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Abstract

We propose to measure Timelike Compton Scattering (TCS) off the proton using a transversely po-
larized target. The TCS process corresponds to the scattering of a real photon off a quark, followed
by the emission of a high virtuality photon decaying into a lepton pair. According to QCD factor-
ization theorems, TCS can be parametrized by Generalized Parton Distributions (GPDs), contain-
ing information about the transverse spatial distribution of quarks and their longitudinal momenta
inside the proton. Using a transversely polarized proton target and a real circularly polarized pho-
ton beam, we can access several independent observables which are sensitive to the GPDs, in par-
ticular the GPD E. TCS measurements will provide a first fundamental test of the universality of
the GPDs. We plan to measure the TCS+BH (TCS+Bethe-Heitler interfering process) unpolarized
cross section, cross section of circularly polarized photon beam, and cross section of transversely
polarized proton. The major goal of this experiment is to access the GPD H, H̃ and E from TCS
observables, and in particular the GPD E, which is poorly constrained and contains information
about the orbital momentum of the quarks. The other major goal is to compare GPDs extracted
from TCS (timelike process) to GPDs extracted from DVCS (Deeply Virtual Compton Scattering,
spacelike process), and test the GPDs universality and its possible violations. This experiment will
take place at the Jefferson Laboratory Hall C experimental facility, using a transversely polarized
target, electromagnetic calorimeters and recoil proton detectors.

Keywords Generalized Parton Distributions, Compton Form Factors, Timelike Compton Scatter-
ing, Neutral Particle Spectrometer, Compact Photon Source, Hall C.

Related experiments at Jefferson Laboratory E12-12-006A [1] with SoLID (approved), E12-12-
001 [2] with CLAS12 (running).
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1 Introduction

1.1 Timelike Compton Scattering physics

The Timelike Compton Scattering (TCS) process corresponds to the exclusive photoproduction of
a lepton pair with exchange of a high virtuality photon. A real photon is scattered off a quark of
the nucleon, and a high virtuality photon is emitted, then decays into a lepton pair (γN ↪→ γ∗N ′ →
e+e−N ′, Fig. 1). Typically, the photon virtuality Q′2 = +q′2 = (k − k′)2 (where q’, k, k’ are the
4-momenta of the virtual photon, the electron and the positron respectively), is greater than ∼ 1

GeV2 to allow for factorization of the TCS amplitude between a hard part, calculable from pertur-
bative QED (upper part of the diagram 1) and a soft QCD non perturbative part (lower part of the
diagram 1). TCS is sensitive to the transverse spatial distribution of partons in the nucleon and
the correlation with their longitudinal momentum. It can be parametrized by Generalized Par-
ton Distributions (GPDs), which have been introduced in [3, 4, 5]. Assuming massless quarks, at
QCD leading order and leading twist in QCD, we can parametrize TCS with 4 helicity conserving
quark GPDs: H, E, H̃, Ẽ. They correspond to 4 independent helicity-spin transitions between the
initial quark-proton system and the final one, and are the Fourier transform of the QCD matrix
element of the soft part of the TCS amplitude. Given the kinematic domain accessible at JLab, we
neglect GPDs of gluons. At leading order, the GPDs depend on 3 independent variables besides
the 4-momentum transfer Q’2: x is the longitudinal momentum fraction of the nucleon momentum
carried by the quark, ξ is proportionnal to the longitudinal momentum transfer to the quark, and t
is the square 4-momentum transfer to the nucleon, i.e. t=(p-p’)2, where p and p’ are the 4-momenta
of the incoming and outgoing nucleon respectively. We refer to the reviews [5, 6, 7, 8] for details
about GPD formalism and physics interests.
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γ∗(q)γ (q')

e  (k)

e  (k')

hard

soft
x+ ξ x- ξ

t

-

+

N' (p')N (p)

γ∗(q)γ (q')

e  (k)

e  (k')

hard

soft
x+ξ x- ξ

t

-

+

Figure 1: TCS leading order and leading twist handbag diagrams.
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TCS interferes with a Bethe-Heitler like process (BH), where the incoming real photon splits
into a lepton pair in the nucleon field (Fig. 2). BH depends on the nucleon Form Factors (FFs)
and is not sensitive to GPDs. Since TCS and BH leads to the same final state, experimental mea-
surements of the hard exclusive lepton pair photoproduction reaction contain the two processes
and their interference, and cannot be measured separately. As it will be discussed later, the BH
amplitude is always largely dominant compared to the TCS one at JLab kinematics. However,
the interference between BH and TCS is enhancing TCS, which would have a rather small cross
section otherwise. Several spin dependent observables (from polarized beam and/or target) allow
for accessing directly or indirectly the TCS+BH interference term, and information about GPDs,
as discussed in [9, 10]. Measuring several independent observables allow to extract the GPDs, as
it will be shown later. It should be noticed that in TCS, as well as in all deeply virtual exclusive
experiments, we don’t access directly GPDs, since they appear in the amplitude integrated over
the x variable. The observables are given by the Compton Form Factors (CFFs), which are complex
functions of GPDs depending on ξ, t and Q’2: we therefore associate 2 independent quantities to
each GPD, corresponding to the imaginary and the real part of the CFFs. For example, =H and
<H are functions of the GPD H.

N’ (p’)N (p)

γ (q)

∗γ (q’)

(k’)+e

(k)-e

N’ (p’)N (p)

γ (q)

∗γ (q’)

(k)-e

(k’)+e

Figure 2: Bethe-Heitler process interfering with TCS, leading order and leading twist diagrams.

An analogy can be made between TCS and Deeply Virtual Compton Scattering (DVCS = eN ↪→
γ∗N → e′N ′γ - Fig. 3), which corresponds to the scattering of a high virtuality photon, coming
from a lepton beam, off a quark of the nucleon. DVCS has been intensively studied over the past
15 years, and measurements of DVCS observables already lead to DVCS CFFs and GPD measure-
ments, constraining GPD models [8]. However, the real part of DVCS CFFs is poorly constrained
by existing measurements. While different models are in good agreement for imaginary part of
CFFs, predictions differ on the real part. In addition, the GPD E is poorly constrained and there
is a real need of independent measurements sensitive to it. E describes the quark and gluon mo-
tion in a transversely polarized nucleon. Its measurement is key for testing the nucleon angular
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Figure 3: DVCS leading order and leading twist handbag diagrams.

momentum sum rule (Ji sum rule [4, 11]):

Jq(t = 0) =
1

2

∫
dx x [Hq(x, ξ, t = 0) + Eq(x, ξ, t = 0)] =

1

2
∆Σ + Lq (∀ξ), (1)

where Lq is the quark angular momentum and ∆Σ is the fraction of the nucleon spin carried by
the quarks (∆Σ ≈ 0.3). Indeed, there is a strong interest in measuring GPD E to understand the
quark orbital momentum contribution to the proton spin, or how the nucleon spin is distributed
within its constituents.

As shown in [7], the DVCS and TCS amplitudes are complex conjugate at leading order and
leading twist. At this order, both processes access the same GPDs at the same kinematic points
(ξ, t), and their CFFs are complex conjugates. Demonstrating the universality of QCD structure
functions such as GPDs is a significant stage in our field. Comparing GPDs extracted from DVCS
(spacelike process) to GPDs extracted from TCS (timelike process) is therefore one of the most im-
portant results we can obtain from our TCS experiment in addition to other independent DVCS
measurements. We will therefore demonstrate the feasibility of extracting CFFs from TCS observ-
ables, at a level comparable with DVCS for performing such comparison. Furthermore, as the only
soft part involved in the DVCS and TCS processes corresponds to the GPDs, these two processes
can be seen as the cleanest one to access GPDs without additional unknowns. In the eventuality of
non-negligible higher twist effects in TCS and in DVCS, our measurements will allow for a com-
parative study of these effects in a spacelike versus a timelike process.

Assuming, or after demonstrating, that GPDs are universal (at twist 2), constraining GPD E
from TCS measurements will be complementarily to the existing and planned measurements of
DVCS in the JLab 12 GeV program. Indeed, under the assumption of GPD universality and ne-
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glecting higher twist and higher order effects in DVCS and TCS, it is possible to complementarily
constrain GPDs from DVCS and from TCS measurement as we will demonstrate. TCS observables,
particularly the transversely polarized target cross sections, bring new independent information
and allow to extract all proton CFFs simultaneously in a multi-parameters, multi-observables CFFs
fitting approach.

In the following, we will present the TCS formalism and the observables we intend to measure.
We will discuss the impact of the measurements and the projection of experimental uncertain-
ties. We propose an experimental setup, which uses an untagged bremsstrahlung photon beam
from the Compact Photon Source [12], the UVa/JLab transversely polarized ammonia NH3 target
[13, 14], detectors for the recoil proton detection and a pair of electromagnetic calorimeters, similar
to the calorimeter of the Neutral Particle Spectrometer project [15].

8



1.2 Brief summary of the science case

The main measurement of our experiment is the transverse target spin asymmetry of the TCS+BH
reaction, in addition to the unpolarized cross section and the circularly polarized beam spin asym-
metry. For illustration, we display Fig. 4 the expected transverse target spin asymmetry and the
statistical uncertainties for a selected bin. The major impacts of the measurements will be:

1. Extraction of the CFF =E and parametrization of GPD E. This result will allow for under-
standing the partition of the nucleon angular momentum among the quarks.

2. Demonstration or proof of violation of GPDs universality by comparative measurement of
CFFs extracted from TCS (timelike) and DVCS (spacelike). Fig. 5 shows the precision ex-
pected on extracted CFFs from TCS (under some assumptions detailed in the document).

3. Simultaneous fits of CFFs with DVCS and TCS to constrain all CFFs (twist 2) at the same
time thanks to new independent observables from TCS, provided the GPD universality is
established.

Our experiment will be the first one accessing the TCS transverse target spin asymmetries and
=E of the proton from TCS. The unpolarized and beam polarized cross sections will be measured
with ∼ 10 to 100 times higher luminosity than other approved experiments, with a narrower ac-
ceptance, allowing for a precision measurement. An experiment is running using the CLAS12
spectrometer [2] (E12-12-001) and aims at measuring the unpolarized cross section and beam spin
asymmetry (circularly polarized). It will allow for accessing the cos(φ) and sin(φ) moments of the
cross sections, and constrain the GPD H. Another experiment will use the SoLID spectrometer [1]
(E12-12-006A) and is approved as a run-group proposal in parallel to the J/Ψ experiment E12-12-
006 [16]. The SoLID experiment is similar to the CLAS12 one, but benefits from a higher luminosity
( 10 times) on a narrower acceptance range, allowing for binning in Q’2 and studies of NLO effects.
The main advantages of our experiment compared to the other TCS approved measurements are
the first and unique access to =E from the target spin asymmetries, a larger photon luminosity (up
to 1035 cm−2 sec−1), and the real photon beam in comparison to the use of a quasi-real photon on
the other experiments, which implies some approximations and angular corrections at the analysis
and calculation levels. The increased precision, and the larger number of independent observables
of our experiment allow for studies of GPDs universality and higher twist effects in TCS versus
DVCS. If we assume that the same CFFs can be accessed through DVCS, a conditionally approved
experiment in CLAS12 aims at measuring DVCS transverse target spin asymmetries and accessing
=E of the proton (E-12-12-010) [17]. Overall, the experiment we are proposing is unique (TCS off
a transversely polarized proton) and will provide for the first time an access to =E of the proton.
In complement to DVCS experiments, it will allow for studies on GPDs universality at a 10 times
better precision level than other TCS experiment for the GPD H, it will allow for the first time to
study universality on GPD H̃ and E (providing another DVCS measurement in the future), and a
drastic reduction on the uncertainty on <H , which is poorly constrained by current GPD models
(strong discrepencies between dual-type and double distribution based GPD models).
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Figure 4: Projection of the single transversely polarized target spin asymmetries for φS = 0◦

(blue) and φS = 90◦ (red), as a function of 16 bins in φ. Statistic uncertainties are represented and
correspond to an integrated photon luminosity of 5.85 ∗ 10e5 pb−1 for 5.5 < Eγ < 11 GeV. The
projections include acceptance, phase-space cuts, momentum thresholds and a Eγ > 7.5 GeV cut
(see section 4.6). Systematic uncertainties and the 27% target polarization dilution factor are not
included. Our interpretations are based on projections for −t > 0.2 GeV2 only (2d and 3d rows)
due to magnetic field effects and the limited acceptance at smaller -t.
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Figure 5: Extracted CFFs from DVCS (left column) and TCS (right column), using σ and ∆σLU
(top row), using σ, ∆σLU , ∆σUL, ∆σLL (center row) and using σ, ∆σLU , ∆σUX , ∆σUY (bottom
row). The sensitivity to CFFs of this experiment corresponds to the bottom row right figure (with
transversely polarized TCS) and can be compared to other TCS experiments (top row, right col-
umn) and existing DVCS experiments (top and center row, left column). The uncertainties are
based on pseudo-data azimuthal distribution fitting with the assumption of 5% error per bin for
the unpolarized cross section and 7% per bin for the polarized cross section, with 16 bins in φ.

