, it is the simplest and cleanest way to access GPDs. The leading-twist formalism is well

established for DVCS at the leading and next-to-leading orders in the strong coupling constant,

and power-suppressed corrections have been analyzed and estimated. On the experimental side,

early data have demonstrated the feasibility of DVCS measurements, established the reaction
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mechanism based on the leading-twist approach (the handbag mechanism), and provided first

glimpses of the Compton form factors (CFFs) and the related GPDs. The goal of determining

the valence quark GPDs in the nucleon through measurements of DVCS and other hard exclusive

processes is now a cornerstone of the 12 GeV program at Jefferson Lab.

Recently, a promising opportunity has emerged for extending our understanding of GPDs

by studying the timelike equivalent of traditional, spacelike DVCS. The process, γp → γ∗p, is

known as timelike Compton scattering (TCS). Here, the timelike final-state photon immediately

decays into a lepton pair, the invariant mass of which is a measure of the photon virtuality

(Q′2 > 0), and provides the hard scale for the reaction. The leading-twist formalism for TCS [9]

(the factorization theorem, the handbag reaction mechanism, etc) is as well established as that

for DVCS. However, as also shown in Ref. [9], the phenomenology of TCS is quite different from

DVCS. With an unpolarized photon beam, TCS offers straightforward access to the real part of

the CFFs through the interference between the Compton and Bethe-Heitler (BH) amplitudes,

which can be extracted in a model-independent way from the azimuthal angular distribution of

the lepton pair into which the timelike photon decays. Circular photon polarization also gives

access to the imaginary part of CFFs. In summary, the main motivation to study TCS includes:

• A measurement of TCS will make it possible to test the universality of GPDs implied by

factorization through the timelike-spacelike correspondence with DVCS.

• The straightforward access in TCS to, in particular, the real part of the CFFs impacts

models and parametrizations of GPDs in a broad range of kinematics (light-cone fractions

τ and η, which are the equivalent of x and ξ in DVCS).

• The differential cross section (for TCS and its interference with BH) can provide important

input for global fits of CFFs [10, 11].

However, a solid interpretation of the results from the TCS program, will also require

understanding of higher-twist and NLO corrections (in αs). A general framework for the cal-

culation of kinematic higher-twist corrections, proportional to |t|/Q′2 and M2/Q′2, has recently

been developed for hard exclusive reactions [12]. The formalism was applied to DVCS [13] and

it was found the higher twist corrections are important for Q2 = 1 − 10 GeV2, i.e., for the

kinematics largely overlapping with that of Jefferson Lab at 6 and 12 GeV. Thus, if one wants

to study factorization and effects related to higher-twist contributions, it is crucial to be able to

map out the full range in Q′2 with sufficient statistics for the highest points.

Recent calculations [? ] suggest that the NLO corrections may be sizeable, and larger

for TCS than DVCS. They are, however, expected to be small at large values of the skewness

η (i.e., above values of 0.3-0.4), corresponding to a large difference between the initial and final

momentum fraction carried by the struck quark. They then increase rapidly as η approaches
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0.1, which is at the lower limit of the reach of 12 GeV kinematics. The expression for η is

η = − (q − q′) · (q + q′)

(p + p′) · (q + q′)
=

Q′2

2(s − M2) − Q′2 + t
=

Q′2

4MEγ − Q′2 + t
, (1)

where q, q′, p, and p′ are defined in Eq. 2, M is the proton mass, and Eγ is the incident photon

energy. As in DVCS, we have that η ≈ τ/(2 − τ), where τ is the TCS equivalent of Bjorken

x. Since large values of η naturally correspond to large Q′2, doing the mapping in η requires

sufficient statistics at high values of Q′2, where the cross section is small, and small bins in the

transition to lower values of η, where the change in the magnitude of the NLO corrections is

expected to be rapid. Thus, in 12 GeV kinematics the region of high Q′2, where both higher-

twist and NLO corrections are expected to be small, provides a natural reference point. On

the other hand, the NLO corrections are almost entirely due to gluons. If they turn out to be

significant at lower values of η, and since they are predicted to be larger in TCS than DVCS,

TCS could become a very interesting new tool for studying gluons at 12 GeV.

The primary goal of this proposed experiment for SoLID is to make a precision study of

the Q′2- and η-dependence of the differential cross section and moments of the weighted cross

section up to the highest values of Q′2, for which the high luminosity of SoLID is essential.

This proposal is thus complementary to the approved CLAS12 experiment E12-12-001, which

will focus on studying the t-dependence in larger bins of Q′2 and η. The two detectors also

offer complementary capabilities. In particular, the SoLID detector, being based on a solenoidal

magnet, has a more uniform acceptance in the azimuthal angle ϕ than CLAS12, but has a

gap in the ϑ-coverage between the inner (forward) and outer detectors. Performing this new

kind of measurement using two setups, each with a different acceptance, will not only provide

an essential cross check, but could result in reduced overall systematic uncertainties on, for

instance, the real part of the Compton form factor H.

The feasibility of the experimental techniques involved in the measurement, including the

use of quasi-real photons (with Q2 < 0.1 GeV2) tagged by detecting the complete final state

except for the beam electron, have been demonstrated in the analysis of CLAS 6 GeV data,

which include pilot studies of TCS. In terms of experimental requirements, photoproduction

measurements in SoLID will require time-of-flight detectors covering both the inner (forward)

as well as the outer calorimeter. The trigger for the reaction will have to include at least two

leptons and could require an additional track using the time-of-flight rather than Cherenkov

detector. We thus propose to measure exclusive e+e− production using the SoLID detector and

an 11 GeV linearly polarized electron beam and a LH2 target to study TCS over a wide range

of Q′2, η, and t. Both the differential cross section and the cosine and sine moments of the

weighted cross section will be measured.
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FIG. 1: Left panel: Exclusive photoproduction of a lepton pair. Right panel: Timelike Compton scat-

tering (TCS). The particle momenta are given in parenthesis.

2. PHYSICS OF TIMELIKE COMPTON SCATTERING

In this section we describe the theory and phenomenology of the timelike Compton process,

discuss observables, and present model calculations. We also explain how the data can be used

in global fits, and show 6 GeV analysis results.

A. Kinematics

Timelike Compton Scattering (TCS),

γ(q) + p(p) → γ∗(q′) + p(p′) , (2)

is the process of photoproduction of a virtual timelike photon (q′2 = Q′2 > 0) on a nucleon.

As shown in the right panel of Fig. 1, the final-state virtual photon immediately decays into a

lepton pair. TCS is, however, not the only physical processes that can be observed in exclusive

photoproduction of lepton pairs, γp → l+l−p. Another process with the same final state is

the purely electromagnetic Bethe-Heitler (BH) reaction shown in Fig. 2. Like in DVCS, the

TCS and BH amplitudes interfere. In JLab 12 GeV kinematics, where the BH cross section is

significantly larger than the TCS cross section, one can take advantage of this interference to

enhance the TCS signal; see Sect. 2 C for details.

The TCS amplitude depends on the following three kinematic invariants:

q′2 = Q′2 > 0 ,

s = (p + q)2 ,

t = (p′ − p)2 , (3)
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l +

l −

p p

γ

FIG. 2: The Feynman graphs for the Bethe-Heitler contribution to the γp → l+l−p process.

where q′2 = Q′2 is the virtuality of the final-state photon, s is the invariant photon-proton energy

squared, and t is the four-momentum transfer squared. In addition to these three variables, the

γp → l+l−p cross section depends on the angles θ and ϕ associated with the final-state lepton

pair. In the l+l− center-of-mass frame, θ is the angle between the momenta of the lepton ~k

and the recoiling proton ~q′, and ϕ is the angle between the reaction plane and the lepton decay

plane, as shown in Fig. 3.

B. Leading-twist formalism

To ensure the applicability of the leading twist formalism to the γp → l+l−p process

(the left panel of Fig. 1, one requires that (i) the timelike virtuality of the final-state photon,

Q′2, is sufficiently large to provide a hard scale, (ii) the invariant photon-proton c.m. energy,
√

s, is sufficiently large to ensure the usual DIS kinematics, and (iii) the invariant momentum

transfer squared t is low, i.e., |t| ≤ 1 GeV2. The timelike nature of the final state also makes

interpretation complicated in the presence of resonances in the invariant mass of the produced

lepton pair. Hence, as shown in Fig. 4, an ideal mass range for this experiment is Mρ′ <

Ml+l− < MJ/ψ, which coincides well with JLab 12 GeV kinematics. Since the invariant mass

of the lepton pair, Ml+l− , is also the timelike virtuality of the outgoing photon, Q′, focusing on

the resonance-free region automatically satisfies condition (i) above.

The leading-twist formalism for TCS has been developed in Ref. [9]. It is based on the

factorization theorem [7] that allows one to express the TCS amplitude in Eq. (2) as convolutions

of calculable hard-scattering kernels with GPDs. The resulting quantities are called Compton

form factors (CFFs). One expects that as long as Q′2 is sufficiently large, the leading-twist

approximation (i.e., ignoring terms of the order of m2
N/Q′2, m2

l /Q′2, and |t|/Q′2) should work

equally well for TCS as it does for DVCS. In other words, one does not expect enhanced higher

twist corrections specific to TCS [4].

To leading order in the strong coupling constant, αs, the TCS amplitude is given by
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FIG. 3: Momenta and angles involved in the TCS cross section in the γp and l+l− center-of-mass frames.

Adopted from [9]. Note that the angles ϕ and θ will be referred to explicitly as ϕCM and θCM outside of

the motivation section to avoid confusion with the angles in the lab system.

the two handbag diagrams presented in Fig. 5. To leading order in αs, the TCS amplitude is

equivalent to the DVCS amplitude, making it easier to test the universality of GPDs. However,

at the next-to-leading order, the expressions for the hard scattering kernels for TCS and DVCS

are different and, as a result, the TCS and DVCS CFFs have different forms [14, 15]. This is

discussed further in Sect. 2 E.

