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Abstract

We propose a comprehensive program to measure dihadron correlations produced in SIDIS
to investigate novel aspects of non-perturbative QCD in proton structure and hadronization.
Compared to the well-explored single-hadron observables, dihadron production has an addi-
tional degree of freedom which allows for targeted access to quark-gluon correlations in the pro-
ton, transverse-momentum dependent parton distributions (TMDs), and previously unexplored
spin-orbit correlations in hadronization via the framework of dihadron fragmentation functions
(DiFFs). The measurements are proposed to be a part of Run Group C approved experiments,
using the CLAS12 detector with an 11 GeV highly-polarized electron beam scattering off a longi-
tudinally polarized target, effectively composed of either hydrogen or deuterium in solid ammonia
(NH3 or ND3). The CLAS12 detector provides a unique opportunity for this physics program
due to its large acceptance, which allows for the simultaneous detection of the scattered elec-
tron and dihadron. Target spin asymmetries in dihadrons, as well as double spin asymmetries,
are sensitive to spin-orbit correlations in hadronization, as well as TMDs and collinear twist-3
parton distributions; these measurements, combined with recent beam spin asymmetries mea-
surements at CLAS12, allow for a cleaner interpretation of their constraints on distribution and
fragmentation functions. A comparison of these asymmetries from the hydrogen target to those
from the deuterium target is sensitive to the flavor dependence of these distributions. Moreover,
the detection of target fragments will allow for the extension of the program into the target
fragmentation region. An analysis of correlations between a hadron produced in the target frag-
mentation region with a hadron in the current fragmentation region is sensitive to the fracture
functions, which encode the probability of finding a parton in a nucleon fragmenting into a par-
ticular hadron. A wide range of fracture functions is accessible in target spin, beam spin, and
double spin asymmetries of this class of dihadrons. The large acceptance at CLAS12 provides
a unique opportunity for several dihadron correlation measurements, and a polarized target ex-
tends the program, broadening our overall understanding of the nucleon and the dynamics of its
constituents.
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I. Introduction

In recent years, measurements of azimuthal moments of polarized hadronic cross sections in hard processes
have emerged as powerful probes of the nucleon structure. Many experiments worldwide are currently
trying to pin down various effects related to the nucleon structure through semi-inclusive deep-inelastic
scattering. In fact, the partonic structure of the nucleon and other fundamental aspects of QCD as well
as the hadronization processes are at the core of the physics program that motivated the 12 GeV upgrade
as well as the future EIC. Azimuthal distributions of final state particles in semi-inclusive deep inelastic
scattering, in particular, are sensitive to the orbital motion of quarks and play an important role in the
study of transverse momentum distributions (TMDs) of quarks in the nucleon and spin orbit correlations in
hadronization. For an overview see Refs. [1, 2].

The primary focus of the measurements in this proposal aims at extracting the twist-3 distribution func-
tions e(x) and hL(x) from longitudinal spin asymmetries; the motivation and procedure are outlined in
section II. The twist-3 distributions e(x), hL(x), and gT (x), together with the better known twist-2 func-
tions f1(x), g1(x) and h1(x), completely describe the nucleon structure in a collinear picture up to twist-3.
Experimental evidence suggests that they are of sizable magnitude and observables are of similar size as
for leading twist quantities at JLab kinematics [3, 4]. They have strong connections to TMDs but contain
additional information about non-perturbative QCD dynamics inside the nucleon.

Longitudinal spin asymmetries are also sensitive to dihadron fragmentation functions, in particular to the
helicity-dependent fragmentation function G⊥1 , discussed in section III. Measuring target spin asymmetries,
in addition to beam spin asymmetries, will help constrain G⊥1 . Furthermore, spin asymmetries are sensitive
to the partial wave expansion of the dihadron fragmentation functions, which can shed light on correlations
between fragmenting quark polarization and the final state angular momentum of the dihadron.

Another aim of this proposal is to explore correlations between the current and target fragmentation
regions to access fracture functions. Recent theoretical work [5] highlighted that the knowledge of these
functions is essential to understand particle production over a large part of the kinematical phase space
covered by the JLab DIS experiments. The related measurements are discussed further in section IV.

Section V follows through with a description of the experiment and the analysis technique. Section VI
starts by highlighting recent measurements relevant to this proposal, and ends with statistical projections of
the proposed measurements. Finally, the summary is given in section VII.

We note that this proposal is in large part an update of [6], a PAC38 proposal. This proposal was deferred
in favor of higher priority measurements for the first 5 years of 12 GeV operations, but now it is time to
revisit the possibility of the proposed measurements. We propose that these measurements take place during
Run Group C, in parallel with approved experiments [7–12].
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N/q U L T

U f⊥ g⊥ h ,e

L f⊥L g⊥L hL ,eL

T fT , f⊥T gT , g⊥T hT ,eT ,h⊥T , e⊥T

TABLE I. Twist-3 transverse momentum dependent distribution functions. The U,L,T correspond to unpolarized,
longitudinally polarized and transversely polarized nucleons (rows) and quarks (columns)

II. Collinear dihadron production in the current fragmentation region at twist-3

A. Introduction

Recent theoretical progress on twist-3 TMDs, clarifying the connection to twist-2 TMDs as well as elu-
cidating their connection to quark-gluon correlations [13], led to renewed interests in these quantities. At
twist-3, and before integration over transverse momentum, there are 16 distribution functions; they are
shown in table I for different combinations of target (rows) and quark (columns) polarizations. Only three
functions survive integration over transverse momentum, being collinear: e, hL and gT . Together with the
twist-2 PDFs f1, g1, and h1, they give a detailed picture of the nucleon in longitudinal momentum space.
The main goal of the present proposal is to access the distributions e and hL.