11



The proposed experimental setup for the measurements consists of a high intensity photon
source, a transversely polarized proton target, and detectors to measure the decay lepton pair and
the recoil proton from the BH/TCS reaction in coincidence. Some of the group members of the
proposal are deeply involved in the design and construction of the components of the setup which
are already under development. Other members are ready to take responsibility for development
of new components. The Compact Photon Source [12] is being developed by joint efforts of the
CPS collaboration and JLab. The NPS collaboration will take responsibility for the development
and the construction of the electromagnetic calorimeters for the lepton detection. The UVa and
JLab polarized target groups ([18], [19]) will provide the transversely polarized proton target.
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2 Physics case

2.1 TCS formalism

The unpolarized TCS+BH cross section depends on five independent variables. In the following,
we express it as a function of the beam energy (Eγ , which is more convenient for the simula-
tions), or as a function of the longitudinal momentum transfer ξ = Q′2

2s−Q′2 (more convenient for
the interpretations), where s=(p+q)2 is the squared C.M. energy of the reaction (where p and q
are the incoming proton and photon 4-momenta). The definition of ξ is valid at the asymptotic
limit (t/Q’2 → 0) (we refer to [9] for details). We also express the cross section as a function of the
momentum transfer squared, t = (p-p’)2 (where p’ is the recoil proton 4-momentum), the virtuality
of the final photon, Q’2 = + q’2 (where q’ is the scattered photon 4-momentum, timelike), and the
polar and azimuthal angles (θ, φ) of the electron in the C.M. frame of the lepton pair versus the
reaction plane (the γ, γ∗ plane). These angles are represented on Fig. 6: the left panel is a scheme of
the reaction in the C.M. frame of the incoming photon and proton (see the legend for details about
variables and angles). The right panel represents the angles in the virtual photon C.M. frame. The
longitudinal axis for the boost between the two frames is used as reference for the final electron
polar angle θ.

At fixed beam energy, averaging over the beam and the initial and the final nucleon helicities,
we express the 4-differential BH+TCS unpolarized cross section as

d4σ

dQ′2dtdΩ
(γp→ p′e+e−) =

1

2π4
1

64

1

(2mNEγ)2
| TBH + T TCS |2,

where the | TBH+T TCS |2 term corresponds to the BH and TCS amplitudes, andmN is the nucleon
mass. The polarized nucleon cross sections also depends on the angles between the nucleon spin
vector and the reaction plane, φS and θS . We display in Fig. 6 the particular cases of a spin along
the z-axis (θS = 0◦), along the x-axis (θS = 90◦ and φS = 0◦) and along the y-axis (θS = 90◦ and
φS = 90◦). In this experiment, the target is transversely polarized, and the polarized cross sections
depends on φS , and is calculated for θS = 90◦.

The TCS amplitude reads

T TCS = − e
3

q′2
ū(k) γν v(k′) εµ(q)HTCS

µν , (2)
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Figure 6: Scheme of the TCS reaction in the nucleon-photon center of mass frame (left panel)
and in the virtual photon rest frame (right panel). The momentum of incoming and outgoing
nucleon, real and virtual photon, electron and positron are indicated by letters p, p’, q, q’, k and
k’, respectively. Left panel: we indicated the angle φCM between the lepton decay plane and the
reaction plane. We also indicated by red arrows the possible orientations of beam and target spin.
Right panel: φCM angle is conserved in the boost from γN to γ∗ C.M. frames. θCM is the angle
between the lepton direction and the boost axis, defined by the γ∗ direction in the γN C.M. frame.
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with, at the asymptotic limit,

HTCS
µν (3)

=
1

2
(−gµν)⊥

1∫
−1

dx

(
1

x− ξ − iε
+

1

x+ ξ + iε

)
.

(
H(x, ξ, t)ū(p′)/nu(p) + E(x, ξ, t)ū(p′)iσαβnα

∆β

2m
u(p)

)

− i
2

(ενµ)⊥

1∫
−1

dx

(
1

x− ξ − iε
− 1

x+ ξ + iε

)
.

(
H̃(x, ξ, t)ū(p′)/nγ5 u(p) + Ẽ(x, ξ, t)ū(p′)γ5

∆.n

2m
u(p)

)
,

where we used the metric:

(−gµν)⊥ = −gµν + p̃µnν + p̃νnµ , (4)

(ενµ)⊥ = ενµαβ n
α p̃β.

The GPDs entering Eq. 3 are proton GPDs, i.e. they read, in terms of quark flavors:

HTCS(x, ξ, t) =
4

9
Hu/p +

1

9
Hd/p +

1

9
Hs/p. (5)

We use the decomposition into GPDs and notations from Ji [4], and the GPD parametrizations from
the VGG model [20, 21, 6, 22], which are summarized in Ref. [8] and based on the Radyushkin
double- distribution ansatz for the (x,ξ)-dependence [23, 24, 3] and on the Reggeized ansatz for the
t-distribution [6, 22].

The BH amplitude can be expressed as

TBH = − e3

∆2
N̄ Γν N εµ(q) ū(k)

(
γµ

/k − /q
(k − q)2

γν + γν
/q − /k′

(q − k′)2
γµ

)
v(k′), (6)

where the 4-vectors q, k, k’ respectively correspond to the photon, the electron and the positron, N
is the nucleon spinor and ∆ is the proton momentum transfer. The virtual photon-proton electro-
magnetic vertex matrix can be expressed as a function of Dirac (F1) and Pauli (F2) form factors

Γν = γν F1(t) +
iσνρ∆ρ

2mN
F2(t), (7)

We use the electric form factor parametrization from [25] and magnetic form factor parametriza-
tion from [26].

More details about the formalism entering the calculations used in this proposal are presented
in [9].
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2.2 Observables: calculations

2.2.1 Unpolarized cross section

Using a real circularly polarized photon beam and a transversely polarized target, there are 6 in-
dependent observables that can be accessed from the TCS+BH reaction. However, we restrict this
study to the unpolarized and single polarized cross section as intended to be measured, i.e. 4
independent observables. The double spin asymmetries can be measured as well, but their inter-
pretation is complicated by a strong BH contribution to the asymmetry and a relatively small TCS
and interference contribution. In addition, a finer binning in the observables would be required.

We display on Fig. 7 the TCS and BH unpolarized cross section as a function of φ for various
θ angles. In the analysis, we will integrate the cross sections over θ in a range depending on the
kinematics (this point will be discussed in section 4.2).

Figure 7: BH and TCS cross sections as a function of φ at Q′2 = 7 GeV2, -t=0.4 GeV2, ξ=0.2, for
θCM = 10◦, θCM = 170◦ and θCM = 90◦.

We use the following notations for the observables:

• We use the notation for an asymmetry APP ′ , with two indices P and P ′. The first index P
refers to the polarization type of the beam: U for an unpolarized beam, P = � and for a
circularly polarized beam. The second index P ′ refers to the polarization of the target and
can take the values U (unpolarized), x (φS = 0◦), y (φS = 90◦), or T for any generic value of
φS .

• Similarly, we use the notation σPP ′ for polarized cross sections and ∆σPP ′ for polarized
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cross section differences, defined as the difference of polarized cross sections σPP ′ , with spin
vectors pointing in opposite directions.

2.2.2 Circularly polarized beam spin asymmetry

We define the circularly polarized beam spin asymmetry as

A�U =
σ+ − σ−

σ+ + σ−
, (8)

where σ± stand for the 4-fold differential cross sections dσ
dQ′2 dt dφ d(cosθ) for the two photon circular

polarization states (right and left polarized). We display in Fig. 8 (left panel) our results for A�U
as a function of φ at Q′2 = 7 GeV2, ξ = 0.2, −t = 0.4 GeV2 for θ integrated over [45◦, 135◦]. This
observable is sensitive to the imaginary part of the amplitude, and therefore BH doesn’t produce
any asymmetry since its amplitude is purely real. The observed asymmetry therefore reflects a
contribution from TCS. We show in [9] the integration over θ does not strongly reduce the signal,
and that we obtain a relatively large (∼20%) sin(φ)-shape asymmetry for the explored kinemat-
ics. In Fig. 8 (right panel), we show for ξ = 0.2, Q′2 = 7 GeV2, φ = 90◦ and θ integrated over
[45◦, 135◦], the t-dependence of A�U . The results Fig. 8 (both figures) are displayed using different
GPD parametrizations for TCS. We notice that the magnitude of A�U increases with |t| and that
there is a sensitivity of this observable to all four GPDs, especially at large | t |. We also display in
this figure our calculation with the factorized ansatz for the t-dependence of the H GPD in order
to illustrate the model-dependence of our results. Since this beam spin asymmetry is sensitive to
the imaginary part of TCS+BH amplitudes, its GPD dependence is contained in the imaginary part
of CFFs.

2.2.3 Transversely polarized target spin asymmetries

We define the transversely polarized target spin asymmetries as

AUi =
σ+ − σ−

σ+ + σ−
, (9)

where σ± stands for the 4-fold differential cross sections dσ
dQ′2 dt dφ d(cosθ) for the two target spin ori-

entations + and − along the axis i = x, y or any other φS direction with θS = 90◦.

We show in Fig. 9 our results for the φ-dependence of AUx and AUy for Q′2 = 7 GeV2, ξ = 0.2,
−t = 0.4 GeV2 and for θ integrated over [π4 ,

3π
4 ]. The TCS is calculated with differents GPDs

parametrizations. We observe sinφ or cosφ shapes with amplitudes between 10 and 15%. Like
for A�U , the BH doesn’t produce any asymmetry and any non-zero asymmetry directly reflects
the strength of GPDs. We show in Fig. 10 the t-dependence of AUx and AUy at φ=90◦ and 0◦

respectively, for the kinematics ξ = 0.2, Q′2 = 7 GeV2 and θ integrated over [π4 ,
3π
4 ]. In this figure,
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Figure 8: Left panel: The A�U for θ ∈ [45◦, 135◦] using different GPD parametrizations for TCS.
The calculations are done for Q′2 = 7 GeV2, ξ = 0.2, −t = 0.4 GeV2. Right panel: The A�U
asymmetry as a function of t for BH+TCS at ξ = 0.2, Q′2 = 7 GeV2, φ = 90◦ and θ integrated over
[45◦, 135◦]. TCS is calculated with different GPD parametrizations. From [9].

TCS is calculated with different GPD parametrizations. Depending on the value of t, the two
asymmetries are sensitive to the GPDs H , H̃ and E in various proportions. We also display in this
figure our calculations with the factorized ansatz for the t-dependence of the H GPD in order to
illustrate the model-dependence of our results. Experimentaly, we access different values of φS ,
which are taken into account in the calculation of the polarized cross sections for our projections
(in section 4.6).