The proton has four leading-twist parton-helicity non-flip quark GPDs. The expressions

for the corresponding CFFs, H1, E1, H̃1, and Ẽ1 are:

H1(η, t) =
∑

q

e2
q

∫ 1

−1

(
Hq(x, η, t)

η − x + iǫ
− Hq(x, η, t)

η + x + iǫ

)
,

E1(η, t) =
∑

q

e2
q

∫ 1

−1

(
Eq(x, η, t)

η − x + iǫ
− Hq(x, η, t)

η + x + iǫ

)
,

H̃1(η, t) =
∑

q

e2
q

∫ 1

−1

(
H̃q(x, η, t)

η − x + iǫ
+

H̃q(x, η, t)

η + x + iǫ

)
,

Ẽ1(η, t) =
∑

q

e2
q

∫ 1

−1

(
Ẽq(x, η, t)

η − x + iǫ
+

Ẽq(x, η, t)

η + x + iǫ

)
, (4)

where the superscript q denotes the quark flavor and eq the quark charge. For brevity, we

suppressed the Q2-dependence of the GPDs and CFFs. In Eq. (4), the light-cone fraction η,

which in TCS plays the role of the skewness ξ in DVCS, is fixed by the external kinematics:

η = − (q − q′) · (q + q′)

(p + p′) · (q + q′)
≈ Q′2

2(s − M2) − Q′2 + t
. (5)

From Eq. (4) it follows that the imaginary part of the CFFs can be expressed in terms of

GPDs along the so-called cross-over line, i.e., at x = η for quarks and x = −η for antiquarks.
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FIG. 4: Measurements of e+e− annihilation into hadrons show a resonance-free window between the ρ′

and the J/ψ, which is ideal for TCS studies at 12 GeV.

The real part of the CFFs is, on the other hand, sensitive to GPDs over the entire range of x.

For instance, the real part of the CFF H1 is given by:

ℜeH1(η, t) =
∑

q

e2
q p.v.

∫ 1

−1

(
Hq(x, η, t)

η − x
− Hq(x, η, t)

η + x

)
, (6)

where p.v. stands for the principal value. The straightforward access to the real part of CFFs (see

Sect. 2 C) gives TCS measurements the potential to constrain GPDs away from the cross-over

line in a wide range of x and η.

The imaginary part of the Compton amplitude is now relatively well understood, primarily

through measurements of DVCS – see, e.g., [10]. However, much less is known about the

real part, which may become important at larger values of x, coinciding with JLab 12 GeV

kinematics. The limited knowledge of the real part of the amplitude is reflected in GPD model

predictions, which are in good general agreement for the imaginary part, but differ significantly

when it comes to the real one. This is illustrated in Figs. 6 and 7, which show the real and

imaginary parts of the GPD H as a function of x and −t, respectively, for two GPD models: the

dual parametrization [16–19] and the double distribution [20]. The potential of TCS to provide

additional constraints on the real part of CFFs is thus important for developing more accurate

GPD models. The TCS data could also be used in global fits of CFFs and for dispersion relation

analysis. This is discussed in more detail in Sect. 2 F and Sect. 2 G, respectively.

In TCS, the use of a circularly polarized photons allows to determinate both the real

and imaginary parts of the helicity amplitudes or CFFs with comparable uncertainties. In con-

trast, DVCS measurements strongly favor the imaginary part. The real part is only available
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2ηγ γγ∗ γ∗

FIG. 5: The handbag diagrams for TCS. The plus-momentum fractions refer to the average proton

momentum (p + p′)/2.

through direct cross section measurements or comparisons of cross sections measured with elec-

tron and positron beams, both of which are significantly more challenging than, for instance,

the measurement of beam spin asymmetries that give access to the imaginary part.

In addition to discriminating between GPD models and constraining fits of CFFs, a mea-

surement of TCS may also offer a unique possibility to address the issue of the so-called D-

term [21]. Technically, the D-term is defined as the contribution to the GPD H and E that

provides the highest power of ξ in Mellin moments of this GPD. The D-term of the GPD E

has the same magnitude but opposite sign. The D-term contribution to GPDs has support only

in the region x ∈ [−η, η], which makes it elusive and inaccessible in the forward limit. This

unambiguously indicates that the D-term cannot be interpreted in terms of the usual parton

densities. Instead, the D-term describes the emission of a qq̄ pair by the nucleon, revealing the

complex nature of the nucleon as a many-body system.

The D-term [21] was originally introduced in the context of the double distribution (DD)

parametrization of GPDs [20], as an additional function required to generate the highest n + 1

power of xi in the xn moment of the GPD H(x, xi). It was realized [22] that the s]ame re-

sult could be achieved within a single-DD parameterization (i.e., one using only the forward

parton distributions as input), but at the price of introducing singular expressions requiring

additional prescriptions. Because of the need to deal with singular functions this method was

not widely used for modeling GPDs. However, a recent theoretical analysis of the single-DD

parametrization [23] demonstrated explicity how all arising singular expressions can be regular-

ized and how the D-term naturally appears in this approach, so that the relation between the

two parametrizations is now well understood. Coupled with the imbedded Regge formalism, the

single-DD parametrization thus offers a new alternative approach to modeling GPDs.

The distribution of energy, momentum, and angular momentum in the nucleon is charac-
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FIG. 6: Imaginary (left) and real (right) parts of the GPD H plotted as a function of τ = Q′2/(s−M2),

which is the TCS equivalent of Bjorken x, for Q′2 = 5 GeV2 and t = 0. The curves correspond to GPD

models based on the dual parametrization [16–19] and the double distribution [20], respectively.

terized by form factors of the QCD energy-momentum tensor between the nucleon states [8, 24],

all of which can be expressed in terms of GPDs. The D-term gives rise to one of these form

factors (denoted C(t) or d1(t) in the literature).

It has been shown that in the Breit frame, this form factor can be interpreted as describing

the distribution of pressure and shear forces acting on quarks inside the nucleon [25]. Studies in

field-theoretical models show that the negative sign of the D-term is a consequence of the stability

of the nucleon [26]. This is illustrated in Fig. 9, where the pressure p(r) experienced by quarks

inside the nucleon is given as a function of the distance from the center, r. Stability arises as a

balance between repulsive forces in the inner region, and attractive forces at large r, such that

the stability condition
∫ ∞
0 dr r2p(r) = 0 holds. The D-term is given by d1 = 5πM

∫ ∞
0 dr r4p(r)

and the additional weight r2 in the integrand emphasizes the role of large distances and binding

forces inside the nucleon, leading to a negative value of the D-term [26].

Form factors of the QCD energy-momentum tensor can also be calculated from first prin-

ciples in lattice QCD. The QCDSF collaboration calculated the D-term form factor d1(t) as a

function of −t for the pion mass mπ = 640 MeV [27]. The predictions of the chiral quark-soliton

model [26] used for the calculation shown in Fig. 9 are in agreement with the lattice data.

The notion of the D-term is important for phenomenology because it (i) is an integral

ingredient of GPD modeling (see the discussion above), (ii) gives an energy-independent (η-

independent) contribution to ℜeH1 and ℜeE1, and (iii) determines the subtraction constant in

the dispersion relation connecting the real and imaginary parts of the TCS and DVCS amplitudes

[23, 28–30]. In the language of Regge theory [31–34], the D-term can be interpreted as originating

from the t-channel exchange with J = 0 (the so-called fixed pole).
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C. TCS cross section and interference between TCS and BH amplitudes

In the leading-twist approximation, the TCS cross section has the following form [9]:

dσTCS

dQ′2 dt dcosθ dϕ
≈ α3

em

8πs2

1

Q′2

1 + cos2 θ

4

∑

λ,λ′

|Mλ′−,λ−|2 , (7)

where αem is the fine structure constant and Mλ′−,λ− are helicity amplitudes, with λ (λ′) de-

noting the helicity of the incoming (outgoing) photon. The TCS amplitude squared entering

Eq. (7) is expressed in terms of the Compton form factors:

1

2

∑

λ,λ′

|Mλ′−,λ−|2 = (1 − η2)(|H1|2 + |H̃1|2) − 2η2Re(H∗
1E1 + H̃∗

1Ẽ1)

− (η2 +
t

4m2
N

)|E1|2 − η2 t

4m2
N

|Ẽ1|2 . (8)

Theoretical analyses [9, 35] have shown that the TCS cross section is smaller than the BH

cross section for JLab 12 GeV kinematics. Figure ?? shows the unpolarized cross sections of

BH and of TCS as a function of Q′2 at η=0.2, −t = 0.4 GeV2, φ = 0◦, 360◦ and for θ integrated

over [π/4, 3π/4]. It is seen that TCS is suppressed by about 2 orders of magnitude with respect

to BH.

However like in DVCS, the BH and TCS amplitudes also interfere. When the initial-state

13



)2 (GeV2Q’

4 5 6 7 8 9

)4
 (

nb
/G

eV
Ω

 d
t d

2
 / 

dQ
’

σd

-410

-310

-210

bh

tcs

FIG. 8: Unpolarized cross section dσ
dQ′2 dt dφ d(cosθ) for the process γP → P ′e+e−, for BH and TCS alone,

as a function of Q′2, at η=0.2, −t = 0.4 GeV2, for θ = 45◦, 90◦ for φ = 0◦, 360◦ and for θ integrated over

[π/4, 3π/4].

photon is unpolarized, the interference term can be expressed as:

dσINT

dQ′2 dt d(cos θ) dϕ
= − α3

em

4πs2

1

−t

M

Q′

1

τ
√

1 − τ

L0

L

×
[

cos ϕ
1 + cos2 θ

sin θ
ℜeM̃−− − cos 2ϕ

√
2 cos θℜeM̃0−

+ cos 3ϕ sin θℜeM̃+− + O
( 1

Q′

)]
, (9)

where M is the proton mass. The variable τ ,

τ =
Q′2

2(p · q) =
Q′2

s − M2
, (10)

in TCS is the analog of the Bjorken variable xB = Q2/(2p·q) in DVCS. To leading twist accuracy,

η =
τ

2 − τ
, (11)

where η is given by Eq. (5). In Eq. (9), L0 and L originate from the product of final-state lepton

propagators [9] and M̃µ′µ are interference helicity amplitudes, where µ (µ′) denotes the helicity

of the incoming (outgoing) photon. In the handbag approximation, the photon (parton) helicity

is conserved and, as a result, the only surviving contribution in Eq. (9) comes from M̃−−:

M̃−− =
2
√

t0 − t

M

1 − η

1 + η

[
F1H1 − η(F1 + F2)H̃1 −

t

4M2
F2E1

]
, (12)
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FIG. 9: Pressure experienced by quarks inside the nucleon calculated in the framework of the chiral

quark-soliton model [26].

where −t0 = 4η2M2/(1 − η2) is the minimal momentum transfer at a given η (modulo 1/Q′2

corrections), and F1 and F2 are the Dirac and Pauli elastic form factors of the proton, respec-

tively.

