Erratum and addendum to 'A Search for the LHCb Charmed "Pentaquark" using Photoproduction of J/Ψ at Threshold in Hall C at Jefferson Lab'

July 22, 2016

(A new experiment proposal to JLab-PAC44)

A. Asaturyan, H. Mkrtchyan, V. Tadevosyan, S. Zhamkochyan Alikhanyan National Science Laboratory (YerPhI), Yerevan, Armenia

J. Arrington, W. Armstrong, K. Hafidi, M. Hattawy, Z. Ye Argonne National Laboratory, Chicago, IL

> K. Aniol California State University, Los Angeles, CA

H. Gao, Z. Zhao, T. Liu, X. Yan, C. Gu, C. Peng, X. Li, W. Xiong Duke University, Durham, NC

> P. Markowitz Florida International University, Miami, FL

K. Adhikari, H. Bhatt, D. Bhetuwal, J. Dunne, D. Dutta, L. El-Fassi, L. Ye Mississippi State University, Starkville, MS

> F. R. Wesselmann Old Dominion University, Norforlk, VA

X. Chen, Q. Fu, R. Wang, Y. Zhang, F. Zhao Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.

> R. Dupré Institut de Physique Nuclaire d'Orsay, Orsay, France

> > G. M. Huber, W. Li, A. Zafar University of Regina, SK, Canada

S. Bae, H. Choi, S. Choi, H. Go, J. Ha Seoul National University, Seoul, Korea

H. Atac, B. Duran, S. Joosten¹,
Z.-E. Meziani², M. Paolone³, M. Rehfuss, N. Sparveris Temple University, Philadelphia, PA

J.-P. Chen, E. Chudakov⁴, M. Diefenthaler, O. Hansen, D. Higinbotham, M. Jones⁵, D. Meekins, L. Pentchev, E. Pooser, S. Wood Thomas Jefferson National Accelerator Facility, Newport News, VA

 $^{^{1}} co-Spokes person: sylvester. joosten @temple.edu$

 $^{^{2}} co-Spokes person/Contact:meziani@temple.edu$

 $^{^{3}}$ co-Spokesperson:tue81317@temple.edu

 $^{{}^{4}\}mathrm{co-Spokes person:gen@jlab.org}$

⁵co-Spokesperson:jones@jlab.org

Abstract

We identified an issue in the Monte-Carlo generator used for the experimental projects, that resulted in the P_c cross sections being *under*estimated by a factor of $1/2W \approx 1/9$. Correcting this error leads to a projected number of P_c events that is approximately 9 times *higher* than what was previously shown. The t-channel cross sections and projections are not affected by this factor.

Furthermore, we quantified the statistical precision with which we can identify the P_c resonances. We found that, for the most likely ($P_c(4450)$ 5/2+, $P_c(4380)$ 3/2-), a 5 σ confidence level is achieved starting from a coupling of 1.3% to the $J/\Psi p$ channel.

Contents

1	Erratum: Fixing the P_c cross section in the Monte-Carlo generator	5
2	Addendum: Sensitivity to the P_c resonant production	7

1 Erratum: Fixing the P_c cross section in the Monte-Carlo generator

The Monte-Carlo generator uses the following relation for the cross section to simulate the resonant $\gamma p \rightarrow P_c \rightarrow J/\Psi p$ process,

$$\frac{d\sigma}{dsd\cos\theta_{J/\Psi}} = \frac{dn^{\gamma}}{ds} \frac{d\sigma^{\gamma p \to P_c \to J/\Psi p}}{d\cos\theta_{J/\Psi}},\tag{1}$$

using the bremsstrahlung spectrum $\frac{dn^{\gamma}}{ds}$ for a 10% RL radiator from Tsai [1], and the P_c resonant production cross section $\frac{d\sigma^{\gamma p \to P_c \to J/\Psi_p}}{d\cos\theta_{J/\Psi}}$ from Wang [2].

Unfortunately, a leftover $\frac{dW}{ds} = \frac{1}{2W}$ jacobian factor from a previous study was incorrectly multiplied with $\frac{d\sigma^{\gamma p \to P_c \to J/\Psi p}}{d\cos\theta_{J/\Psi}}$. This erroneous factor incorrectly lowers the total P_c cross section by approximately a factor of 9 (for the $P_c(4450)$, the average W = 4.450 GeV).

After correcting this error, we updated the figures from the proposal. The updated figures are shown in Figs. 1, 2, 3, 4, with a reference to the corresponding figure in the original proposal given in the caption.

Figure 1: This figure supersedes Fig. 11 of the proposal proposal. J/Ψ production cross section as a function of the photon energy. The P_c resonant production is shown for the (5/2+, 3/2-) case assuming 3% coupling, compared with the available measurements in this region [3, 4].