2.3 Interpretations

2.3.1 Relations between cross sections and Compton Form Factors for TCS and DVCS

Analytic equations have been developed for the unpolarized and circularly beam polarized TCS+BH [10].
According to this work, the squared TCS amplitude, summed over the initial and final photon spin
states is expressed as a function of CFFs, and is proportional to (using our notations) [10]

TCS2 ∝ (1− ξ2)
(
|H|2 + |H̃|2

)
− 2ξ2<

(
HE + H̃Ẽ

)
, (10)

−(ξ2 +
t

4m2
N

)|E|2 − ξ2 t

4m2
N

|Ẽ |2.
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Figure 10: The AUx (left panel) and AUy (right panel) asymmetries as a function of t, at φ=90◦, 0◦

and 90◦ respectively, and for ξ = 0.2, Q′2 = 7 GeV2, −t = 0.4 GeV2 and θ integrated over [π4 ,
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4 ].

TCS is calculated with different GPD parametrizations. From [9].
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The dominant sin(φ) amplitude term (M−−) of the circularly beam polarized cross section decom-
poses into CFFs and FFs, and is proportionnal to [10]

M−− ∝ F1H− ξ(F1 + F2)H̃ −
t

4m2
N

F2E . (11)

One can notice the similarities with the DVCS polarized cross sections decomposition into CFFs
(see reviews [7, 27]). However, the terms depending on GPDs in TCS observables are occurring
with different kinematical factors compare to DVCS. Based on the QCD factorization theorems,
DVCS and TCS should access the same matrix elements at leading order and leading twist. There-
fore, DVCS and TCS depend on the same CFFs (up to a sign change for the imaginary part) and
carry the same information on GPDs. We therefore expect the DVCS and TCS observables being
correlated at this order: the TCS unpolarized cross section is partially correlated to the DVCS one,
whereas the TCS circularly polarized beam spin asymmetries are correlated to the DVCS lepton
beam polarization asymmetries which access the imaginary part of amplitudes. Similarly, con-
cerning target polarization, the DVCS and TCS single target spin asymmetries are correlated and
access the imaginary part of amplitudes, the DVCS and TCS (with circularly polarized photon)
double spin asymmetries are correlated and access the real part of amplitudes.

Although there is no published reference displaying the CFF dependences of the transversely
polarized TCS observables, ongoing studies with quantitative predictions will be soon available [28].
Our calculations show a first order sin(φ − φS) dependence of the single spin asymmetries which
can be related to the DVCS φ and φS dependence of transverse target spin asymmetries (up to a
sign change). DVCS phenomenology [29], results from the HERMES collaboration on transversely
polarized DVCS, our results on GPD dependence of AUT (Figs. 9 and 10) suggest an enhanced
sensitivity to =E from the (cos(φ)sin(φ − φS)) moment of the transverse target spin asymmetry.
Therefore, φ-dependent transversely polarized target cross section measurements will access =E ,
in addition to =H and =H̃.

2.3.2 Higher twist and higher order effects, impact on the observables

In the above discussion, we neglect the impact of higher twist and next to leading order effects on
the observables. These however might impact the possibility to access the same CFFs with DVCS
and TCS. Higher twist effects have been found to be non negligible from recent JLab DVCS exper-
iments [30]. A preliminary study of TCS [9] suggested that their impact on the observables might
be small compared to the leading order GPD contributions. However, a complete study including
all higher order corrections has not beed published yet for TCS. Next to leading order calculations
of DVCS+BH and TCS+BH show a different NLO structure for the two reactions [31], and small
but non negligible effects are expected on the observables.

Depending on the size of higher twist and NLO effects, we will take the following approch for
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the interpretation of our results:

• Small effects compared to the uncertainties: we can combine leading order DVCS and TCS
observables toward a global CFF fits approach.

• Small or moderate effects compared to the uncertainties: a more thorough analysis of CFFs
extracted independently from DVCS and TCS will allow us to put a stringent constraint on
the universality of GPDs.

• Large effects compared to the uncertainties: this will lead to the first observation of higher
twist effects in TCS (timelike process), which can be compared to higher twist effects in DVCS
(spacelike process).

In summary, in the “small effects" scenario, TCS measurements and their comparison to DVCS
results will allow us to demonstrate the universality of twist-2 GPDs. If large effects appear, mea-
suring TCS will be an unique opportunity to observe the universality violation for GPDs and their
important twist 3 structure [32] in a timelike (TCS) versus a spacelike (DVCS) reaction. Similar
studies with TMDs (Transverse Momentum Distributions) lead in particular to the demonstration
of an induced sign change for the first moment of azimuthal asymmetries in semi-inclusive reac-
tions (spacelike photon) and in the Drell-Yan reaction (timelike photon) [33], unpredicted at twist
2, and related to the Sivers effect (twist 3 TMD "f⊥1T ") [34]. This effect can also be related to the
GPD E (its projection in impact parameter space), as shown in [35], which will be accessed in our
experiment.

2.4 Extraction of CFFs from TCS measurements and impact for GPDs

2.4.1 Framework

We base the discussion in the current section under the assumption of negligible higher order and
higher twist effects. In this case, we access the same CFFs from DVCS and TCS. We can either
access the CFFs independently from the two reactions and compare the results, or combine DVCS
and TCS observables to do a multi-observable fitting.

We show in Fig. 11 the kinematical domain which can be accessed for DVCS and TCS. We
display in blue the (ξ, Q′2) phase space accessible for TCS with an 11 GeV electron beam, assum-
ing that the real photon is provided by bremsstrahlung of the electron and that its energy is in
Eγ ∈ [5, 11] GeV. We have applied two cuts: Q′2 ∈ [4, 9] GeV2 and −t ∈ [0, 1] GeV2. The motiva-
tions are respectively to stay in the region free of vector meson resonances and minimize higher
twist corrections to the TCS formalism, which grow with t

Q′2 . We overlap in red in this same fig-
ure the (ξ, Q2) phase space accessible with an 11 GeV beam for DVCS. We have applied the cuts:
−t ∈ [0, 1] GeV2, for the same reason as for TCS, and s > 4 GeV2 in order to stay above the baryon
resonance region. One notes the large intersection between the DVCS and the TCS phase spaces.
In this section, we combine DVCS and TCS observables calculated at the same ξ and t with the
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same CFFs (up to a sign change for the imaginary part). As we neglect the Q2 and Q’2 dependence
of CFFs, we performed the calculations at two different values, reflecting the average Q2 and Q’2

accessible in DVCS and TCS experiments, respectively.

Figure 11: Kinematical domain accessible as a function of ξ and Q2 for DVCS (red plain surface)
and in ξ and Q′2 for TCS (blue dotted surface) with an 11 GeV electron beam. For DVCS, the
cuts −t ∈ [0, 1] GeV2 and s > 4 GeV2 have been applied and for TCS, the cuts Eγ ∈ [5, 11] GeV,
−t ∈ [0, 1] GeV2 and Q′2 ∈ [4, 9] GeV2 have been applied. Cuts are purely from the kinematic, and
no acceptance cuts are applied in this figure.

2.4.2 Fitting method

We generated DVCS+BH and TCS+BH pseudo-data sets based on VGG model for the GPDs and
the calculations from [20, 21, 22, 6, 9]. The cross sections are calculated at the same t and ξ for
DVCS and TCS: DVCS+BH distributions are generated at t=-0.2 GeV2, ξ = 0.15, Q’2 = 2.5 GeV2,
E(beam) = 11 GeV, TCS+BH distributions are generated at t=-0.2 GeV2, ξ = 0.15, Q2 = 4.5 GeV2,
θCM = 90◦. The distributions are presented as a function of 16 bins in φ. In case of transversally
polarized protons, we generated the polarized cross sections at φS = 0◦ (proton spin along the
x-axis) and at φS = 90◦ (proton spin along the y-axis). We extracted the CFFs following to the
fitting method from [36]. In order to match the uncertainties expected in short term experiments
at JLab, and to compare DVCS and TCS in the same conditions, we set relative errors of 5% per bin
in φ for both DVCS+BH and TCS+BH unpolarized cross sections. We set relative errors of 7% per
bin in φ for all the polarized cross sections. We assume the same uncertainties for both reactions

22



in order to compare the sensitivities to CFFs. The free parameters of the fits are the 7 Compton
Form Factors: =(H), =(H̃), =(E), <(H), <(H̃), <(E), <(Ẽ) (we neglect =(Ẽ) as in [36]). Figures of
the fitted distributions and more details about the method are given in Appendix A.

We performed fits on the sets of observables presented on table 1. For configurations 1 to 5, we
systematically performed fits for DVCS and TCS independently, and combining both reactions.
For the configurations 6, 6’, 6”, we fitted observables from DVCS, TCS, DVCS+TCS, respectively
(the symbol "x" in the table indicate configurations that are not fitted). In the table we used the
notations corresponding to DVCS observables: the first index "L" for designing DVCS+BH beam
spin asymmetries should be replace by an index "�" in case of TCS (circularly polarized beam).

We indicated experimental Halls in JLab who have experiments accessing the different observ-
ables. Some of these experiments are running or approved to run in a short term. Complementary
DVCS experiments at JLab (12 GeV) include the experiments [37, 38, 39] aiming at measuring
the unpolarized and beam polarized DVCS cross sections, the experiment [38] will also measure
the longitudinally polarized target single and double spin asymmetries, and the conditionally
approved experiment [17] aims at measuring the transverse target spin asymmetries. Comple-
mentary TCS experiments at JLab (12 GeV) include the experiments [2] (running) and [1] (future)
aiming at measuring the unpolarized and circularly beam polarized cross section of TCS, from a
quasi-real photon beam (the incoming beam is a longitudinally polarized 11 GeV electron). The
experiment we are proposing will measure the unpolarized and circularly beam polarized cross
section, but initiated from a real photon at about 102 times the photon intensity of [2] and at about
10 times the photon intensity of [1]. It will measure in addition the transverse target spin asymme-
tries.

The extracted CFF uncertainties are presented on Fig. 12 (imaginary parts) and 13 (real parts).

2.4.3 Interpretation on fitting DVCS or TCS independently

Measuring only the unpolarized cross section and beam spin asymmetry either from DVCS+BH
or from TCS+BH (with a circularly polarized beam for TCS) allow for extracting =H, =H̃, and
<H with a good enough precision for contributing to constrain GPD models and for comparisons
between the two processes (Fig. 14). Having in addition the longitudinal target spin asymmetry
allow for constraining better these CFFs, in particular =H̃, and allow for bringing some constraint
on <H̃.