Unpolarized photons (from a helicity-averaged electron beam) give access to the real part

of the CFFs. With a longitudinally polarized electron beam, producing circularly polarized

photons with polarization ν 6= 0, one can simultaneously study both the real and imaginary

parts of the helicity amplitudes using the full expression for the interference term [9]:

dσINT

dQ′2 dt d(cos θ) dϕ
= − α3

em

4πs2

1

−t

M

Q′

1

τ
√

1 − τ

L0

L

×
( [

cos ϕ
1 + cos2 θ

sin θ
ℜeM̃−− − cos 2ϕ

√
2 cos θℜeM̃0−

+ cos 3ϕ sin θℜeM̃+− + O
( 1

Q′

)]

+ ν
[

sin ϕ
1 + cos2 θ

sin θ
Im M̃−− − sin 2ϕ

√
2 cos θℑmM̃0−

+ sin 3ϕ sin θ Im M̃+− + O
( 1

Q′

)])
, (13)

Under charge conjugation of the final-state lepton pair, which corresponds to the trans-

formation ϕ → ϕ + π, the TCS and BH cross sections are even, while the interference term is

odd. This makes it possible to project out the TCS-BH interference through the weighted and

θ-integrated cross section [9]:

dS

dQ′2 dt dϕ
=

∫ 3π/4

π/4
dθ

L(θ, ϕ)

L0(θ)

dσ

dQ′2 dt dθ dϕ
. (14)
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FIG. 10: Predictions for the cosine moment of the weighted cross section shown as a function of −t at a

fixed initial-state photon energy Eγ = 7.8 GeV and Q′2 = 5 GeV2. The curves correspond to GPD models

based on the dual parametrization [16–19] (blue) and the double distribution [20] (red), respectively. The

three lower (red) curves correspond to different strengths of the D-term quantified by the parameter κ in

Eq. (16). The moment R, defined in Eq. (15), is shown in the left panel, while the right panel shows the

corresponding curves for R′. The latter is integrated over the θ-ϕ acceptance of the detector. The details

are explained in Sect. 4. It is interesting to note the while the different integration contour changes the

absolute value of R′ compared with R, it does not diminish the sensitivity.

The contribution of, for instance, ℜeM̃−−, can now be obtained by taking the cosϕ-moment of

S [9]:

R =

2

∫ 2π

0
dϕ cos ϕ

dS

dQ′2 dt dϕ∫ 2π

0
dϕ

dS

dQ′2 dt dϕ

. (15)

An example of the calculation of R as a function of −t at a fixed initial-state photon

energy Eγ = 7.8 GeV and Q′2 = 5 GeV2 is shown in the left panel of Fig. 10. The curves show

predictions of calculations based on two GPD models: the dual parametrization [16–19] (upper

curve) and the double distribution [20] (lower three curves). The difference in the magnitude of

R is quite significant, as would be expected given the difference in ℜeH shown in Fig. 7. The

three lower curves correspond to different strengths of the D-term [3] in the double distribution,

as quantified by the parameter κ in Eq. (16). It is interesting to note that for the standard

value of κ, the double distribution predicts a cancellation with the D-term resulting in a small

ℜeH – a feature absent in the dual parametrization. The right panel in Fig. 10 shows the same

calculations performed within the θ-ϕ acceptance of the detector. The details are explained in
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Sect. 4. In the calculations with the double distribution, for the GPD H we used:

Hq(x, η, t) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dαδ(x − β − αη)π(|β|, α)q(β, t) + κ

1

Nf
Θ(η − |x|)D(x/η, t) , (16)

where π(β, α) is the profile function that determines the degree of skewness, q(β, t) is the off-

diagonal quark parton distribution that reduces to the usual parton distribution in the t = 0

limit, D(x/η, t) is the D-term, and Nf = 3 is the number of active quark flavors. Note that we

introduced the coefficient κ in front of the D-term to vary the strength of its contribution. For

the D-term, we used the standard expansion in terms of the Gegenbauer polynomials C
3/2
n :

D(z, t = 0) = −(1 − z2)(d1 C
3/2
1 (z) + d3 C3/2(z) + d5 C3/2(z)) . (17)

The magnitude of the coefficients di in Eq. (17) was estimated in the chiral quark-soliton model

at a low normalization scale [36]; QCD evolution to the needed values of Q′2 somewhat decreases

the values of the coefficients [4]. To test the sensitivity of R the D-term, we varied the parameter

κ. The three curves in Fig. 10 correspond to κ = 0.5 (lower curve), κ = 1 (standard magnitude

of the D-term), and κ = 2 (upper curve), respectively.

D. Cross sections and beam asymmetries

1. Decay angular dependencies of the unpolarized cross section

Fig. 11 shows the calculation by Ref. [37] of the φ-dependence of the 4-fold differential

cross section dσBH

dQ′2 dt dφ d(cosθ)
for the γP → P ′e+e− reaction (i.e. BH+TCS), at η = 0.2, −t = 0.4

GeV2, Q′2 = 7 GeV2 and for 3 θ values. The φ-distribution depends on θ. As θ tends to 0◦, the

φ distribution peaks towards φ=180◦ and as θ tends to 180◦, the φ-distribution peaks towards

φ=0◦ (or 360◦). There is a smooth transition between these two behaviors for intermediate θ

values. For instance, at θ=90◦, there are only two small ”bumps” at φ=0◦ and φ=180◦.

These particular shapes are due to the BH process and its singularities. Indeed, in the BH

process, when the electron (positron) is emitted in the direction of the initial photon, i.e. θ = 0◦

(θ = 180◦), the propagator of the positron (electron) becomes singular and creates a peak in

the φ distribution at φ = 180◦ (φ = 0◦). Intuitively, θ = 0◦ (θ = 180◦) forces all particles to be

in the same plane, i.e. φ = 180◦ (φ = 0◦). The kinematics θ = 0◦, i.e. the electron is in the

direction of the photon beam, corresponds to φ = 180◦ because the virtual photon is emitted

by the position, not the electron.

We display also in Fig. 11 (left panel) the contribution of TCS alone. In this calculation,

we have used only the GPD H. The inclusion of the other GPDs barely changes the result.

In contrast to the BH, the TCS is almost flat in φ for all θ values. It is clear that the process
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γP → P ′e+e− is largely dominated by the BH. There is never less than one order of magnitude

between BH and TCS.

In Fig. 11 (right panel), we show the curves BH+TCS as well as the BH alone for θ=45◦

and θ=90◦. Only at θ=90◦, where one is far from the two BH singularities, we have a visible

difference between the two curves and therefore a sensitivity to TCS. It is of the order of 30%

at φ=180◦. As one gets closer to one of the two BH singularities (θ=45◦ for instance), the two

curves BH and BH+TCS are essentially indistinguishable and there is no sensitivity to TCS.

Finally, we show in Fig. 11 the results of the calculations of Ref. [37] for BH+TCS and

BH alone for θ integrated over the range [π/4, 3π/4]. In order to maximize count rates, it is

interesting to integrate over θ. One still has a sensitivity to TCS. However, it is of the order of

5%, i.e. less than at fixed θ=90◦: the integration over θ dilutes the sensitivity to TCS.
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FIG. 11: Left panel: Unpolarized cross section dσ
dQ′2 dt dφ d(cosθ) for the process γP → P ′e+e− (for BH

+ TCS and TCS alone) as a function of φ, at η=0.2, −t = 0.4 GeV2, Q′2 = 7 GeV2 for different fixed

θ values: 10◦, 90◦, 170◦ for the BH and for the TCS cross sections. Right panel: Comparison between

unpolarized cross section for BH alone and for BH+TCS for θ = 45◦, 90◦ and for θ integrated over

[π/4, 3π/4].

To emphasize the D-term sensitivity in unpolarized cross section, we also display in Fig.

12 the three-fold differential cross section dσBH

dQ′2 dt dφ
for η = 0.2, −t = 0.4 GeV2 and θ integrated

over the range [π/4, 3π/4], calculated by Ref. [38]. It modifies the amplitude f the cross section,

mostly at φ = 0 and at φ = π, by about 10%.

2. Circularly polarized beam spin asymmetry

The beam asymmetry with a circularly polarized beam is defined as:

A⊙U =
σ+ − σ−

σ+ + σ−
, (18)

where σ± stands for the 4-fold differential cross sections dσ
dQ′2 dt dφ d(cosθ)

for the two photon spin

states, right and left polarized. We display in Fig. 13 (top panel) the results for A⊙U as a
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FIG. 12: Unpolarized cross section dσ
dQ′2 dt dφ d(cosθ) for the process γP → P ′e+e− (for BH + TCS and

TCS alone) as a function of φ, at η=0.2, −t = 0.4 GeV2, Q′2 = 7 GeV2 and for θ integrated over

[π/4, 3π/4], with of without the D-term included in calculations.

function of φ at Q′2 = 7 GeV2, η = 0.2, −t = 0.4 GeV2 for θ integrated over [45◦, 135◦], as

calcualte by Ref. [38]. We observe that the BH doesn’t produce any asymmetry. Any non-zero

therefore reflects the contribution from TCS. This is due to the fact that this observable is

sensitive to the imaginary part of the amplitude and that the BH amplitude is purely real. The

different curves correspond to different GPDs parametrizations for TCS. In Fig. 14, we show for

η = 0.2, Q′2 = 7 GeV2, φ = 90◦ and θ integrated over [45◦, 135◦], the t-dependence of A⊙U and

its sensitivity to different GPDs. We notice that the magnitude of A⊙U increases with |t| and

that there is a sensitivity of this observable to all four GPDs. We also display in this figure the

results with the factorized ansatz for the t-dependence of the H GPD in order to illustrate the

model-dependence of the calculation.