Figure 2: This figure supersedes Fig. 13 of the original proposal. Expected results for the reconstructed t and E_{γ} spectrum for 9 days of beam on target, assuming the most probable $(5/2+, 3/2-) P_c$ from [2] with 5% coupling. There is clear separation in both spectra between the P_c (5/2+) resonant channel, and the t-channel.

Figure 3: This figure supersedes Fig. 14 of the original proposal. Expected results for the reconstructed t and E_{γ} spectrum for 9 days of beam on target, assuming the less probable $(5/2-, 3/2+) P_c$ from [2] with 5% coupling. Due to the larger cross section for the 5/2-, the separation in both spectra is even better than for the 5/2+ assumption shown in Fig. 2.

Figure 4: This figure supersedes Fig. 15 of the original proposal. Expected results for the reconstructed E_{γ} spectrum for the calibration measurement with 2 days of beam on target. The left panel shows the (5/2+, 3/2-) case, and the right panel shows the (5/2-, 3/2+) case, both with 5% coupling.

2 Addendum: Sensitivity to the P_c resonant production

To obtain an estimate of the sensitivity to the P_c resonant process as a function of the coupling to the $J/\Psi p$ channel, we calculated the log-likelihood difference $\Delta \log \mathcal{L}$ between the hypothesis that the simulated spectra can be described by just a *t*-channel process, and the hypothesis that the P_c resonances are present on top of the *t*-channel production. We assumed 9 days of beam at 50 μA for setting #1. We then used Wilk's theorem [5] to relate the value of $2\Delta \log \mathcal{L}$ to a value of χ^2 with 5 degrees of freedom (one for the coupling, and 4 for the mass and width of each of the P_c). Note that a binned likelihood approach was used, which yields a conservative estimate compared to the results of a full unbinned extended maximum likelihood procedure.

The results of this sensitivity study can be found in Fig. 5. We found that, for values of the coupling of 1.3% and higher, we have a sensitivity of more than the 5σ necessary for discovery. Fig. 5 also shows the projected results in case of a 1.3% coupling.

In the proposal, we assumed a realistic coupling of 5% from Wang [2], which they found to be compatible with the currently existing J/Ψ photo-production data. A more recent statistical analysis by Blin [6] found an upper limit of the coupling values to be between 8 – 17% at the 95% confidence level for the $P_c(4450)$ (5/2+). Furthermore, Karliner [7] argues that the coupling cannot be too small, as the $P_c(4450) \rightarrow J/\Psi p$ signal is 4.1% of the $J/\Psi p$ final state in $\Lambda_b \rightarrow K^- J/\Psi p$. If the coupling would be too small, the value of $\Lambda_b \rightarrow K^- P_c$ with the P_c decaying to final states other than $J/\Psi p$, becomes unreasonably large in comparison with the measured branching fraction of $\Lambda_b \rightarrow K^- J/\Psi p$. This means that, due to the sensitivity of the proposed experiment down to very low values of the coupling, we will have the ability to provide a very strong exclusion of the charmed-pentaquark assumption in case it is not found.

Figure 5: The left figure shows the sensitivity to the P_c as a function of the coupling to the $J/\Psi p$ channel, obtained from a log-likelihood analysis. The dashed line shows the 5σ level of sensitivity necessary for discovery. This level is reached starting from a coupling of 1.3%. The right panel shows the expected results for the reconstructed E_{γ} spectrum for this 1.3% coupling for the $P_c(4450)$ (5/2+).

References

- [1] Yung-Su Tsai and Van Whitis. Thick Target Bremsstrahlung and Target Consideration for Secondary Particle Production by Electrons. *Phys. Rev.*, 149(4):1248–1257, 1966.
- [2] Qian Wang, Xiao-Hai Liu, and Qiang Zhao. Photoproduction of hidden charm pentaquark states $P_c^+(4380)$ and $P_c^+(4450)$. *Phys. Rev.*, D92:034022, 2015.
- [3] B. Gittelman, K. M. Hanson, D. Larson, E. Loh, A. Silverman, and G. Theodosiou. Photoproduction of the psi (3100) Meson at 11-GeV. *Phys. Rev. Lett.*, 35:1616, 1975.
- [4] Robert L. Anderson. Excess Muons and New Results in psi Photoproduction. 1976. Microfiche at Fermilab.
- [5] S. S. Wilks. The large-sample distribution of the likelihood ratio for testing composite hypotheses. *Annals Math. Statist.*, 9(1):60–62, 1938.
- [6] A. N. Hiller Blin, C. Fernandez-Ramirez, A. Jackura, V. Mathieu, V. I. Mokeev, A. Pilloni, and A. P. Szczepaniak. Studying the pc(4450) resonance in j/psi photoproduction off protons. 2016.
- [7] Marek Karliner and Jonathan L. Rosner. New Exotic Meson and Baryon Resonances from Doubly-Heavy Hadronic Molecules. *Phys. Rev. Lett.*, 115(12):122001, 2015.