Having in addition to the unpolarized cross section and the beam spin asymmetry, the two in-
dependent transverse target spin asymmetries allow to constrain in addition =E (Fig. 14). Thanks
to the correlations between the CFFs and the fact of having more independent observables to con-
strain the fits, a much better precision is reached for <H compared to cases without transverse
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Figure 12: Extracted coefficients for imaginary part of CFFs, defined as fit result * generated CFF.
Left column: Im(H), central column: Im(H̃), right column: Im(E). Top: extracted from DVCS, cen-
tral row: extracted from TCS, bottom row: extracted from DVCS+TCS. Set of observable indices
(from 1 to 6) are detailed in table 1. The scale is zoomed, fitting coefficient variation has been lim-
ited to [−5, 5] time the generated one. The generated coefficient (1) is indicated by the black dashed
line. For visibility, we allow data points with uncertainties larger than the displayed vertical range.
The uncertainties are based on pseudo-data azimuthal distribution fitting with the assumption of
5% error per bin for the unpolarized cross section and 7% per bin for the polarized cross section,
with 16 bins in φ.
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Figure 13: Extracted coefficients for real part of CFFs, defined as fit result * generated CFF. Left col-
umn: Re(H), central column: Re(H̃), right column: Re(E). Top: extracted from DVCS, central row:
extracted from TCS, bottom row: extracted from DVCS+TCS. Set of observable indices (from 1 to
6) are detailed in table 1. Fitting coefficient variation has been limited to [−5, 5] times the generated
one. These limits are indicated by the red dashed lines. Generated coefficient (1) is indicated by
the black dashed line. The uncertainties are based on pseudo-data azimuthal distribution fitting
with the assumption of 5% error per bin for the unpolarized cross section and 7% per bin for the
polarized cross section, with 16 bins in φ.
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Set of observables DVCS TCS DVCS+TCS # independent obs.
(DVCS/TCS/both)

1) σ, ∆σLU A, B, C A, B, C A, B, C 2/2/2
2) σ, ∆σLU , ∆σUL, ∆σLL B 4/4/4
3) σ, ∆σLU , ∆σUT (x2) B(∗) C B+C(∗) 4/4/4
4) σ, ∆σLU , ∆σUT (x2) 6/6/6
∆σUL, ∆σLL
5) σ, ∆σLU , ∆σUT (x2) 8/8/8
∆σUL, ∆σLL, ∆σLT (x2)
6) σ, ∆σLU , ∆σC x x 3 (DVCS)
6’) σ, ∆σ�U , ∆σLU x x 3 (TCS)
6”) 2) of DVCS + 3) of TCS x x B+C 6 (DVCS+TCS)

Table 1: First column: set of combined observables for DVCS, TCS and DVCS+TCS fitting. Second
to fourth column: current and future experiments at JLab accessing these observables (letters indi-
cate experimental Halls, the letter C in bold corresponds to this proposal). Note that the projected
uncertainties of these experiments are not corresponding to the one assumed in this exercise, done
in the purpose of comparing DVCS and TCS in the same conditions. Fifth column: number of
uncorrelated observables. (∗)) this CLAS12 experiment is conditionally approved.

target asymmetries (Fig. 14).

Fitting DVCS+BH or TCS+BH unpolarized cross sections, beam polarized cross sections, 3 sin-
gle target polarized cross sections (1 longitudinal, 2 transverse), and the double beam and longi-
tudinaly polarized target cross sections (case 4) bring constraint to =H, =H̃, =E , <H, <H̃ and <E .
Adding the double beam and transverse target spin asymmetries with the same precision (case 5)
will strongly shrink the uncertainties for all the CFFs and avoid incorrect solutions to the problem,
thanks to it being overconstrained. The CFF <Ẽ is constrained thanks to correlations with other
CFFs. This case is not corresponding to any short term DVCS or TCS experiments, and represent
an ideal case of what can be achieved according to the uncertainties we set and the method.

We notice that in a scenario of same uncertainties on DVCS and TCS observables, the sensitivi-
ties to CFFs of DVCS observables are stronger the sensitivities of TCS observables. Indeed, TCS is
more suppressed than DVCS compared to the associated BH process in the reaction. However, we
can constraint CFFs from the two reactions independently and compare the results for studies of
GPDs universality.

2.4.4 Interpretation on fitting simultaneously DVCS and TCS

For the first 5 sets of observables, we fitted simultaneously correlated observables from DVCS and
from TCS (Fig. 12). These simultaneous fits allow for about a factor of 2 reduction of error bars
compared to the case of fitting only DVCS. This reduction is larger than statistically expected, due
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Figure 14: Extracted CFFs from DVCS (top row) and TCS (bottom row), using σ and ∆σLU (top
row), using σ, ∆σLU , ∆σUL, ∆σLL (center row) and using σ, ∆σLU , ∆σUX , ∆σUY (bottom row).
This experiment corresponds to the bottom row right figure (with transversely polarized TCS). The
uncertainties are based on pseudo-data azimuthal distribution fitting with the assumption of 5%
error per bin for the unpolarized cross section and 7% per bin for the polarized cross section, with
16 bins in φ.
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to the fact that the unpolarized cross sections are not fully correlated and therefore they bring both
some new information. Combining observables from both reactions can help at a non negligible
level in constraining GPD models by reducing uncertainty and allowing for extraction of CFFs
which would be hard to constrain otherwise.

The data set 6” (for DVCS+TCS) is a combination of DVCS 2d data set and TCS 3d data set,
corresponding to a scenario of CLAS12 DVCS data (with longitudinal target) combined to the re-
sults of our experiment. Independent information is brought by the different target polarization
accessible in these experiments. Combining these data sets allow for constraining at the same time
all CFFs.

Even though simultaneous fits are assuming GPD universality and neglect higher twist effects,
they allow for bringing strong constraints to GPD models with short term upcoming DVCS and
TCS experiments, compared to measurement from DVCS only.

2.4.5 Neutron measurements and flavor decomposition for the GPDs

The results of sec. 2.4.3 demonstrate the feasibility of accessing CFFs and GPDs for the proton from
DVCS and TCS measurements. However, for interpretations, GPDs have to be decomposed into
flavor, which is possible thanks to measurements of the GPDs of the neutron in other experiments
[40, 41] in addition to the measurements off the proton. In particular, the CFF =E for the neutron
is accessible with the unpolarized and the beam polarized DVCS cross section measurements [40]
and the longitudinaly polarized experiment [41] using the CLAS12 spectrometer. As shown on Fig.
15, the neutron DVCS measurement will complement the TCS measurement we are proposing for
the flavor decomposition of the GPD E, with uncertainties on the CFF at the same level.
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Figure 15: Extracted CFFs from DVCS (left column) and TCS (right column) off the neutron, using
σ, ∆σLU , ∆σUL, ∆σLL. The uncertainties are based on pseudo-data azimuthal distribution fitting
with the assumption of 5% error per bin for the unpolarized cross section and 7% per bin for the
polarized cross section, with 16 bins in φ.
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3 Experimental setup

3.1 The concept of setup

The setup is aimed at detection of decay lepton pair and recoil proton from BH/TCS events in
triple coincidence, in forward kinematics. The key components of the setup are high intensity
photon source, a transversely polarized proton target, and a set of detectors for proton and lepton
detection and identification.

The experiment will utilize untagged bremsstrahlung photon beam from Hermetic Compact
Photon Source (CPS) ([12]) on the UVA/JLab polarized ammonia target ([13, 14]). The CPS is ca-
pable of delivering up to 1.5× 1012 photons per second with primary CEBAF electron beam of 11
GeV energy and 2.5 µA intensity, within the energy range from 5.5 to 11 GeV ([42]). The photon
beam has clear advantage over the electron beam when using the polarized target: less heat load,
higher polarization and less depolarization of the target material. This boosts figure of merit for
the beam – polarized target combination by factor of ∼30. Assuming aforementioned CPS beam
intensity, 1.5 × 1023cm−2 of polarized hydrogen atoms in the UVA target (3 cm long target cell,
0.6 packing fraction, 0.817g/cm3 density of frozen NH3), the luminosity for this combination may
reach 2.2× 1035cm−2sec−1.

To provide transverse polarization, the target assembly will be rotated by 90◦ around the ver-
tical axis. For this configuration the rendered angular acceptance is ±17◦ horizontally, and ±21.6◦

vertically. The exit beam pipe excludes from angular acceptance a conical region with opening
angle of 6◦.

The proposed positioning of detectors optimizes coverage of the remaining angular acceptance
in a simple way (Fig.16). The detectors are positioned above and below the exit pipe and span from
6◦ to 21.6◦ vertically, and ±17◦ horizontally. Small adjustments in this coverage due to deflections
of the particles in the target magnetic field and background distributions are described below, in
Sections 3.4 and 3.5. Positioning at 150 cm from target ensures reasonable transverse sizes of de-
tectors.

The proposed detector package in its minimal configuration consists of hodoscopes for detec-
tion of proton, and electromagnetic calorimeters for detection of leptons. The hodoscopes have X
and Y planes and measure both transverse coordinates.

The final state of the reaction contains two leptons and a proton, which will provide a coinci-
dence trigger. The exclusivity of the reaction is ensured by detecting all final-state particles, e+e−p.
The secondary photon beam being provided by an untagged initial electron beam, its energy is pro-
vided by cutting on the missing particle kinematics.
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Parameters Calorimeters Hodoscope
range in φ ±17o ±17o

range in θ 6o - 21.6o 6o - 21.6o

-6o - −21.6o −6o - −21.6o

δφ < 5 mr < 1◦

δθ < 5 mr < 1◦

Energy resolution ∼ 2%/
√
E ∼ 10%

Time resolution < 100 ps < 100 ps
PID:

e/π ∼0.01 ...
π/p .... ∼0.1

Table 2: Proposed characteristics of the TCS detector setup. φ denotes angle in horizontal plane,
and θ denotes angle in vertical plane.

The proposed design characteristics of the detectors are presented in Table 2.
The following sub-sections contain more detailed description of the parts of setup, and studies

on background conditions and trigger choices.

3.2 High Intensity photon beam

The proposed experiment will utilize an untagged photon beam from Hermetic Compact Photon
Source (CPS) proposed by G. Niculescu and B. Wojtsekhowski [12]. The bremsstrahlung photons
are produced from CEBAF electron beam (maximum energy 11 GeV) impinging on 10% Cu ra-
diator. The electrons after the target bend in 1 m long, 2.2 T field magnet, while photons pass
straight through narrow, 2 mm in diameter collimator before reaching target. As bent electrons
are dumped in the body of magnet, the whole setup is heavily shielded by W -alloy in order to
eliminate produced radiation.

The spot size of photon beam at 2 m away from the radiator is estimated to be ∼0.9 mm. The
projected photon flux is 1.5× 1012 s−1 for primary electron beam current 2.5 µA, for photon ener-
gies > 0.5 Ebeam [42].
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Figure 16: Side view of the TCS experimental setup. Shown are photon beam (γ), transversely polarized
target (Tg) in the scattering chamber (OVC), and pairs of hodoscope (H) and calorimeter (C) counters for
detection of the recoil proton and the lepton pair.

Figure 17: The conceptual design of Hermetic Compact Photon Source.
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3.3 Polarized Target

Hall C has a long and successful experience with the use of solid polarized targets, starting in 1998
with the first run of E93-026[43] designed to measure the electric form factor of the neutron. This
was followed by its second run in 2001 and immediately by the Resonance Spin Structure experi-
ment, E01-006 [44] in 2002 and by the Spin Asymmetries Experiment on the Nucleon (SANE) [45]
in 2009. The polarized target was extensively refurbished and modified for successful measure-
ments of g2p and GEp in Hall A [46].

These targets exploit a technique called Dynamic Nuclear Polarization (DNP) in which polar-
ization is transferred from unpaired electrons in a dilute concentration of paramagnetic centers
(introduced via irradiation at 80K or by chemical doping). At 5 T and 1K the thermal equilibrium
of both species (proton and electron) is determined solely by Boltzmann statistics and can be writ-
ten as P = tanh µB

kT . The TE polarization of the electron under these conditions is 99.8% while the
proton is 0.51%, the difference due solely to the size of their respective magnetic moments. The
dipole-dipole interaction between the nucleus and the electron spins leads to hyperfine splitting.
By applying a RF field with a frequency very close to the electron paramagnetic resonance (EPR)
frequency (about 140 GHz at 5.0 Tesla), the high electron polarization (due to the large electron
magnetic moment) can be transferred to the proton. Either positive or negative polarization can
be achieved, depending on whether the RF field is below or above the EPR frequency.

Figure 18: Transitions driven by GHz microwaves in the DNP process

Positive proton polarization results by driving the forbidden transition from the |Sz, Iz〉 =

|−1
2 ,−

1
2〉 ground state to the |+1

2 ,+
1
2〉 excited state. The later quickly relaxes to the |−1

2 ,+
1
2〉
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Figure 19: The UVA polarized target used in Hall C experiments. Left:Cross section view of the target.
Right: A schematic drawing of the lower part of the target insert. The dashed line represents the tail piece
which contained liquid helium during data taking.

ground state via the allowed EPR transition. Driving the other forbidden transition, |−1
2 ,+

1
2〉 →

|+1
2 ,−

1
2〉, results in negative proton polarization. It is illustrated Figure 18.

The schematic view of the polarized target and the lower part of the target insert are shown in
Fig. 19.