E. NLO corrections

Timelike Compton Scattering (TCS) shares many features with spacelike DVCS and allows

to access the same GPDs. The amplitudes of these two reactions are related at Born order by a

simple complex conjugation, but they significantly differ at next to leading order (NLO) in the

strong coupling constant αs [39]. In the recent paper [40] it was shown that the Born amplitudes

of DVCS and TCS processes get sizeable O(αs) corrections and, even at moderate energies, the

gluonic contributions are by no means negligible. We stress that the timelike and spacelike cases

are complementary and that their difference deserves much special attention.

Including gluon coefficient function appearing first at NLO, and NLO corrections to the

quark coefficient functions [14, 41–44] entering the TCS amplitudes, modifies significantly the

values of the timelike Compton form factors. Results are shown for two GPD models based

on Double Distributions (DDs): the so-called Goloskokov-Kroll (or GK) model [45–48], and a

model based on the simple factorizing ansatz for the t-dependence [9] with MSTW08 PDFs [49].
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FIG. 13: The A⊙U for θ ∈ [45◦, 135◦] using differents GPDs parametrizations for TCS. The calculations

are done for Q′2 = 7 GeV2, η = 0.2, −t = 0.4 GeV2.

FIG. 14: The A⊙U asymmetry as a function of t for BH+TCS at η = 0.2, Q′2 = 7 GeV2, φ = 90◦ and θ

integrated over [45◦, 135◦]. TCS is calculated with different GPDs.

The consequence of a Polyakov-Weiss D-term [21], following [9] and [4] is explored with the use

of the parametrization obtained by a fit to the chiral soliton model [50].
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1. The TCS amplitudes

After proper renormalization, the full Compton scattering amplitude (for both DVCS or

TCS) reads in its factorized form (at factorization scale µF )

Aµν = −gµν
T

∫ 1

−1
dx

[
nF∑

q

T q(x)F q(x) + T g(x)F g(x)

]

+ iǫµν
T

∫ 1

−1
dx

[
nF∑

q

T̃ q(x)F̃ q(x) + T̃ g(x)F̃ g(x)

]
, (19)

where we omitted the explicit skewness dependence. The renormalized coefficient functions are

given by

T q(x) =

[
Cq

0(x) + Cq
1(x) + ln

(
Q2

µ2
F

)
· Cq

coll(x)

]
− (x → −x) ,

T g(x) =

[
Cg

1 (x) + ln

(
Q2

µ2
F

)
· Cg

coll(x)

]
+ (x → −x) ,

T̃ q(x) =

[
C̃q

0(x) + C̃q
1(x) + ln

(
Q2

µ2
F

)
· C̃q

coll(x)

]
+ (x → −x) ,

T̃ g(x) =

[
C̃g

1 (x) + ln

(
Q2

µ2
F

)
· C̃g

coll(x)

]
− (x → −x) . (20)

The difference between the DVCS and the TCS cases is the consequence of analyticity (in

Q2) which leads to the relation [39]:

TCST (x, η) = ±
(
DV CST (x, ξ = η) + iπCcoll(x, ξ = η)

)∗
, (21)

where + (−) sign corresponds to the vector (axial) case.

2. Timelike Compton Form Factors

The timelike Compton Form Factors (CFF) at NLO, H and H̃, defined as

H(η, t) = +

∫ 1

−1
dx

(
∑

q

T q(x, η)Hq(x, η, t) + T g(x, η)Hg(x, η, t)

)

H̃(η, t) = −
∫ 1

−1
dx

(
∑

q

T̃ q(x, η)H̃q(x, η, t) + T̃ g(x, η)H̃g(x, η, t)

)
, (22)

are the GPD dependent quantities which enter the amplitudes. For TCS they are defined through

relations such as [9]

Aµν(η, t) = −e2 1

(P + P ′)+
ū(P ′)

[
gµν
T

(
H(η, t) γ+ + E(η, t)

iσ+ρ∆ρ

2M

)
+ iǫµν

T

(
H̃(η, t) γ+γ5 + Ẽ(η, t)

∆+γ5

2M

) ]
u(P ) .

(23)
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We present our results for Q2 = µ2
F = µ2

R = 4 GeV2, and use the value αS = 0.3 .

FIG. 15: The real part of the timelike Compton Form Factor H multiplied by η, as a function of η

in the double distribution model based on Goloskokov-Kroll (upper left) and MSTW08 (upper right)

parametrizations, for µ2
F = Q2 = 4 GeV2 and t = −0.1 GeV2. Below the ratios of the NLO correction to

LO result of the corresponding models.

To show the importance of including NLO effects in the timelike CFFs relevant to timelike

Compton scattering, we plot in Fig. 15 and Fig. 16, the real and imaginary parts of the CFF H
for the GK and the MSTW08 models of GPDs, for the invariant mass of the lepton pair Q′2 = 4

GeV2, t = −0.1 GeV2. For the imaginary part the correction does not exceed 40%. In the real

part, the correction is of the order of few hundred percent. We observe that the main part of

that large correction comes from the contribution of gluonic GPDs.

The D-term contribution to the CFF is a η-independent quantity and it has both a real

and an imaginary parts at NLO. We show in Tab. I the values of this D-term contribution in the

LO and NLO cases. Its relative effect on the imaginary part of the CFF decreases significantly

when η decreases, from 10 to 1 and 0.1% when η decreases from 0.1 to 0.01 and to 0.001.

We then compare TCS and DVCS by plotting the ratio of NLO corrections on Fig. 17.

There is a striking difference in the magnitude of the corrections to the real part of CFFs, mostly

insensitive to the choice of GPD parametrizations. As discussed in Ref. [39], this is a consequence

of Eq. (21) which by adding a phase to the dominant imaginary part of the spacelike CFF at

small skewness, gives rise to a sizeable real part of the corresponding CFF in the timelike case.
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FIG. 16: The imaginary part of the timelike Compton Form Factor H multiplied by η, as a function of

η in the double distribution model based on Goloskokov-Kroll (upper left) and MSTW08 (upper right)

parametrizations, for µ2
F = Q2 = 4 GeV2 and t = −0.1 GeV2. Below the ratios of the NLO correction to

LO result of the corresponding models.

ReHD ImHD

LO -2.59 0

NLO quark contribution -0.16 -0.85

NLO gluon contribution 0.18 0.16

Full NLO -2.57 -0.69

TABLE I: Different contributions to the D-term. The values of the real part coincides for spacelike and

timelike CFF H, while the imaginary part is non-vanishing only for the timelike case.

Such large corrections to the real part of CFFs will have a significant influence on observables

which depend on the interference of the TCS process with the Bethe-Heitler amplitude, i.e.

connected to the azimuthal angular distribution of the leptons.

In the context of the large NLO order corrections it is important to investigate the stability

of the full NLO result with respect to the choice of the factorization scale µF . In Fig. 18 we

illustrate this issue with a real and imaginary part of the CFF H multiplied by skewness η

plotted for Q2

µ2
F

= ·{1, 2, 3, 4}. Indeed we see that for small values of eta, factorization scale

dependence is very strong, but for the values corresponding to JLab kinematics (η > 0.1) the
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FIG. 17: The ratio of the timelike to spacelike NLO corrections in the real (left) and imaginary (right)

part of the Compton Form Factor H, as a function of ξ in the double distribution model based on

the Goloskokov-Kroll (dashed) and MSTW08 (solid) parametrizations, for µ2
F = Q2 = 4 GeV2 and

t = −0.1 GeV2. For comparison timelike CFFs where calculated at η = ξ.

result is very stable.

FIG. 18: Full NLO result for real(left) and imaginary(right) part of the CFF H multiplied by skewness

η for the Q2 = 4Gev2, t = −0.1Gev2 and various choices of the factorization scale Q2

µ2

F

= {1, 2, 3, 4}. We

see that for JLab kinematics result is very stable.

3. Cross sections and asymmetries

Let us now pass to our estimates for the observables in TCS. Generally we observe that

the inclusion of the NLO corrections is more important at small skewness. We also see that

the Bethe-Heitler dominates the integrated cross-section for this kinematics. In consequence,

more differential observables, as the azimuthal φ dependence (with angles θ and φ defined in

Ref. [9]) reveal in a better way the different contributions. Moreover simple φ dependence of the

interference term allows for an easy access to the real part of the CFFs which, as we observed in

24



Fig. 15, is subject to big NLO corrections. We indeed observe that effect on the Fig. 19, which

shows the φ dependence of the unpolarized differential cross sections for pure BH process, and

with a LO and NLO corrections to the interference term.

FIG. 19: The φ dependence of the cross-section at Eγ = 10 GeV, Q2 = µ2
F = 4 GeV2, and t =

−0.1 GeV2 integrated over θ ∈ (π/4, 3π/4): pure Bethe-Heitler contribution (dash-dotted), Bethe-Heitler

plus interference contribution at LO (dotted) and NLO (solid).

FIG. 20: Ratio R defined by Eq. (24) as a function of η, for Q2 = µ2
F = 4 GeV2 and t = −0.1 GeV2. The

dotted line represents LO contribution and the solid line represents NLO result.

To quantify how big the deviation is from the pure Bethe-Heitler process in the unpolarized

cross section we calculate (see Fig. 20) the ratio R, defined in Ref. [9] by

R(η) =
2

∫ 2π
0 dϕ cos ϕ dS

dQ′2dtdϕ∫ 2π
0 dϕ dS

dQ′2dtdϕ

, (24)

where S is a weighted cross section given by Eq. (43) of Ref. [9]. It is plotted in Fig. 20 as a

function of the skewness η for Q2 = µ2 = 4 GeV2, and t = −0.2 GeV2. In the leading twist the

25



numerator is linear in the real part of the CFFs, and the denominator, for the kinematics we

consider, is dominated by the Bethe - Heitler contribution. The inclusion of NLO corrections to

the TCS amplitude is indeed dramatic for such an observable and includes also change of sign.

Imaginary parts of the CFFs are accessible through observables making use of photon

circular polarizations [9]. The photon beam circular polarization asymmetry

A =
σ+ − σ−

σ+ + σ−
, (25)

is shown on the left part of Fig. 21, as a function of φ for the kinematic variables relevant for

JLab: Q2 = 4 GeV2= µ2
F , t = −0.1 GeV2 and Eγ = 10 GeV (which corresponds to η ≈ 0.11).