The target magnet is a pair of superconducting Helmholtz coils that when driven at 121 Amps
produce a magnetic field of 5 Tesla. The coils have a 20 cm central bore, 100o opening angle and 8
cm of coil split. The field is uniform to 10−4 over the 3 cm diameter right cylinder.

To provide transverse polarization of the target needed in this measurement, the target magnet
will be rotated by 90◦ around vertical axis. Restricted by the magnet coils and scattering chamber
window, the angular acceptance in this configuration will span ±17◦ horizontally and ±21.7◦ ver-
tically 4.

The target magnetic field direction has been found to be coincident with the geometric axis of
the coils and is known to 0.1◦ [47]. The target is cooled by a 4He evaporation refrigerator placed

4A version of the target used in JLab Hall A g2p experiment E08-027.
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vertically in the center bore of the magnet (see Fig. 19). The target material is held in cups at the
the end of the target insert which can carry up to 5 targets: a top and bottom NH3, an empty target
and 2 solid targets (C or Be).

The microwaves are generated by an Extended Interaction Oscillator tube (Manufactured by
CPI, Canada) which has a maximum power of ∼20 W with approximately 1 W delivered to the
target sample. 15NH3 is chosen as the target material because of its high polarizability, large po-
larizable nucleon content and resistance to radiation damage.

The target polarization is measured via NMR using the Liverpool Q-meter in which the magni-
tude of polarization is linearly related with the voltage of the phase sensitive detector: P = K · S,
and K is a calibration constant. The calibration constant K is determined by measuring the size
of a sample’s NMR signal under known thermal equilibrium conditions where the polarization
can be calculated from the aforementioned Boltzmann statistics. A series of NMR signal area mea-
surements are made and averaged to obtain the calibration constant. They are typically done with
each load of target material and as many time as is possible during the run, especially after anneals.

The target material consists of 1-3 mm diameter granules of NH3, immersed a 4He bath inside
the target cavity. The packing fraction is the fraction of target cell volume filled by target material
(NH3), the rest of the cell being filled with liquid 4He. The packing fraction is important for the
simulation of the scattering cross sections and for the determination of the dilution factor.

The dilution factor, f , is defined as the fraction of events originating from polarized hydrogen.

Interaction of the beam with the target material produces an abundance of paramagnetic rad-
icals which increase the rate of nuclear spin relaxation, but do not contribute to the DNP process.
As a result, the polarization decays with the accumulation of beam charge until the time required
to achieve a desired statistical precision becomes unacceptable.

In practice, for experiments using 100 nA electron beam this can occur in about 8 hours. For
experiments with photon beam like this one, the radiation damages are less intense and the time
is much longer. Fortunately, the process of annealing recombines the paramagnetic centers and
restores polarization. To anneal, the target material is moved out of the beam and the polarizing
microwave radiation and is heated to between 70-100 K for between 10 and 60 minutes.

The high intensity multi-GeV photon beam causes ionization energy loss by production of
electron positron pairs inside the target. The energy loss from this process is approximately inde-
pendent of beam energy and is estimated to be about 2 MeV · cm2/g.
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For a photon intensity of 1.5 × 1012 equivalent photons per second, it is necessary to use an
evaporation refrigerator with ∼1 Watt cooling power in combination with a high polarization,
high radiation resistant proton target material (NH3). For electron beam experiments, typically
100 nA is the maximum current on the target. The heat load is about 0.33 W and combined with
the DNP microwaves is about 0.5 W. This heat load must be distributed throughout the target so
that the target material beads do not experience local depolarization. To do this, the standard fast
raster is used to make a 2mm × 2mm square pattern of electrons over the radiator. The resulting
photon beam is then distributed over the target by mechanical rotation of the target cell.

A mechanical rotation system is built at UVA which provides rotation rates faster that 1 Hz.
The target rotation in combination with the standard target actuator results in an effective slow
raster which spirals over the full area of the standard 2.5 cm diameter target. Uniform exposure of
the target cell is achieved by a combined rotation of the target cup synchronized with an up/down
movement of the target ladder. Rotation of the target cup has already proven viable during the
tests at UVa. Depolarization and homogeneous radiation damage can easily be achieved by con-
tinuously moving the target at a rate determined by the radius of the circle made through rotation
on the target surface, spending no more than a few hundred milliseconds on each set of target
beads.

The detailed information about polarized target subsystems, technique of operation and exper-
imental measurements can be found in Ref. [13, 14, 48] and the UVa target group web server Ref.[46,
18].
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3.4 Lepton detectors

The determination of the kinematic variables Q′2, ξ and τ depends on the accuracy of reconstruc-
tion of the lepton energy and angle. Leptons (e+ and e−) in the experiment will be detected and
identified by measuring their energies and coordinates (X and Y ) in a pair of electro-magnetic
calorimeters.

The calorimeters are a copy of the shower counter for the projected Neutral Particle Spectrom-
eter. The basic concept for the NPS is a highly segmented electro-magnetic calorimeter preceded
by a compact sweeping magnet. Experiments with NPS require detection of neutral particles with
energies ranging between 0.5-7.6 GeV with good energy resolution (∼ 2%), and good coordinate
and angular resolution of 0.5-0.75 mrad, the latter being comparable to the resolutions of the fo-
cusing spectrometers in Hall C.

An assembly of lead tungstate crystals, similar to HYCAL calorimeter in the PrimEx and PrimEx-
II experiments in Hall B [49] is recognized as a good match for the NPS calorimeter (see Fig 20).
Preparation work for construction of the NPS calorimeter is well underway. Tests are being curried
out at CUA and JLab to characterize optical and radiation-resistive properties of PbWO4 crystals
from SICCAS and other sources, a small prototype detector of 3× 3 crystal assembly has been built
for studies.

The new active divider design of the PMT bases provides a linear response up to high rates of
∼1 MHz. More information about the NPS and design studies can be found in reference [50].

The calibration procedures developed in PrimEx experiment can be adapted to this project. Ex-
perience with the HYCAL yielded energy and coordinate resolutions of σ/E = 1.3% and σx ∼1.28-
2.10 mm at a neutral-pion energy of 5 GeV, giving an invariant mass distribution with a width of
2.3 MeV/c2 (see Fig, 21). For comparison, an energy resolution of 2.2% for incident electrons of∼4
GeV energy has been obtained in beam tests with the prototype in Hall D at JLab.

The transverse size of the TCS lepton detectors is driven by required angular acceptance and
distance to the target. Restricted by the target setup angular acceptance is±17◦ in horizontal plane
and ±21.7◦ in vertical plane (see Section 3.3). In addition, the beam pipe restricts scattering angles
to greater than 6◦. Taken into account vertical deflections of the particles to be detected in the side-
ways magnetic field of the target, we consider positioning the lepton detectors above and below
the beam pipe, at 0◦ of azimuthal angle.

Reasonable sizes for the detectors are obtained by positioning them at a distance ∼1.5 m from
the target. This implies 92× 41.5 cm2 of active area, for the angular acceptances ±17◦ horizontally
and±15.7◦ vertically. For PbWO crystals of 2.05×2.05 cm2 cross section for construction, the num-
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Figure 20: 2.05×2.05×18cm3 PbWO4 crystals used in the high resolution part of Hall B PrimEx experiment
calorimeter (HYCAL) [49].

ber of modules would be ∼1000 for each detector (taken into account addition of a layer around
the perimeter of cross-sectional area to exclude shower leaks). This number was refined after sim-
ulated acceptance studies, according to which a 50 × 23 matrix arrangement would be optimal,
with 1150 blocks per detector. A further refinement took place due to background simulations,
according to which the central region of detectors covering ±1.6◦ horizontally must be excluded
from consideration, because of unacceptably high background rates (see Section 3.6 below).

Hence the final layout of the calorimeters consists of 4 quarters (top left, top right, bottom left,
bottom right), 23 × 23 matrix of blocks each, mirroring each other horizontally and vertically. The
horizontal gap between left and right quarters is 8.2 cm wide, the vertical gap is 15.8 cm wide. The
number of required lead tungstate crystals totals to 2,116.

3.5 Detection of recoil protons

Determination of momentum transfer -t and its resolution depends on accuracy of reconstruction
of the recoil proton four momentum. Design requirements for the proton detectors are defined
by kinematics, required accuracy, available space and cost, as well as by the expected background
conditions. The recoil detectors will be located just before the lepton detectors and will cover a
slightly larger angular area than allowed by the polarized target. Similar to the calorimeters’ case
(see Section 3.4), the horizontal band from -6◦ to 6◦ and vertical band ±1.6◦ at the middle of the
acceptance will be excluded, and the detector will be divided in 4 separate partitions.
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Figure 21: Energy and coordinate resolutions of PbWO4 crystals based HYCAL calorimeter.

The proposed 4 proton detectors have hodoscopic construction. Each hodoscope consists of X
and Y planes, and cover rectangular area of 50 × 48 cm2. The counters will be made of scintillator
bars. The width and thickness of the bars will be optimized for accuracy of the track coordinates’
determination, and for particle identification capabilities of the detectors.

The detected proton momenta will be within 0.3 − 1.2 GeV/c range, with bulk of statistics be-
tween 0.4 and 0.8 GeV/c. Proton identification will be based on dE/dx signal from the hodoscopes.
Thickness of at least few cm will be needed for reliable separation of protons and lighter particles
at momenta ∼1 GeV/c (Fig. 22).

3.6 Background and trigger studies

For experiments with open geometry setups, background conditions are of special importance.
This experiment will utilize a bremsstrahlung photon beam of intensity, potentially as high as
2 × 1013 photons per second on target of 3.8% radiation length. Simple PDG based estimates for
e+e− γ-conversion production alone yields 3%/γ probability, i.e. rates in ∼ 1011Hz range, even a
small portion of which in the acceptance may cause difficulties.

A Geant4 based simulation code was developed to study background conditions, and detector
acceptances as well. The code models the target assembly (scattering chamber with its windows
and shieldings, target cell and target material, magnet coils, magnetic field) and detector pack-

39



1

10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Particle Momentum (GeV/c)

E
n

e
r
g

y
 L

o
s
s
 d

E
/d

X
 (

M
e
V

*
g

/c
m

2
)

p

π

K

Figure 22: Proton PID by dE/dx in the Recoil Proton Detector. The graph shows ionization energy losses
versus momentum for pions, kaons and protons.

age. The background events in the detectors were generated by passing bremsstrahlung photons
through the target assembly. The photon energy was sampled from the bremsstrahlung spectrum
with endpoint energy of 11 GeV.

A custom made, fast c++/Root code for acceptance studies was also helpful in this case. The
code features a pointlike target, target magnetic field, target chamber and detector acceptances.

It was found that among background tracks within the detector acceptances ∼90% are γ-s,
∼10% are electrons and ∼0.2% are positrons. The hadron content is small. Deposited in the
calorimeters energies are mostly below 200 MeV (Fig.23). While vast majority of energetic elec-
trons and positrons from γ-conversion in the target material fall into the gap in the middle of
acceptance, some of them hit the calorimeters and deposit energies in GeV range.

The transverse magnetic field from the target deflects charged background toward detectors.
The middle of acceptance is particularly affected with high background rates (Figures 24 and 25).
The high energy background tend to concentrate there. The rates vary several times from the mid-
dle of acceptance to the edges.
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We note here that there is a room to optimize hodoscope configuration for both efficiency of
the recoil proton detection and background rate reduction. High rates in the hodoscope counters
can be reduced by a finer segmentation of the detectors. Energy loss by the recoil proton in 1 cm
scintillator is above 2.4MeV , hence background rates in Fig.25) can be reduced, as our simulations
show by 4 times, by raising the threshold energy. Thicker counters would allow for easier selection
of efficient thresholds.

For construction of a viable low level trigger, identification of the ranges of useful events is
necessary. For loose cuts on the TCS kinematic variables of interest 9 GeV 2 > Q2 > 4 GeV 2,
−t < 1 GeV 2, s > 4 GeV 2, −t/Q2 < 0.3, the momenta of leptons from detected BH events are
greater than 1 GeV , and the sum of lepton momenta is greater than 5 GeV . By establishing those
thresholds on the deposited energies in the calorimeter, one can reduce rates of e+e− background
coincident events by 3 orders of magnitude, but still leave them in 105 Hz range (Fig. 27).

A more sophisticated trigger can be constructed requiring that the sum of transverse momenta
of the 3 detected particles be equal to∼0. One can look for combinations of the measured quantities
that are proportional to the transverse momenta, are easy to implement in the trigger, and construct
the sum. For instance, the X component of the lepton transverse momentum can be represented by
X coordinate of the hit cluster in the calorimeter, weighted by the energy of the cluster E. Then,
assuming one lepton hit the top calorimeters, another the bottom calorimeters, one can look for a
pair of hit clusters with significant energy deposition, calculate the energy weighted coordinates
for them, and take the sum of the two quantities as a representation of the transverse momentum
of the decayed outgoing photon:

PX(γ?) ∼ X+E+ +X−E− (12)

The same procedure can be applied to the Y coordinate, but with taking into account a caveat:
contrary to the previous case, the leptons bend in axis direction. This results in a constant term in
the expression for the sum:

PY (γ?) ∼ Y+E+ + Y−E− + const (13)

Such constructed quantities for the triple coincidence BH/TCS events are constrained within
ranges of ±50 GeV ·cm (X component), and from −100 GeV ·cm to 50 GeV ·cm (Y component)
(Fig.28). The dips in distributions correspond to gaps between parts of the calorimeters’ assembly.

3.7 Acceptance and reconstruction

The coincidence trigger between all the final state particles of the reaction helps reduce the back-
ground. We suppress the background from the two-pion photoproduction by setting a cut on the
two leptons energy of 300 MeV. The exclusivity of the reaction is ensured by detecting all final-
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state particles, e+e−p and cutting on the missing-particle kinematics. We use an 11 GeV energy
electron beam incident on 10% radiator to produce high intensity real photons (see Section 3.2).
Highly collimated photons will interact with transversely polarized protons (solid ammoniaNH3)
yielding luminosities up to L = 1035 cm−2 sec−1. A pair of electromagnetic NPS-type calorimeters
will be used for detection of leptons, determination of their energies, and for e/π separation. A
pair of recoil detectors will be used to detect protons. These detectors will be combined Hall C
basic electronics and DAQ. The experimental setup is shown in Fig. 16.

The generated lepton and proton tracks are traced through the magnetic field of the target, then
scattering chamber window up to the detectors at 1.5 m distance from target. As target field is ori-
ented sideways relative to the beam direction, the tracks are deflected up and down. The track
bending happens close to the target, for the field being localized within ∼15 cm space at target.
The fringe fields do not affects significantly the tracks. The high momentum electrons deflect by
only∼ 2◦. While for protons, with momenta from 0.3 to 1.5 GeV/c the bending angle is∼ 15◦−30◦,
typically, and may reach 45◦.

Positions and sizes of the lepton and proton detectors and trackers are chosen to match the
outgoing track directions (see Sections 3.1, 3.5, 3.4). We display in Fig.29 the t-distribution of
accepted events applying a tagging of the two leptons only (left pane, blue curve), and applying
in addition a tagging of the proton (left panel, red curve). The ratio of the curves (right panel)
illustrates the impact on the acceptance of the proton tagging.
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CPS photon beam on UVA trans.pol. target, Edep in top calorimeters
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Figure 23: Background energy deposition in the Top calorimeters. The energy deposition in the Bottom
calorimeters has similar distribution.
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Figure 24: Background rates in the modules of Top calorimeters. Hits with deposited energies greater than
200 MeV are counted. The pattern in the Bottom calorimeters is similar.
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Figure 25: Background rates in the paddles of Top X hodoscopes. The scintillator paddles are 1 cm thick, 4
cm wide. Hits with deposited energies greater than 1 MeV are counted. Rates in the Bottom X hodoscopes
are similar.

Figure 26: Lepton momenta of Bethe-Heitler events within acceptance of the TCS setup. Left: Sum of the
momenta. Right: electron momentum versus positron momentum. The dashed lines indicate thresholds on
the electron and positron momenta greater than 1 GeV, and sum of the two greater than 5 GeV.
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Figure 27: Background coincidence events in the calorimeters. Left: energy deposition in the top calorime-
ter versus energy deposition in the bottom calorimeter. Right: same for events surviving threshold cuts on
the deposited energies.

Figure 28: Weighted by deposited energy coordinates of hit clusters from leptons hitting the calorimeters,
for BH/TCS events detected in the setup. Left: sum of the weighted X coordinates from top and bottom
calorimeters. Right: same for the Y axis. See text for details.
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Figure 29: Left panel: the −t distributions for events with the decay leptons within the detectors’
acceptance (blue curve), and in addition the recoil proton in the acceptance (red curve). Right
panel: the ratio of the two cases. The energy of bremsstrahlung photon beam is in the range from
5.5 GeV to 11 GeV. Kinematic cuts 4 GeV 2/c2 < Q′2 < 9 GeV 2/c2, −t > 0.2 GeV 2/c2, −t/Q2 < 0.3
are applied.
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4 Simulations and analysis

4.1 Event generator for the beam and target polarized TCS+BH reaction

We developed an event generator based on the formalism presented in 2.1. The generator webpage
is hosted in [51], with a public version available. We generated events initiated from a real photon,
the energy distribution being rescalled following a bremstrahlung spectra. At the generation level,
we assume 100% polarization of the initial electron and 100% polarization of the target, which can
be rescaled by measured values of dilution factors at the analysis level. We set the polarization of
the target being along the x-axis, and we rotate randomly the reaction plane for taking into account
the φS dependence of the reaction. The events are generated in the following kinematic range:

• 7.5 < Eγ<10.5 GeV,

• 4 < Q’2 < 9 GeV2,

• .04 < -t < 0.8 GeV2,

• 40◦ < θ < 140◦,

• 0◦ < φ < 360◦,

• 0◦ < φS < 360◦.

Fig. 30 shows the correlations between t, Q’2 and ξ for all generated events.
These simulations are used for all projection studies in the following. Events are weighted

according to the unpolarized and polarized TCS+BH, BH "only" and TCS "only" cross sections
for the purpose of systematic studies. TCS is calculated using GPDs H and H̃ , using the same
parametrization than other calculations in this document. Unpolarized, beam or target polarized
TCS+BH cross sections are used for the projection of experimental uncertainties. We generated
200M events and obtained over 103 generated events/bin for all projections, therefore we can ne-
glect the uncertainties coming from the simulations in the following.

Some studies in the setup section are done with the genTCS [52] event generator, which uses
bremsstrahlung photons from a 11 GeV primary electron beam within the energy range 5.5 – 11
GeV , a point-like target, and with invariant masses of the lepton pairs in the resonance-free region
between 2 and 3 GeV.

4.2 Angular correlations and interpretations

4.2.1 BH angular distributions

The angular dependence of the lepton pair production can be understood with the BH propaga-
tors of eq.6. In the lab frame or in the γN CM frame, if one of the leptons is emitted along the
beam direction, one of the terms becomes very large. At these limits, one of the two BH diagrams
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Figure 30: Top left: -t as a function of ξ, top right: Q’2 as a function of ξ, bottom left: Q’2 as a func-
tion of -t. The beam energy has been limited to 7.5 < Eγ<10.5 GeV. The weights are proportionnal
to the unpolarized cross section.
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is largely dominant compared to the other one. One of the leptons takes most of the energy of
the virtual photon and is emitted at very low angle (∼ 0◦), while the other one is emitted at large
angle (∼ 180◦) with a very low momentum. The cross section drastically increases next to these
limits and sharp peaks are observed in angular distributions. Azimuthal distributions (φ) are also
strongly affected by this effect: one lepton going in the beam direction forces all particles to be
emitted in the same plane (see Fig. 6). The impact of this correlation between θ and φ is illus-
trated in Fig. 31, presenting distributions in φ, where θ has been integrated in asymmetric ranges
over θ (one diagram dominates). At these kinematics, the BH peaks are at θ ∼ 20◦ and θ ∼ 160◦,
explaining that the curve corresponding to 20◦ < φ < 30◦ presents the largest cross section. In
the perspective of experimental measurements, integrating calculations over a symmetric range
around θCM = 90◦, away from BH peaks, presents the advantage of having the same contribution
from the two diagrams in the integrated cross section while enhancing the statistic in each bin for
displaying distributions in other variables in the data.
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Figure 31: BH cross section as a function of φ at Q′2 = 5 GeV2, -t=0.3 GeV2, Eγ=9.5 GeV, and
integrated over θCM on various ranges (colored curves).

We expressed the cross sections as a function of the virtual photon CM frame electron angles φ
and θ (eq. 2). The angle φ is conserved in the boost from γN C.M. frame to γ∗ rest frame, while θ is
not conserved. It is correlated to θlab for a given Θγγ∗ angle (the angle between incoming and out-
going photon). At Θγγ∗ larger than zero, the position of the peaks in the θCM distribution therefore
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depends on the kinematics (Eγ , t, Q’2). The correlation between Θγγ∗ and t at fixed Eγ and the Θγγ∗

dependence of the unpolarized cross section is displayed in Fig. 32. At small Θγγ∗ (tmin limit), the
peaks are observed for θ → 0◦ and θ → 180◦.
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Figure 32: Distribution in -t versus θγγ∗ (left panel, at Q’2=5 GeV2) and BH cross section as a
function of θγγ∗ (right panel, at -t=0.3 GeV2 and Q’2=5 GeV2). Both curves are calculated at Eγ=9.5
GeV. for 0 < φCM < 360◦ and 45◦ < θCM < 135◦.

4.2.2 Solutions for the analysis

With limited data statistics and resolution effects, measuring TCS+BH in the BH peak regions
would induce very large systematic uncertainties due to the very fast variations of the cross sec-
tions. To reproduce experimental conditions (limited statistics, broad kinematic range) and obtain
numerically the position of the BH peaks, we computed BH cross sections as a function of θ for
several fixed values of Eγ , t and Q’2. We integrated the cross sections over φwith a limited number
of steps (numerical integration in Gaussian quadrature starting from the lower edge of the bin).
We perfomed calculations and compared the results for two values of θ symmetric around θ = 90◦,
with 5◦ steps: by instance we compare the results for 85◦ and 95◦, for 80◦ and 100◦, etc.. The results
are the same for the 2 symmetric values in θ until approching the peaks. We defined values of θmin
and θmax, for which between these limits, the compared results have less than 5% differences. We
reproduced the same exercise for different values of Eγ , t and Q’2. Values of θmax for Eγ = 9.5

GeV, as a function of −t and Q′2 are displayed on Fig. 33. We reproduced the same exercise by
integrating cross sections over different ranges in φCM (0±10◦, 0 ± 20◦, 180◦ ± 30◦, etc.). We con-
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clude that the peaks can be avoided by 2-dimensional cuts in φCM and θCM , which we appy in our
projections, such as:

• if (θCM<θmin and 150◦ < φCM < 210◦), the event has to be rejected,

• if (θCM>θmax and −30◦ < φCM < +30◦, the event has to be rejected,

• otherwise the event can be kept and results can be fitted with reasonable systematic errors.

t (GeV^2)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

m
a
x

θ

110

120

130

140

150

160

170

2
=3.8 GeV

2
Q’

2
=4.9 GeV

2
Q’

2
=6.0 GeV

2
Q’

2
=7.1 GeV

2
Q’

2
=8.2 GeV

2
Q’

2
=8.9 GeV

2
Q’

 (GeV^2)2Q’

4 5 6 7 8 9

m
a
x

θ

110

120

130

140

150

160

170

2
t=.12 GeV

2
t=.22 GeV

2
t=.37 GeV

2
t=.52 GeV

2
t=.67 GeV

2
t=.82 GeV

Figure 33: Values of θmax for a fixed beam energy Eγ = 9.5 GeV, as a function of t for different
values of Q′2 (left panel) and as a function of Q′2 for different values of −t (right panel). See text
for details.