The same quantity is shown on the right panel of Fig. 21 as a function of η for φ = π/2 and

Q2 = 4 GeV2= µ2
F . The effect of the NLO corrections on that observable is rather large, around

10% in the η range most relevant for JLab kinematics.

FIG. 21: (Left) Photon beam circular polarization asymmetry as a function of φ, for t = −0.1 GeV2,

Q2 = µ2
F = 4 GeV2, integrated over θ ∈ (π/4, 3π/4) and for Eγ = 10 GeV (η ≈ 0.11). (Right)

The η dependence of the photon beam circular polarization asymmetry for Q2 = µ2
F = 4 GeV2, and

t = −0.2 GeV2 integrated over θ ∈ (π/4, 3π/4). The LO result is shown as the dotted line, the full NLO

result by the solid line.

F. Amplitude analysis of Compton form factors

At leading twist and leading order QCD, the GPDs and the CFFs involved in TCS and

DVCS are related: the amplitudes are complex conjugates of one another. The interest of TCS

is two-fold: 1/prove this universality of the GPDs, by showing that the same GPDs and CFFs

can describe both the TCS and DVCS data (possibly with NLO corrections, in principle under

control); 2/if so, use the new TCS observables to further constrain the fits of CFFs, currently

extracted with only the DVCS data, by fitting simultaneously TCS and DVCS observables.

We recall that GPDs are not directly accessible in TCS and DVCS, but only CFFs.

These latter depend only on t and ξ if Q2 (Q′2) evolution is neglected. In order to estimate
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FIG. 22: Kinematical domain accessible as a function of ξ and Q2 for DVCS (red plain surface) and

in ξ or η and Q′2 for TCS (blue dotted surface) with an 11 GeV electron beam. For DVCS, the cuts

0 < −t < 1 GeV 2 and s > 4GeV 2 have been applied and for TCS, the cuts 5 < Egamma < 11GeV ,

0 < −t < 1GeV 2 and 4 < Q′2 < 9GeV 2 have been applied.

the impact of TCS data on the extraction of CFFs, we have used the fitting algorithm of

references [11, 38, 51–53]. The code was initially developped for the DVCS process and it

consists in fitting simultaneously various experimental observables at a given kinematical point,

i.e. η, t and Q2, with the 8 quark helicity-conserving CFFs: Re{H}, Re{E}, Re{H̃}, Re{Ẽ},
Im{H}, Im{E}, Im{H̃}, Im{Ẽ}, as free parameters. Given the well-known leading-twist and

leading order TCS and BH amplitude, the algorithm seeks to find, by the least-square technique,

the set of CFFs which minimizes the difference between the theory and the data, at a given t

and ξ point. This approach has been very succesful for the DVCS process, allowing to extract,

at the ≈ 30% level, from various beam- or target-polarized observables, three CFFs (Re{H},
Im{H}, and Im{H̃}) at JLab and HERMES kinematics.

The algorithm has recently be extended to the TCS reaction. In particular, it now allows

to fit simultaneously DVCS and TCS (pseudo-)data. We generated DVCS and TCS pseudo-

data at the kinematics Ee=11 GeV, η=0.2, Q2=3 GeV2, −t=0.4 GeV2 and Q′2=7 GeV2 for

four observables: DVCS unpolarized and beam polarized cross sections, TCS unpolarized and

beam polarized cross sections (for TCS, we will consider the photon beam linear and circular

polarizations). Fig. 22 shows that this is a kinematics which is accessible in both TCS and

DVCS for JLab 12 GeV kinematics.

We studied different uncertainties for the DVCS and TCS observables. Table II shows the

impact of adding TCS observables to DVCS observables in the fit. With DVCS alone, by fitting
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the unpolarized and beam polarized cross sections, each with 5% uncertainty, one is able to

recover the originally generated Im{H} and Re{H} CFFs with, in average, ≈40% and ≈100%

uncertainties. We recall that these two particular observables are dominated by the H GPD

and that it is rather natural that these two CFFs come out of the fit. We also recall that in

this procedure, the errors on the extracted CFFs is not directly proportional to the precision of

the experimental data. They rather reflect the influence (or our ignorance) of the non-dominant

CFFs (which are allowed to vary within well conservative limits).

Adding the TCS unpolarized and beam polarized cross sections, each measured with 15%

uncertainty, decreases the error bars on Im{H} and Re{H}. In particular, with a circularly

polarized photon beam, one obtains now ≈20% uncertainty for Im{H} and with a linearly

polarized photon beam ≈50% uncertainty for Re{H}. One thus notes the factor ≈ 2 gain for

both CFFs. We recall that the single spin asymmetries with a circularly polarized photon beam

are sensitive to the imaginary part of the TCS amplitudes while those with a linearly polarized

photon beam are sensitive to the real part [37]. Reducing the error bars on the TCS observables

to 5% further decreases the error bars on the CFFs.

In summary, adding more observables to the CFF fits, with reasonably achievable error

bars, allows a significant gain (factor 2 from our simulations) on the extraction of the CFFs

Im{H} and Re{H}.

(σ,∆σLU ) (σ,∆σLU ) (σ,∆σLU ) (σ,∆σLU ) (σ,∆σLU )

DVCS 5% DVCS 5% DVCS 5% DVCS 5% DVCS 5%

+ TCSℓ 15% + TCSc 15% + TCSℓ 5% + TCSc 5%

σ+(Re{H}) +121% +92% +80% +54% +55%

σ−(Re{H}) -84% -79% -83% -44% -45%

σ+(Im{H}) +23% +20% +15% +11% +12%

σ−(Im{H}) -50% -40% -21% -27% -19%

TABLE II: The table shows, for 5 different fits configurations (number of observables and uncertainties

being varied) the uncertainties on the extracted Im{H} and Re{H} CFFs (which are the dominant

contributors to the fitted observables). Since the fit is under-constrained (eight free parameters for only

2 observables to be fitted), the problem is not linear and the error bars are asymmetric. σ stand for the

unpolarized cross section and ∆σLU for the beam polarized cross section (electron for DVCS and photon

for TCS). The index ℓ stands for a linearly polarized beam and c for a circularly polarized photon beam.

The percentages indicate the uncertainty on the data.
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G. Comment on dispersion analysis

Dispersion relations provide a very powerful and model-independent method to relate the

real and imaginary parts of scattering amplitudes based on such general properties as analyticity

and crossing symmetry. For hard exclusive reactions, dispersion relations have been established

and analyzed for DVCS, double DVCS (where the incoming photon has a spacelike virtuality

and the outgoing photon is timelike), and for exclusive meson production [28–30].

For instance, for the CFF Hq[+] (the superscript [+] indicates the singlet combination

corresponding to q + q̄), one obtains the dispersion relation [29]:

ℜeHq[+](ξ) =
1

π

∫ ∞

1
dωℑmCq[+](ω)

∫ 1

−1
dx

{
Hq(x,

x

ω
)
[ 1

ωξ − x
− 1

ωξ + x

]
+

2Dq(x)

ω − x

}
, (26)

where Cq[+] is the process-dependent hard-scattering kernel. The D-term enters the dispersion

relation as a subtraction constant, i.e., it gives an energy-independent contribution to ℜeHq[+].

The importance of the dispersion relation in Eq. (26) is that it quantifies the amount of infor-

mation on GPDs that can be extracted from the real and imaginary parts of CFFs or, more

generally, from amplitudes of exclusive processes. In addition, it provides a practical consistency

check for models of GPDs. While dispersion relations for the TCS amplitudes have not yet been

worked out, there should be no major difficulty in establishing them analogously to the cases

that have already been considered.

H. Results from CLAS 6 GeV data

Our proposed SoLID experiment builds upon experience gained from the analysis of CLAS

6 GeV data, which has established the technique for carrying out exclusive photoproduction

experiments with quasi-real photons that we propose for this experiment with SoLID. As will be

discussed in Sec. 3 B, this requires the detection of all final-state particles except the scattered

electron, for which the missing mass and missing transverse momentum are constrained to

be very small. More specifically, this technique has also been successfully applied to pilot

measurements of timelike Compton scattering using the CLAS e1-6 and e1f data sets. The

results from this CLAS Approved Analysis (CAA-DP09-01) have been documented in Ref. [54].

It demonstrated an impressive pion pair rejection of factor of 2.07×10−7. Measuring the φ cross

section in parallel with TCS showed that the flux of quasi-real photons is well understood. The

results from the above analysis could also be compared with an TCS analysis using the g12 data

set, which was the only high-energy CLAS data set with tagged real photons (up to 5.7 GeV)

that utilized the Cherenkov counters. These had been made ready specifically for TCS and

other e+e− physics. The analysis of the g12 data is still ongoing, but preliminary results seems
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FIG. 23: The cosine moment of the weighted cross section, R′, in the CLAS acceptance compared to

GPD model calculations based on the dual parametrization [16–19] (upper, green curve), and the double

distribution [20] (lower, blue curves) for three weights applied to the D-term. The BH-contribution is

shown in red.

to be in line with what was obtained with the quasi-real photon technique. The tagged-photon

beam will also make it possible to do an independent determination of the photon flux, and offer

an opportunity to explore event topologies with only two out of the three final-state particles

detected.

In addition to demonstrating the feasibility of the proposed measurement, the pilot ex-

periments at 6 GeV stimulated the development of new analysis methods. An example of this

was the introduction of the cosine moment R′, evaluated within the acceptance of the detector

in the ϕCM − θCM plane (the lepton c.m. angles ϕ and θ are defined in Fig. 3). Whereas the

original definition of R implies using the integration ranges shown in Eqs.(14) and (15), R′ adds

an function a(θCM , ϕCM ) corresponding to the detector acceptance for a given kinematic bin.

Utilizing the same acceptance function for both the experimental and theoretical evaluations

allows a straightforward comparison between data and predictions based on various GPD mod-

els. The difference between R′ and R is discussed in more detail in Sec. ?? together with the

projected results.

Fig. 23 shows R′ extracted from the combined e1-6 and e1f data sets for four bins in

−t, compared with two GPD model calculations based on the dual parametrization [16–19] and
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FIG. 24: e+e− invariant mass vs. quasi-real photon energy for the e1-6 (left) and e1f (right) data sets.