Further studies on angular correlations, impact on lepton kinematics and exclusivity can be
found in [53].

4.3 Final particle distributions at vertex

As a consequence of the BH cross section behavior, it is not possible to determine the best position
of the calorimeters and the recoil detector based solely on the expected counting rates. Indeed,
the cross section can be very large for some specific angles and momentum of the final particles,
but the asymmetry and the TCS/BH rate may be small. We studied the angular and momentum
dependence of the unpolarized cross section, the TCS/BH rate and the size of the asymmetries.
Fig. 34 compares the 2D distributions of the electron and the proton momentum polar angle in the
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lab frame (without deflection) with different event weighting. We weighted the events by factors
proportional to the unpolarized cross section (left column), to the TCS/BH rate (central column)
and to the size of the transverse spin asymmetries (right column). The positions of the detectors
in the setup we are proposing allow for a fair balance between counting rates and the size of the
asymmetries, and allow for impact on extracting the CFFs, as shown in Sec. 2.4.

4.4 Dilution factors

The JLab electron beam polarization is assumed to be larger than 85%. In addition, we calculated
the secondary bremsstrahlung photon transfer factor to be from 85% (7.5 GeV photons) to 100% (11
GeV photons) as shown in Fig. 35. On average, we estimate a photon beam polarization transfer
factor of ∼75%.

From counting the number of polarized protons in the target material, we estimate the target
polarization dilution factor to be ∼27% in the case of a detected recoil proton. The detection of the
proton is improving the dilution factor by suppressing some of the high momentum protons in
nitrogen.

The dilution factors are not included in the following section (projections, 4.6) and will be our
main systematic uncertainty for the asymmetry measurements.

4.5 Systematic uncertainties and background contribution

In the SANE experiment [45], which used the UVA polarized target, the biggest contribution to
systematic uncertainties came from target polarization (5%). The uncertainty is due to NMR mea-
surement of the polarization. SANE experiment estimated a 2% uncertainty on the target dilution
factor. In a similar way as was done for the SANE experiment, we will measure the packing frac-
tion for each load of the target during the experiment.

Another source of systematic error can be π+π− background. The pion suppression in the elec-
tromagnetic calorimeters is on the order of 103 to 104, typically. A study of e+e−/π+π− ratios and
pion discrimination for measurements of the e+e− continuum is currently performed by the GlueX
collaboration. This work is intended to study resonances such as J/Ψ in the γP → e+e−P ′ reaction,
and includes studies of the continuum region for a lepton pair mass above 1.5 GeV. It estimates
∼30% contribution of π+π− events at maximum using analysis cuts at 2σ of GlueX calorimeter
resolution [54]. The rates strongly depend on the analysis cuts. These results have been obtained
for a significantly lower luminosity, and for a different spectrometer acceptance. We will perform
a detailed study with the real data from cross section measurements, and by means of simulations.
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weights cross section∝  weights TCS/BH rate∝ weights  A∝
UT

Figure 34: Distribution of momentum versus θlab for the scattered electron (top row) and the
recoil proton (bottom row), weighted by factors proportionnal to the unpolarized cross section (left
column), the TCS/BH rate (central column) and the size of the transverse target spin asymmetry
(right column).
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Figure 35: Circular polarization transfer for bremsstrahlung photons initiated from a 100% polar-
ized 11 GeV electron.

We assume the triple coincidence accidental rates being suppressed by exclusivity cuts.

Proton resonances such as ∆ will be suppressed by cuts of exclusive kinematics in the proton
reconstruction with the recoil detector. A similar study using a recoil proton detector for COM-
PASS, at a similar kinematic, demonstrated negligible contribution (<1%) from such events. Such
resonance suppression was achieved by applying exclusivity cuts to the recoil detector informa-
tion, despite the resolutions on the proton momentum and energy were broad [55, 56].

A systematic associated with the beam polarization will enter into the beam spin asymmetry
measurements, and can be assumed at a percent level.

Other backgrounds include gamma conversion and π0 events, which can be estimated from
simulations.

4.6 Experimental projections

We applied the following phase space and analysis cuts on our simulations:

• 7.5 < Eγ < 11 GeV (from correlations, we obtain .1 < ξ < .45),

• 4 < Q’2 < 9 GeV2,

• 0.04 < -t < 1.04,

• 40◦ < θ < 140◦ in addition to the cut θmin,max as explicited in section 4.2.2,
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• 0◦ < φ < 360◦,

• 0◦ < φS < 360◦,

• p(p) > 0.1 GeV,

• E( e+ or e−) > 0.7 GeV,

• (E(e+) + E(e−)) > 5 GeV,

• tagging of the 2 leptons and the proton,

• acceptance cut at the calorimeters level: ±4 cm vertical band from the middle.

We defined bins in -t, ξ and Q′2 as presented in Fig. 36 for the unpolarized and beam polarized
cross sections. A total of 8 kinematic bins is defined. For each of these bins, we use 16 bins in φ,
with additional 16 bin in φS for transversely target polarized dependent cross sections. We inte-
grated over θ.

We optimized the binning in ξ and -t which is important for CFFs extraction by balancing
statistics and narrow widths. For the first -t bin (-t<0.2 GeV2), we have 2 bins in ξ: 0.1<ξ<0.15 and
0.15<ξ<0.22. For the second and third -t bins (0.2<-t<0.35 GeV2 and 0.35<-t<0.7 GeV2), we have 3
bins in ξ: 0.1<ξ<0.15, 0.15<ξ<0.22 and 0.22<ξ<0.3. Despite the proton detection is limited for -t<0.2
GeV2 due to the magnetic field, we display this region in our projections. We base our observations
and interpretations on the 2 largest -t bins.

We have cut the central ±4 cm vertical band in the middle of the calorimeters in order to avoid
the high background rates in this region. The impact on counting rates is an overall reduction of
∼15%. The asymmetries are not significantly affected by this cut nor the physics impact of the
measurements.

We applied a photon energy cut such as 7.5<Eγ<11 GeV in following projections. The phase-
space after the θmin,max cut is narrow below these energies, however events from lower energy
photons will be measured.

We display in Fig. 37 a projection of the counting rates for the unpolarized cross section, af-
ter applying all cuts and acceptance. The shape of the curves in the lowest -t bin is explained by
the phase space cut in (θ, φ), affecting the peaks at φ = 0 and φ = π. We display in Fig. 38 the
beam spin asymmetries with the expected statistic uncertainties. Fig. 39 presents the AUx and AUy
asymmetries using the same binning For a selected kinematic, we display in Fig. 40 the transverse
target spin asymmetries as a function of φ in φS bins. Additional projections can be found in Ap-
pendix B. Each set of 2 orthogonal transverse spin asymmetry (first row versus second row, same
column) provides independent information and will be fitted simultaneously to extract the CFFs.
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By combining the uncertainties, it leads to reasonable errors on the CFFs. We notice that the size of
2 orthogonal asymmetries is strongly correlated: for instance, the larger AUX is, the smaller AUY .
Therefore, small asymmetries in one φS bin is not reflecting a lack of sensitivity to CFFs when com-
bining all φS bins. This effect is also visible in the figure of merits (next section, 4.7). It is enhanced
at low ξ.

  

3 bins in ξ and Q'²

1) 0.1 < ξ < 0.15, 4 < Q'² < 5.5 GeV²

2) 0.15 < ξ < 0.22, 4 < Q'² < 7 GeV²

3) 0.22 < ξ < 0.3, 4.5 < Q'² < 9 GeV²

3 bins in -t

1) 0.04 < -t < 0.2 GeV²

2) 0.2 < -t < 0.35 GeV²

3) 0.35 < -t < 0.7 GeV²

Total: 8 bins in ξ, t, Q'²

Figure 36: Phase space binning for the TCS+BH analysis in ξ and Q’2 (left) and in ξ and -t (right).
A total of 8 kinematic bins is used for the analysis.
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Figure 37: Projection of number of events in each bin for 16 bins in φ. Calculated from unpolarized
cross sections corrected by the acceptance, after applying all cuts. Events are weighted by BH
"only" rates (red), BH+TCS rates (dark blue) and TCS "only" rates (light blue, very low rates). The
different panels correspond to various kinematic bins, indicated in the figures. The counts and
the statistic uncertainties are represented and correspond to an integrated photon luminosity of
5.85 ∗ 10e5 pb−1 for 5.5 < Eγ < 11 GeV. The projections include acceptance, phase-space cuts,
momentum thresholds and a Eγ > 7.5 GeV cut. Our interpretations are based on projections for
−t > 0.2 GeV2 only (2d and 3d rows) due to magnetic field effects and the limited acceptance at
smaller -t. The stronger effect of the phase-space cuts for −t < 0.2 GeV2 is the reason for the φ
distribution shapes being different than for the other bins.

57



  

0.1 < ξ < 0.15 0.15 < ξ < 0.22

-t  < 0.2 GeV²

0.2 < -t  
< 0.35 GeV²

0.35 < -t 
< 0.7 GeV²

0 π φ  2π 0 π φ  2π

0 π φ  2π 0 π φ  2π 0 π φ  2π

0 π φ  2π 0 π φ  2π0 π φ  2π

+ BH+TCS
circularly polarized
beam spin asymmetry

(with stat. uncertainties)A
U

⊙
A

U
⊙

A
U

⊙

0.22 < ξ < 0.3

Figure 38: Projection of the single circularly polarized beam spin asymmetries in each bin as a
function of 16 bins in φ. The different panels correspond to various kinematic bins, indicated in the
figures. Statistic uncertainties are represented and correspond to an integrated photon luminosity
of 5.85 ∗ 10e5 pb−1 for 5.5 < Eγ < 11 GeV. The projections include acceptance, phase-space cuts,
momentum thresholds and a Eγ > 7.5 GeV cut. The ∼75% beam polarization transfer factor (in
average) is not included. Our interpretations are based on projections for −t > 0.2 GeV2 only (2d

and 3d rows) due to magnetic field effects and the limited acceptance at smaller -t.
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Figure 39: Projection of the single transversely polarized target spin asymmetries for φS = 0◦

(blue) and φS = 90◦ (red), as a function of 16 bins in φ. Statistic uncertainties are represented and
correspond to an integrated photon luminosity of 5.85 ∗ 10e5 pb−1 for 5.5 < Eγ < 11 GeV. The
projections include acceptance, phase-space cuts, momentum thresholds and a Eγ > 7.5 GeV cut
(see section 4.6). Systematic uncertainties and the 27% target polarization dilution factor are not
included. Our interpretations are based on projections for −t > 0.2 GeV2 only (2d and 3d rows)
due to magnetic field effects and the limited acceptance at smaller -t.
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Figure 40: Projection of the single transversely polarized target spin asymmetries in bins of φS
(different panels), as a function of 16 bins in φ and for 0.15 < ξ < 0.22 and 0.2 < −t < 0.35
GeV2. Statistic uncertainties are represented and correspond to an integrated photon luminosity
of 5.85 ∗ 10e5 pb−1 for 5.5 < Eγ < 11 GeV. The projections include acceptance, phase-space cuts,
momentum thresholds and a Eγ > 7.5 GeV cut. Systematic uncertainties and the 27% target
polarization dilution factor are not included. Our interpretations are based on projections for−t >
0.2 GeV2 only (2d and 3d rows) due to magnetic field effects and the limited acceptance at smaller
-t.
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4.7 Figures of merit

We defined the figures of merit for the asymmetries as

F.O.M. = N ∗A2, (14)

where N is the number of events including the acceptance and analysis cuts, and A2 the size of
the asymmetry. We neglect the background contribution and polarization transfer factor in this
definition. We display Fig. 41 the F.O.M. for the beam spin asymmetries. The binning for the
F.O.M. is defined in the same way as for Fig. 38. The target spin asymmetries F.O.M. are displayed
Fig. 42 for one reference kinematical bin. The binning for this figure is defined in the same way as
for Fig. 40. The figures for other kinematical bins are presented in appendix B.
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Figure 41: Figures of merit for the single circularly polarized beam spin asymmetries in each bin
as a function of 16 bins in φ. The different panels correspond to various kinematic bins, indicated
in the figures. These results correspond to an integrated luminosity of 5.85 ∗ 10e5 pb−1.
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Figure 42: Figures of merit for the single transversely polarized target spin asymmetries in bins
of φS (different panels), as a function of 16 bins in φ and for 0.15 < ξ < 0.22 and 0.2 < −t < 0.35
GeV2. These results correspond to an integrated luminosity of 5.85 ∗ 10e5 pb−1.
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5 Beam time request

We request a total of 52 days, of which 16 calendar days for activities without beam, and 35 PAC
days for commissioning and physics data taking. Our request is based on the following needs:

• Setup and installation in Hall C: 5 calendar days,

• Initial signal and electronics checkout (without the beam): 5 calendar days,

• Gain matching of the detectors’ channels (with gain monitoring system): 1 calendar day,

• Commissioning with the beam: 5 PAC days,

• Physics measurement: 30 PAC days,
with an 11 GeV, 2.5 µA electron beam and the UVa/JLab NH3 polarized target. We request a
longitudinally polarized electron beam of polarization > 85%.

• Target and experiment apparatus configuration change:
- target annealing: 1 calendar day,
- recovering PbWO crystals: 1 calendar day.

• Decommissioning: 3 calendar days.
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6 Conclusion

We presented our project aiming at the measurement of the TCS+BH reaction. We will measure the
unpolarized cross section, cross section of circularly polarized photon beam, and cross section of
transversely polarized proton. This measurement will be held at the Jefferson Laboratory Hall C
experimental facility, using a real photon source (Compact Photon Source, CPS), electromagnetic
calorimeters as for the Neutral Particle Spectrometer (NPS), recoil proton detectors, and using a
transversely polarized target (NH3 UVa/JLab target). The main physics goals of this experiment
are:

• Extraction of the CFF =E of the proton at the same level as achievable from DVCS exper-
iments. This result will allow constrain the quark angular momenta and contribute to the
understanding of the nucleon’s partonic spin structure.

• Study of GPD universality and higher twist effects thanks to a unique comparison of results
from a spacelike process (DVCS, in other experiments) and a timelike process (TCS, this
experiment). The expected level of precision on extracted CFFs compared to other approved
TCS experiments [2, 1] is one order of magnitude better on GPD H.

• Complementarity with DVCS measurements and the possibility of combined CFF extraction
from TCS and DVCS observables simultaneously. TCS observables bring new independent
information, allowing for an extraction of all the proton quark CFFs at the same time, and
for constraining GPD models.

We will take advantage of the development of the approved NPS project [15]. The main hardware
development that are required are:

• A second electromagnetic calorimeter similar to the NPS one,

• A scintillator hodoscope based recoil proton detector.

We anticipate a need of 30 days of beam for the physics data taking (see section 5), with a photon
luminosity of 1035 photons/cm2/s, which corresponds to 5.85∗105 pb−1 integrated luminosity for
5.5 to 11 GeV real photons.
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A Details about CFF fitting method

All the distributions we generated and used for extracting the CFFs are shown on Fig. 43 (DVCS+BH)
and 44 (TCS+BH). Rather than directly fitting the CFF, we extract coefficients of the generated CFFs
values from these observables. The coefficients are set to 1 when the generated value is recovered.
We limit the variation of all the coefficients during the minimization procedure to stay in a range of
[−5,+5], in order to force underconstrained fits to converge. The impact of limitating the variation
of the coefficients on uncertainties and on correlation between the extracted CFFs is discussed in
[57]. As shown on Fig. 45, the result of the fit (mean value) has a dependence on the starting point
and fluctuates around the generated value. However, the ±1σ limits of the result are stable. To
check if CFFs can be extracted from actual data, we also smear the generated cross section points
within 1σ of the uncertainties. Similarly, we started the fits from random values of the coefficients.
We obtained broader distributions of the results and their limits, with a resolution including the
uncertainties on the observables and the correlation between the different CFFs (Fig. 46).

We fitted the results of the fits (CFF value and 1σ errors) by Gaussian functions. When a given
CFF can be extracted from a specific set of observables, we found stable results and allocated the
fitted 1σ limits as uncertainties on extracted CFFs. To avoid overcounting the uncertainties on
CFFs and in our goal of comparating DVCS and TCS, we used the unsmeared distributions of
pseudo-data for this exercise.
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Figure 43: Generated distributions for DVCS+BH process. First row: unpolarized cross section,
beam spin cross section difference, beam charge cross section difference. Second row: single target
spin cross section differences (target spin along x, y, z). Third row: double spin cross section
differences (target spin along x, y, z).
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Figure 44: Generated distributions for TCS+BH process. First row: unpolarized cross section,
circularly polarized beam spin cross section difference, longitudinaly polarized beam cross section
difference. Second row: target polarized cross section differences (target spin along x, y, z). Third
row: double beam and target polarized cross section difference (target spin along x, y, z).
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Figure 45: Result for =H̃ of fitting 100 times the same distribution starting from a random value
for all CFF coefficients in [−5,+5]. We fitted simultaneously DVCS+BH unpolarized cross sec-
tion, beam spin and longitudinal target single and double polarized cross section differences. We
assumed uncertainties of 5%/bin and 7%/bin for the unpolarized and polarized cross sections,
respectively, for 16 bins in φ.

69



CFF

5− 4− 3− 2− 1− 0 1 2 3 4 5

N
 f

its

0

10

20

30

40

50

60

70

80
 / ndf 2χ 08 / 0− 3.471e

Constant  9.66± 81.64 

Mean      0.0106± 0.8676 

Sigma     0.00636± 0.09462 

CFF

5− 4− 3− 2− 1− 0 1 2 3 4 5
N

 f
its

0

10

20

30

40

50

60

70

80
 / ndf 2χ 07 / 0− 1.588e

Constant  9.93± 87.37 

Mean      0.011± 1.076 

Sigma     0.00553± 0.08635 

 
 

coeff CFF (mean)

Figure 46: Top: Minimal (left) and maximal (right) limits of =H̃ extracted from fitting 100 times
smeared distributions of the same observables, and starting from a random value for all CFF co-
efficients in [−5,+5]. Bottom: fit result (central value) for the same distributions. We fitted si-
multaneously DVCS+BH unpolarized cross section, beam spin and longidutinal target single and
double polarized cross section differences. We assumed uncertainties of 5%/bin and 7%/bin for
the unpolarized and polarized cross sections, respectively, for 16 bins in φ.
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B Additional experimental projections

B.1 Projections: transverse target spin asymmetries in kinematic bins

Fig. 47 to 54 present the transverse target spin asymmetries as a function of φ and φS for different
kinematic bins. For all these figures, we took account the acceptance of the setup (section 3.7. We
applied the analysis, acceptance and phase-space cuts as described in section 4.6. For each figure
sub-panel, the statistic uncertainties are represented and correspond to an integrated luminosity
of 5.85 ∗ 10e5 pb−1 for photons such as 5.5 < Eγ < 11 GeV. Our observations and interpretations
are based on the results for −t > 0.2 GeV2 only, as for lower -t we may be biased by the magnetic
field effects and smaller acceptance.
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Figure 47: Projection of the single transversely polarized target spin asymmetries in bins of φS
(panels), as a function of 16 bins in φ and for 0.1 < ξ < 0.15 and 0.04 < −t < 0.2 GeV2. Statistic
uncertainties are represented. Systematic uncertainties and the 27% target polarization dilution
factor are not included.
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Figure 48: Projection of the single transversely polarized target spin asymmetries in bins of φS
(panels), as a function of 16 bins in φ and for 0.15 < ξ < 0.22 and 0.04 < −t < 0.2 GeV2. Statistic
uncertainties are represented. Systematic uncertainties and the 27% target polarization dilution
factor are not included.
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Figure 49: Projection of the single transversely polarized target spin asymmetries in bins of φS
(panels), as a function of 16 bins in φ and for 0.1 < ξ < 0.15 and 0.2 < −t < 0.35 GeV2. Statistic
uncertainties are represented. Systematic uncertainties and the 27% target polarization dilution
factor are not included.
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Figure 50: Projection of the single transversely polarized target spin asymmetries in bins of φS
(panels), as a function of 16 bins in φ and for 0.15 < ξ < 0.22 and 0.2 < −t < 0.35 GeV2. Statistic
uncertainties are represented. Systematic uncertainties and the 27% target polarization dilution
factor are not included.
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Figure 51: Projection of the single transversely polarized target spin asymmetries in bins of φS
(panels), as a function of 16 bins in φ and for 0.22 < ξ < 0.3 and 0.2 < −t < 0.35 GeV2. Statistic
uncertainties are represented. Systematic uncertainties and the 27% target polarization dilution
factor are not included.
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Figure 52: Projection of the single transversely polarized target spin asymmetries in bins of φS
(panels), as a function of 16 bins in φ and for 0.1 < ξ < 0.15 and 0.35 < −t < 0.7 GeV2. Statistic
uncertainties are represented. Systematic uncertainties and the 27% target polarization dilution
factor are not included.
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Figure 53: Projection of the single transversely polarized target spin asymmetries in bins of φS
(panels), as a function of 16 bins in φ and for 0.15 < ξ < 0.22 and 0.35 < −t < 0.7 GeV2. Statistic
uncertainties are represented. Systematic uncertainties and the 27% target polarization dilution
factor are not included.
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Figure 54: Projection of the single transversely polarized target spin asymmetries in bins of φS
(panels), as a function of 16 bins in φ and for 0.22 < ξ < 0.3 and 0.35 < −t < 0.7 GeV2. Statistic
uncertainties are represented. Systematic uncertainties and the 27% target polarization dilution
factor are not included.
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B.2 Figures of merit for the target spin asymmetry in kinematic bins

We dispay Figs. 55 to 62 the figures of merit of the transverse target spin asymmetry, as defined in
section 4.7, for the 8 kinematic bins.
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Figure 55: Figures of merit for the single transversely polarized target spin asymmetries in bins of
φS (different panels), as a function of 16 bins in φ and for 0.1 < ξ < 0.15 and −t < 0.2 GeV2.
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Figure 56: Figures of merit for the single transversely polarized target spin asymmetries in bins of
φS (different panels), as a function of 16 bins in φ and for 0.15 < ξ < 0.22 and −t < 0.2 GeV2.
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Figure 57: Figures of merit for the single transversely polarized target spin asymmetries in bins of
φS (different panels), as a function of 16 bins in φ and for 0.1 < ξ < 0.15 and 0.2 < −t < 0.35 GeV2.
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Figure 58: Figures of merit for the single transversely polarized target spin asymmetries in bins
of φS (different panels), as a function of 16 bins in φ and for 0.15 < ξ < 0.22 and 0.2 < −t < 0.35
GeV2.
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Figure 59: Figures of merit for the single transversely polarized target spin asymmetries in bins of
φS (different panels), as a function of 16 bins in φ and for 0.22 < ξ < 0.3 and 0.2 < −t < 0.35 GeV2.
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Figure 60: Figures of merit for the single transversely polarized target spin asymmetries in bins of
φS (different panels), as a function of 16 bins in φ and for 0.1 < ξ < 0.15 and 0.35 < −t < 0.7 GeV2.
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Figure 61: Figures of merit for the single transversely polarized target spin asymmetries in bins
of φS (different panels), as a function of 16 bins in φ and for 0.15 < ξ < 0.22 and 0.35 < −t < 0.7
GeV2.
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Figure 62: Figures of merit for the single transversely polarized target spin asymmetries in bins of
φS (different panels), as a function of 16 bins in φ and for 0.22 < ξ < 0.3 and 0.35 < −t < 0.7 GeV2.
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