Only events with Mee above the φ mass were used for TCS analysis at 6 GeV.

double distribution [20], respectively. Results from the latter are shown with three weights for

the contribution from the D-term (0, 1, and 2). Both the experimental and theoretical points

shown here were evaluated at the average value for the bin, but an event-by-event approach will

be adopted in the future.

However, despite the usefulness of the 6 GeV data for developing the TCS program, only

the 12 GeV era will provide the required luminosity and kinematic coverage. In particular, the

higher beam energy will make it possible to study a range of invariant lepton pair masses where

there are no meson resonances that complicate the interpretation of the measurement. As shown

in Fig. 24, only data above the φ mass were used for TCS analysis at 6 GeV, but at 12 GeV it

will be possible to move this range above the mass of the ρ′.
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3. EXPERIMENTAL SETUP

We propose to study photoproduction of lepton pairs, γp → l+l−p′, in a wide range of

kinematics using the SoLID detector in Hall A and a 11 GeV longitudinally polarized electron

beam impinging on a hydrogen target. Because there’s no real photon beam available in Hall

A, the analysis will use the fully exclusive reaction

ep → e+e−p′(e′) (27)

where the electron (e′) scatters at a small angle (∼ 0◦), and escapes detection in SoLID. This will

include both real photoproduction due to the extended target and quasi-real photoproduction in

data. In Eq. (27), e+e− is the produced lepton pair, and p′ is the recoil proton. The exclusivity

of the reaction is ensured by detecting all final-state particles. The missing scattered electron

will be deduced from e+e−p′ and cutting on the missing-particle kinematics, in a similar manner

as in the TCS analysis of the CLAS 6 GeV data [54].

Because the multiple final state particle detection in wide kinematics, large acceptance

detectors like CLAS12 and SoLID are ideal for the measurement. The SoLID J/ψ experiment

E12-12-006 [2] contains all the needed equipments to detector the TCS final states e+e−p. And

because the J/ψ experiment also have decay e+e− pair and their kinematic distribution is similar

to TCS, it is possible to have a common trigger, thus the data can be collected in parallel.

Since the TCS cross section will not be measured separately but in combination with the

much larger Bethe-Heitler (BH) cross section with which it interferes, the rate estimates for TCS

were based on the BH cross section as given in Ref. [55].

For either BH and TCS with varying photon energy, the five-fold differential cross section

is

d5σ

dQ′2dtdηd(cos θCM )d(ϕCM )
(28)

where t four-momentum transfer squared, Q′2 is invariant mass square of the decay lepton pair,

and θCM and ϕCM are the lepton polar and azimuthal angles in the (e+e−) Center-of-Mass

system, respectively. To avoid confusion with the lab angles, we will in this section explicitly

call these angles θCM and ϕCM .

The details are presented in the following sections.

A. SoLID detector

SoLID with Jψ setup, shown in Fig. 25 will be an all-new detector in Hall A during

the 12 GeV era [56]. It is designed to use a solenoid field to sweep away low-energy charged

background particles, and can thus carry out experiments using high-energy electron beams
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FIG. 25: The SoLID detector with Jψ setup in Hall A.

Parameters SoLID detector

polar angular range (θ) (target at z=-315cm) 8.5◦ to 16◦ for FA and 17◦ to 24.5◦ for LA

azimuthal angular range (φ) full

resolution:

polar angle (δθ) < 0.6 mr

azimuthal angle (δφ) < 5 mr

momentum (δp/p) < 2%

PID:

e/π by EC full momentum range

e/π by CC < 4.9 GeV/c at FA

p/K by TOF < 4.4 GeV/c at FA and < 2 GeV/c at LA

TABLE III: SoLID design characteristics.

incident on unpolarized or polarized targets at luminosities up to L = 1037 cm−2 sec−1 in an

open geometry. It has two groups of the detectors. The forward-angle detectors cover polar

angle from 8.5◦ to 16◦ and consist of several planes of Gas Electron Multipliers (GEM) for

tracking, a light-gas Cherenkov (LGCC) for e/π separation, a heavy gas Cherenkov (HGCC)

for π/K separation, a Multi-gap Resistive Plate Chamber (MRPC) for time-of-flight, and an

Electromagnetic Calorimeter (FAEC). The large-angle detectors covers polar angle from 17◦ to
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24.5◦ and consist of several planes of GEM for tracking, an MRPC for time of flight (new for

TCS), and an Electromagnetic Calorimeter (LAEC). The design characteristics of SoLID are

presented in Table III. Particles in SoLID will be detected and identified by measuring their

momenta, time-of-flight, number of photons produced in the threshold Cherenkov counters, and

energy losses in the calorimeters and MRPC.

The SoLID solenoid will reuse the CLEO-II magnet. Its superconducting coil and cryo

will remain the unchanged. It has a large inner space with a clear bore diameter of 2.9 m and a

coil of 3.1 m diameter. The coil length is 3.5 m, with a 3.8 m long cryostat. The coil is made of

5× 16 mm2 aluminum-stabilized superconductor, and runs at 3300 A. Part of the CLEO-II iron

flux return will be modified and reused, and two new iron endcaps will be added at the front

and back of the solenoid. The axial central field of the solenoidal magnet can reach about 1.4

T.

Six layers of GEM detectors will be used for tracking, providing information on the mo-

mentum, angle, and interaction vertex of the detected particles. They will be placed uniformly

inside the solenoid magnet. For the forward angle detectors, five layers except for the first

layer of GEM detectors will be used. In principle, three points are needed to reconstruct the

kinematic variables. The fourth and fifth points will bring enough redundancy to compensate

for the inefficiency of the GEM tracking detector. For the large-angle detectors, four layers of

GEMs detector except the last two layers will be used. In this case, four layers are enough since

the background level at large angles is expected to be smaller. SoLID GEMs will provide full

azimuthal angular coverage by using trapezoidal-shaped sectors. The area of a single sector can

be as large as 100 cm × 40 cm. Recent advancements in technology, like single-mask GEM

etching and GEM splicing, makes it possible to fabricate GEM foils up to 100 cm × 200 cm.

The GEM readout is by 2D strips and APV-25 based chips from the funded Scalable Readout

System (SRS) project by the CERN RD-51 collaboration.

The Cherenkov detectors (CC) at forward angles have two parts. The light-gas one uses

a standard CO2 gas radiator and can provide e/π separation up to momenta of 4.9 GeV/c

with pion rejection in order of 103. The heavy-gas one uses C4F8O gas at 1.5 atm and gives a

momentum threshold of 2.2 GeV/c and 7.5 GeV/c for pions and kaons, respectively. In both

cases, the Cherenkov light is directed by the mirror systems onto Multi-Anode PMTs (MAPMTs)

for readout. The MAPMTs have been tested to work with longitudinal magnetic fields up to

400 G.

There is one electromagnetic calorimeter at forward angles and one at large angles. They

are made with identical Shashlyk-type modules. Each module is made of a pre-shower and a

shower part. The pre-shower detector is simply a 2 radiation-length lead layer and a 2 cm thick

scintillator with embedded wave-length-shifting (WLS) fibers for readout. The shower detector

is of Shashlyk type, consisting of about 200 layers of 0.5 mm lead and 1.5 mm scintillator, and
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many WLS fibers penetrating all layers with a density about 1/cm2 for readout at the back

of a module. This type of design can reach a pion rejection factor of more than 100, with

good electron efficiency. Its radiation hardness is in the order of 500 krad, which satisfies the

high-luminosity condition in SoLID.

MRPC-based time-of-flight systems have recently been used in the RHIC STAR and LHC

ALICE experiments, providing a typical time resolution close to 100 ps. With readout strips,

it can work inside a magnetic field. Using low-resistive glass, it can gain even an higher rate

capability. SoLID experiments have a forward-angle MRPC as part of the planned baseline

equipment.

Scintillator pad detector (SPD) will placed at both forward and large angle. FASPD will

provide combined photon rejection with MRPC, but TOF will rely on MRPC for its better time

resolution of 100 ps. LASPD will provide both photon rejection and TOF with time resolution

of 150 ps.

B. Detection of exclusive e+e−p events

The simulations of the SoLID detector for the proposed measurements used an 11 GeV

electron beam and a 15 cm long liquid hydrogen target. Exclusive e+e−p events, with invariant

masses of the lepton pairs in the resonance-free region between 2 and 3 GeV, were generated

over a wide range of kinematics by using the standalone event generator genTCS [57]. Both

quasi-real photons from electron scattering, according to the equivalent photon approximation

(EPA) [58], and real photons from Bremsstrahlung [59] on the target were included. (The former

is dominant in the configuration of this experiment.) Each event was weighted by the Bethe-

Heitler (BH) cross section from Ref. [9]. The response of the detector was simulated using the

SoLID simulation package SoLID GEMC [60].

SoLID does electron and positron identification by combining CC and EC information

at the forward angles, and uses only the EC at the large angles. The CC can offline provide

a single-pion rejection factor of about 1000, and the EC can do a factor of 100. To suppress

the large (0.1 mb) background from two-pion photoproduction, we require that at least one

lepton is detected within the CC acceptance at forward angles and has momentum less than 4.9

GeV, which is the SoLID light-gas Cherenkov e/π separation threshold. This will ensure a pion-

pair rejection factor of at least 107, which is sufficient to cleanly separate out the lepton-pair

events from the pion background. Fig. 26 shows the momentum- and angular distribution of two

leptons detected in SoLID. The events with both leptons going into the large-angle detectors

are discarded, and a momentum cut at 4.9 GeV is applied for the leptons going to the forward

angles.

Protons are mainly identified in SoLID by time-of-flight using the MRPC at forward angle
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FIG. 26: Decay lepton pair detected by CC and EC Left panel: Electron momentum versus positron

momentum. Right panel: Electron polar angle versus positron polar angle.

FIG. 27: Proton PID by TOF in the MRPC. The graphs show the time difference vs. momentum for

kaons and pions, protons and kaons, and protons and pions for the forward angles (left panel:) and the

large angles (right panel:). The horizontal lines shows where a 4σ separation with time resolutionof 100

ps for FA and 150 ps for LA are. The intersecting point of the horizontal line with the protons and kaons

time difference line determines the max momentum of proton identification.

with time resolution 100 ps and SPD at large angle with time resolution 150 ps. The flight

path of about 750 cm for forward angles and 250 cm for large angles, protons with momenta up

to 4.4 GeV and 2 GeV, respectively, can be identified with 4σ separation, as shown in Fig. 27.

This allows access to a wide range in t.

Fig. 28 shows the momentum and polar angle distribution of e+, e−, p′, and the photon
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FIG. 28: Momentum and polar angle distribution of the photon, recoil proton, decay electron, and decay

positrion

from the simulated BH events with invariant mass of lepton pairs 2 GeV ¡ sqrt(Q′2) ¡ 3 GeV.

The decay lepton has momentum from 2 to 8 GeV. The recoil protons mostly have momenta

below 2 GeV/c. The photon is reconstructed from the detected lepton pair and proton. Its

momentum and angle distribution is affected by detector resolution while reconstructing the

other three particles.

To ensure exclusivity of the reaction, cuts need to be applied on the missing particle

kinematics. The missing particle can be a very forward scattered electron in quasi-real electro-

production, or an electron that radiated a real photon in photoproduction. In the latter case, the

Q2 is identically zero, and in the former it is kept close to zero. In the simulation, the detected

e+e−p momenta and angles were smeared by the SoLID detector resolution, thus creating a

realistic distribution of kinematic variables for the missing particle. Instead of applying cuts on

the transverse momentum, a corresponding cut of Q2 < 0.05 GeV2 was applied. Fig. 29 shows

the kinematic variables of the missing particle before and after the cut. As can be seen, the

SoLID momentum- and angular resolution is sufficient for cleanly identifying exclusive events

with quasi-real photons.
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FIG. 29: Missing-particle kinematics before and after the cut Q2 < 0.05 GeV2 Left panels: Q2 versus

missing mass squared MM2. Middle panels: Missing momentum versus missing mass squared MM2.

Right panels: Missing momentum Px versus missing momentum Py. Top row: before the Q2 cut Bottom

row: after the Q2 cut.

C. Trigger

The approved SoLID J/ψ experiment E12-12-006 [2] has same final state particles like BH

and TCS reaction, except the scattered electron. The trigger for the SoLID J/ψ experiment

will be the coincidence between two electron kind of signal to ensure the detection of the decay

electron and positron from J/ψ.

In Fig. 30, the momentum and angle distribution of all 4 final state particles of the SoLID

J/ψ experiment are shown with the condition only decay electron and positron are detected. Its

single electron trigger on EC depends on the radius of particles hits to make sure to accept the

decay electron or positron. Then additional trigger from the light gas Cherenkov is added to

help reject charge pions. MPPC and SPD triggers are also added to reject photon from neutron

pions. Finally two single electron triggers are selected within 30 ns time window to form the

level 1 trigger.

Comparing Fig. 30 to Fig. 28, the decay pair distribution are very similar between J/ψ and

TCS, except TCS needs the trigger threshold to be a little lower. We have carefully select EC

trigger threshold varying between 4 GeV to 2 GeV from inner to outer radius. Then we studied

the trigger rate considering all possible random background, similar to the study done for SoLID

SIDIS He3 in SoLID pCDR [56]. The trigger rate is estimated to be around 40 kHz which is

below 100 kHz DAQ limit. Therefore, TCS has no problem to be a run group experiment with

J/ψ experiment.
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FIG. 30: Momentum and polar angle distribution of the scattered electron, recoil proton, decay electron,

and decay positrion of SoLID J/ψ experiment with only decay electron and decay positrion detected

D. Event Distribution

The simulated data are binned in three kinematic variables: the virtuality of the final-

state photon Q′2 = M2
e+e− , the four-momentum transfer to the nucleon t, and the skewness

of the reaction η. The angular distribution of the decay-lepton pair is evaluated in each bin,

for instance as a moment of the weighted cross section, using the lepton center-of-mass angles

shown in Fig. 3.

The resulting event distributions illustrating the SoLID acceptance, are shown in Figs. 31

through 34. The first two figures show the acceptance in six bins of η, and the last two in three

bins of Q′2. The former binning is suited for measuring the Q′2-dependence in narrow bins of

η to study factorization and higher-twist effects, while the latter would be better for looking at

the η-dependence in wider bins of Q′2 in order to understand the impact of NLO corrections.

Fig. 31 shows how the accessible range in Q′2 grows at higher values of η. It also shows

how the |t|-coverage shifts to higher values as η increases. In actual analysis, the Q′2-dependence

will also be investigated in wide η bins. The widths of the six bins shown have been chosen

to equalize statistics in the range 0.1 < η < 0.4 that can be covered in SoLID. Fig. 32 shows

the event distributions in the θCM vs. ϕCM plane for the same six bins in η. The shape of
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FIG. 31: BH event distribution, in TCS kinematics, showing the SoLID acceptance for exclusive e+e−p

production and showing the accessible range in Q′2 and |t| for six bins of η.

the acceptance in the lepton CM-angles is governed by three factors: the “hole” in the forward

detector around the beam line, the limit of the large-angle acceptance, and the gap between the

large-angle and forward-angle detectors in SoLID. The first two define the general overall shape

of the distribution, while the gap leads to a depletion of events in the middle of the band.

Once the Q′2-scaling is understood, neither a study of NLO corrections through the η-

dependence, nor global fits to the cross section or beam spin asymmetry will require narrow bins

in Q′2. Fig. 33 shows the distribution of events in η and |t| in two bins of Q′2. Fig. 34 shows

the corresponding distributions in the θCM vs. ϕCM plane.
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FIG. 32: BH event distribution, in TCS kinematics, showing the SoLID acceptance for exclusive e+e−p

production and showing the accessible range in θCM and ϕCM for six bins of η.
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FIG. 33: BH event distribution, in TCS kinematics, showing the SoLID acceptance for exclusive e+e−p

production and showing the accessible range in η and |t| for two bins in Q′2.

4. PROJECTED RESULTS

In this section we describe the kinematics and projected uncertainties. The projections

have been made for 50 days of running with a luminosity of 1037 cm−2s−1 on a 15 cm long liquid

hydrogen target. Only statistical uncertainties are shown.

The results from the TCS analysis will come in the form of the measured differential cross

section, beam spin asymmetry, as well as cosine and sine moments of the weighted cross section.

The cross section measurement will constrain fits of Compton form factors (CFFs). The cosine

and sine moments are also directly related to the helicity amplitudes (and hence CFFs and
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FIG. 34: BH event distribution, in TCS kinematics, showing the SoLID acceptance for exclusive e+e−p

production and showing the accessible range θCM and ϕCM for tho bins of Q′2.

GPDs). A comparison of the moments, evaluated within the SoLID acceptance, imposes strong

constraints on GPD models.

There are two ways of evaluating the experimental sensitivity of the proposed measure-

ment: through a fit using the VGG approach, or through a comparison of the moments of the

weighted cross section with predictions using various GPD models. Both are illustrative in their

own way. We will describe both as below.

A. Moment approach

The cosine moment R′, related to ℜeM̃−−, sensitive to the real part of the amplitude,

will serve as an example of the moment approach. In the extraction of the moments, the angles

ϕCM and θCM are integrated over, and only the kinematic variables Q′2, η, and |t| remain (refer

to The event distribution discussed in Sect. 3 D).

The moment R′ differs from the unprimed expression defined in Eqs. (14) and (15) in that

the latter is first integrated over θCM and then independently over ϕCM , whereas the primed

moment is instead integrated over a band in the θCM vs. ϕCM plane defined through a ϕCM -

symmetric acceptance function a(θCM , ϕCM ). This function is chosen such that it coincides

with the envelope of the SoLID acceptance for each bin. Using this approach for calculating the

theoretical moments allows for a direct and consistent comparison with the moments evaluated

from the experimental data. The absolute value of R′ can differ somewhat from that of R due

to a non-zero BH contribution. An example of this was shown in Fig. 10. However, this does

not reduce its sensitivity to ℜeM̃−− or GPD model predictions since the BH contribution can

be calculated exactly. And if one wishes to do so, the difference between R and R′ can be made

very small by adjusting the integration contour slightly, cutting away a small fraction of events

along the edges in each bin (BH can be zero even if the contour is not a box).

Still, while the SoLID acceptance does not influence the comparison between data and
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theory at the level of the contour of integration in the θCM vs. ϕCM plane, the experimental

yields have to be corrected for acceptance, primarily associated with the gap between the inner

and outer parts of the detector. This correction is done through simulations, for which the

standard SoLID GEMC package will be used. The fact that a similar measurement will also

be performed in CLAS12, where different gaps in the acceptance are caused by the six coils of

the toroidal magnet, will greatly strengthen the confidence in the acceptance corrections and

potentially reduce the systematic uncertainties.

The projected statistical uncertainties for R′ are shown in Fig. 35 as a function of Q′2 for

six bins in η. The curves correspond to leading-order (LO), leading-twist calculations using two

GPD models, the dual parametrization [16–19] (top curve with blue solid line) and the double

distribution [20] with D-term (middle curve with dash-dotted red line) and without D-term

(bottom curve with dashed red line). The D-term can also be calculated within the framework

of the dual parametrization, but it does not appear as an independent quantity that can easily

be varied, hence only one curve is shown. All points use 0.2 GeV2 wide bins in |t| close to

t = tmin. This shifts |t| towards larger values in the higher η bins, as shown in Fig. 31. The

calculation with the dual parametrization has a proper Q′2 evolution, while the one with the

double distribution only has forward evolution, where the forward PDFs are evaluated and then

“skewed” to produce the GPDs at a given value of Q′2.

The same LO calculations can be applied to the η-dependence. The result is shown in

Fig. 36, where we see R′ as function of η for two bins in Q′2, in 0.2 GeV2 wide bins in |t| close

to t = tmin. The relation between |t| and η coverage can be seen in Fig. 33. As in Fig. 35,

the top curve (solid blue line) corresponds to the dual parametrization, and the middle (dash-

dotted red line) and lower (dashed red line) curves to the double distribution with and without

D-term, respectively. Here, the large difference between the two models reflects the assumed

dependencies of the real part of GPD H on τ (the equivalent of Bjorken x) that are shown in

Fig. 6, and to which the cosine moment R′ is sensitive.

Fig. 37 shows the projections based on the NLO calculations described in Sect. 2 E. Since

the calculations in the figure were made for Q′2 = 4 GeV2, the results are only shown for one,

bin in Q′2 between 4 and 6 GeV2. Here, each point corresponds to a 0.3 GeV2 wide bin in |t|.
The calculation was done using two GPD models: Goloskokov-Kroll (GK) [45–48] and MSTW, a

simple factorizing ansatz for the t-dependence [9] with MSTW08 PDFs [49]. Both LO and NLO

results are shown. It is interesting to note that there is a relatively model-independent trend

in the calculations. The two upper curves (dashed lines) are both NLO predictions, while the

lower two (solid lines) are the LO ones. It seems that for both models the NLO corrections shift

R′ towards more positive values, but the slope does not change much, and hence the separation

between the LO and NLO curves stays about the same for all values of η between 0.1 and 0.3

(going below η of 0.1 the separation in R′ does increase, but this is outside of JLab 12 GeV
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FIG. 35: The cosine moment of the weighted cross section, R′, shown as function of Q′2 for six bins

in η, in 0.2 GeV2 wide bins in |t| close to t = tmin. The curves correspond to leading-order, leading-

twist calculations using two GPD models, the dual parametrization [16–19] (top, solid blue curve) and

the double distribution [20] with D-term (middle, dash-dotted red curve) and without D-term (bottom,

dashed red curve). The error bars on the points correspond to 50 days of running. The points are

arbitrarily placed at R′ = 0.05.

kinematics). The GK model prediction (blue curves) for R′ is consistently somewhat higher

than MSTW (red curves) for both LO and NLO, but this difference is small compared with

the overall shift due to the NLO corrections. The model-independence mirrors the discussion in

Sect. 2 E where, for instance, Fig. 15 suggests that the general features of the NLO calculations

do not strongly depend on the choice of model. That said, it is worth keeping in mind that the

GK model is based on H̃ and H, while MSTW only incorporates H, so the predictions shown

assume that other contributions are small. It is hoped that Q′2 evolution will be incorporated

into the NLO calculation in the near future, which would allow for reliable projections also at

higher values of Q′2.

B. Local fit of Compton form factors approach

In this section, we present a projection for the results of the local Compton form factor

(CFF) fit method introduced in section 2 F. Instead of generic values for the uncertainties such

as 5% and 15% as was taken in section 2 F, we use here more realistic uncertainties, using a

luminosity of 1037 cm−2s−1, the SOLID acceptance and a dedicated binning. The cross section
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FIG. 36: The cosine moment of the weighted cross section, R′, shown as function of η for two bins in

Q′2, in 0.2 GeV2 wide bins in |t| close to t = tmin. The curves correspond to leading-order, leading-

twist calculations using two GPD models, the dual parametrization [16–19] (top, solid blue curve) and

the double distribution [20] with D-term (middle, dash-dotted red curve) and without D-term (bottom,

dashed red curve). The error bars on the points correspond to 50 days of running. The points are

arbitrarily placed at R′ = 0.05.
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FIG. 37: The cosine moment of the weighted cross section, R′, shown as function of η for in a bin of Q′2

from 4 to 6 GeV2 and a 0.3 GeV2 wide bin of |t|. The upper (dotted) curves are the NLO predictions,

while the (solid) lower pair are the LO ones. Within each pair, the upper (blue) curve was calculated

using the GK model and the lower (red) one using MSTW. The error bars on the points correspond to

50 days of running. The points are arbitrarily placed at R′ = 0.

used for the counting rates is based on the calculations of Ref. [37]. For the binning, we take

two-dimensional (η, Q′2) bins, t bins and φCM bins (from 0◦ to 360◦), as presented in Fig. 38

and table IV. We recall that CFFs depend only on η and t and that the method consists in

fitting, at given (η,t) values, the φCM distribution of TCS observables so as to extract (some

of) the CFFs: Re{H}, Re{E}, Re{H̃}, Re{Ẽ}, Im{H}, Im{E}, Im{H̃} and Im{Ẽ}. In the

following, the distributions will therefore be integrated over θ ∈ [45◦, 135◦]. In the context of
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FIG. 38: Phase space for TCS as a function of Q′2 and ξ(η) with the binning definition for Hall A SoLID

data.

this proposal, the observables will be the unpolarized cross section σ and the spin asymmetry

obtained with a circularly polarized photon beam ∆σLU . As outlined in section 2 F, with these

observables, we expect to extract and be particularly sensitive to the Re{H} and Im{H} CFFs,

which are the dominant contributions.

N ξ(η) limits Q’2 limits (GeV2) -t limits (GeV2)

1. 0.10, 0.15 4, 6 [0.1, 0.2],[0.2, 0.5]

2. 0.15, 0.19 4, 6 [0.1, 0.2],[0.2, 0.5],[0.5, 1]

3. 0.19, 0.23 4, 6 [0.2, 0.5],[0.5, 1]

4. 0.23, 0.30 4, 6 [0.2, 0.5],[0.5, 1]

5. 0.15, 0.30 6, 9 [0.2, 0.5],[0.5, 1]

TABLE IV: Proposed binning for TCS analysis in Hall A. The given values are the edges of the bins.

Under the SoLID TCS running condition outlined above, we show in Fig. 39 an example of

the expected number of counts for the φCM distributions of the 3rd (η, Q′2) bin and its associated

t bins. For our CFF fits, to the statistical errors deduced from such distributions, we choose to

add a 6% systematic error.

Since the idea is to fit simultaneously TCS and DVCS data as presented in section 2 F,
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FIG. 39: Expected counting rates for TCS in the SoLID acceptance as a function of φcm for the 3rd

(η,Q′2) bin and for its associated t bins given in table IV.

we choose a (η, t) bin which is accessible to both TCS and DVCS. We recall that DVCS is

currently being measured in Hall A with an 11 GeV beam (E12-06-114). We show in table V

the result of the CFF fit, fitting simultaneously the φCM and ΦLH distributions of the σ and

∆σLU observables of TCS and DVCS, i.e. 4 observables in all. Our results for the two dominant

CFFs Re{H} and Im{H} CFFs which come out of fit, are presented in table V for the particular

bin (η = 0.185,−t = 0.3GeV 2), with Q′2 = 5GeV 2 for TCS and Q2 = 2.5GeV 2 for DVCS. These

more realistic and precise numbers of table V essentially confirm the ones of table II, which were

obtained under coarse assumptions (global 5% and 15% uncertainties, independent of detector’s

acceptance, φCM and ΦLH , etc...).

C. Conclusion

In conclusion, the physics of deeply-virtual Compton scattering is a rich topic, and the

possibility to study the universality of GPDs and the timelike-spacelike correspondence through

TCS will add an important piece to the puzzle. This proposed high-luminosity measurement in

SoLID with high-statistics TCS data using a circularly polarized beam will have a significant

impact on the extraction of the CFFs. It will allow a combined fit with the DVCS data to con-

strain the global GPD with reduced uncertainty. Besides, for moments such as the observable R′,

the high-statistics of SoLID TCS will allow to study the Q′2-dependence and the η-dependence

and provide guidance on GPD modeling, such as the magnitude of the D-term and have the

potentials to look into NLO effect.
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(σ,∆σLU )

DVCS

+ TCSc

σ+(Re{H}) +82%

σ−(Re{H}) -77%

σ+(Im{H}) +16%

σ−(Im{H}) -40%

TABLE V: The table shows the uncertainties on the extracted Im{H} and Re{H} CFFs (which are

the dominant contributors to the fitted observables) obtained with our simulations. Like in table II, we

list the positive σ+ and negative σ− errors. We recall that, the fit being under-constrained (eight free

parameters for only 4 observables to be fitted), the problem is not linear and the errors are asymmetric.

The observables fitted simultaneously by the same CFFs are σ (the unpolarized cross section) and ∆σLU

(the beam polarized cross section; with electrons for DVCS and photons for TCS).

5. SYSTEMATIC UNCERTAINTIES

The two main sources of systematic uncertainty for the proposed measurement are ac-

ceptance corrections and lepton identification. The former can be expected to comparable to

estimates for cross section measurements with CLAS12, i.e., to be at least of the order of 5%.

As discussed in Sec. 3 D, the acceptance studies will be performed through SoLID simulations

and reconstruction.

As described in Sec. 3 B, lepton identification will be performed using the Cherenkov

counters (CC) and the electromagnetic calorimeters (EC). All events used for the analysis of

this proposed experiment will have both leptons detected in one of the ECs, and at least within

the (angular and momentum) acceptance of the CCs. For those pairs, the two-pion rejection

factor is expected to be at about 107. The remaining pairs will be discarded from the analysis.

This will not have any significant impact on the statistical uncertainty.

In the photon-energy range of the proposed experiment, the total cross section for π+π−

production is 0.1 mb. With a pion pair rejection factor of 107, there would be a pion background

at the 5% level if the total e+e− cross section was 0.1 nb. This is comparable to the J/ψ cross

section in JLab 12 GeV kinematics. The BH cross section integrated over 0.5 < Q′2 < 7

GeV2 at Eγ = 11 GeV is 34 nb. For most kinematics, and in particular those in the primary

range of interest (i.e., for 4 < Q′2 < 9 GeV2), the contribution to the total uncertainty from

lepton pair misidentification should be small compared with the statistical uncertainty, and the

systematic uncertainty in the acceptance correction. Performing the measurement with two

independent setups, SoLID and CLAS12, will greatly increase our confidence in being able to

correctly estimate the systematic uncertainties, and in particular those related to acceptance.
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6. RUNNING CONDITION

This proposed experiment will require a longitudinally polarized (> 80%) 11 GeV beam

and an unpolarized proton target in the SoLID detector. For photoproduction using quasi-real

photons, the detector will need a recoil baryon detection and identification capability. Further-

more, specifically for e+e− photoproduction, the trigger has to be set up for a coincidence of

two leptons, with the additional condition that at least one of them produces a signal in the

Cherenkov. The running condition and trigger setting are exactly same as the approved SoLID

J/ψ experiment E12-12-006 [2]. During the SoLID J/ψ approved beam-time of 50 days for

production and 10 days for calibration, TCS data will be collected at the same time, thus work

as a run group experiment.
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