Higher twist functions are of interest for several reasons. Most importantly they offer insights into the
physics of the largely unexplored quark-gluon correlations, which provide direct and unique insights into the
dynamics inside hadrons, see for example [14]. They describe multiparton distributions corresponding to
the interference of higher Fock components in the hadron wave functions, and as such have no probabilistic
partonic interpretations, yet they offer fascinating doorways to studying the structure of the nucleon. The
x2-moment1 of the twist-3 function e(x) describes the average transverse color force acting on a transversely
polarized quark, in an unpolarized nucleon [15]. The x2-moment of hL(x) vanishes, but the higher-order
x3-moment describes the average longitudinal gradient of the transverse force that acts on a transversely
polarized quark; the sign of this gradient will help to study correlations between the nucleon spin and its
color magnetic field [16].

Higher twist contributions are also indispensable to correctly extract twist-2 parts from data. Although
suppressed with respect to twist-2 observables by 1/Q, twist-3 observables are not small in the kinematics of

fixed target experiments. This is illustrated by the fact that the single-hadron twist-3 asymmetry Asinφ
UL is

a large and cleanly seen effect, while the twist-2 asymmetry Asin 2φ
UL is small and compatible with zero in the

kinematics of HERMES, JLab, and COMPASS [17–21]. The theoretical description of twist-3 observables
is challenging in single-hadron SIDIS. Although lots of effort was devoted to their study [22–37], these
observables are still not well-understood. Partially, this has to do with the problem of formulating a TMD-
factorization at the twist-3 level [38, 39].

An important process which can provide complementary information on twist-3 TMDs is the dihadron
production in SIDIS described by interference functions [40–46]. In fact, the measurement of single-spin
asymmetries with a longitudinally polarized target or beam is sensitive in particular to the twist-3 chiral-
odd distribution functions e and hL, in combination with the chiral-odd interference fragmentation function
H<)

1 [44]. The interference fragmentation function has been used to obtain information on the transversity
parton distribution function [47].

One of the main sources of systematic uncertainties is the contribution from target fragmentation, which
is of its own interest and will be also studied in the proposed measurement. It was shown that the leading
order azimuthal asymmetries in the case where one of the hadrons is produced in the target fragmentation
region provide access to polarized TMD Fracture Functions, which are conditional probabilities to produce a
hadron in the target fragmentation region, when hard scattering occurs on a quark from the target nucleon
[48, 49]. The cross section for these processes in longitudinally polarized lepton scattering depends on initial
quark longitudinal polarization, even if one does not measure the final quark polarization already in leading

1 In particular, the moment of the pure twist-3 part of the distribution.
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order. The CLAS12 detector will provide the unique combination of wide kinematic coverage, high beam
intensity (luminosity), high energy, high polarization, and advanced detection capabilities necessary to study
the transverse momentum and spin correlations in dihadron production in double-polarized semi-inclusive
processes both in the target and current fragmentation regions.

B. Observables

We consider the process

`(l) +N(P )→ `(l′) + h1(P1) + h2(P2) +X, (1)

where h1 and h2 denote the produced hadrons, ` the beam lepton and N the nucleon target. The four-
momenta are given in parentheses.

In the one-photon exchange approximation and neglecting the lepton mass, the cross section for two-
particle inclusive DIS, integrated over the transverse momentum of the produced pair, can be written in the
following way [50]:

dσ

dx dy dψ dzh dφR⊥ dMh d cos θ
=

α2

xy Q2

(
1 +

γ2

2x

)
×

{
A(x, y)FUU,T +B(x, y)FUU,L +

1

2
V (x, y) cosφR⊥ F

cosφR⊥
UU +B(x, y) cos(2φR⊥)F

cos 2φR⊥
UU

+ λe
1

2
W (x, y) sinφR⊥ F

sinφR⊥
LU

+ SL

[
1

2
V (x, y) sinφR⊥ F

sinφR⊥
UL +B(x, y) sin(2φR⊥)F

sin 2φR⊥
UL

]

+ SLλe

[
C(x, y) 2FLL +

1

2
V (x, y) cosφR⊥ F

cosφR⊥
LL

]

+ |S⊥|

[
sin(φR⊥ − φS)

(
A(x, y)F

sin(φR⊥−φS)
UT,T +B(x, y)F

sin(φR⊥−φS)
UT,L

)
+B(x, y) sin(φR⊥ + φS)F

sin(φR⊥+φS)
UT +B(x, y) sin(3φR⊥ − φS)F

sin(3φR⊥−φS)
UT

+
1

2
V (x, y) sinφS F

sinφS
UT +

1

2
V (x, y) sin(2φR⊥ − φS)F

sin(2φR⊥−φS)
UT

]

+ |S⊥|λe

[
C(x, y) cos(φR⊥ − φS) 2F

cos(φR⊥−φS)

LT +
1

2
V (x, y) cosφS F

cosφS
LT

+
1

2
V (x, y) cos(2φR⊥ − φS)F

cos(2φR⊥−φS)

LT

]}
, (2)

where α is the fine structure constant, λe is the beam polarization, S is the target polarization, with
longitudinal component SL and transverse component |S⊥|. The functions A,B,C, V,W are kinematic
depolarization factors (see Appendix A), dependent on the the ratio ε of longitudinal and transverse photon
flux [51]:

ε =
1− y − 1

4 γ
2y2

1− y + 1
2 y

2 + 1
4 γ

2y2
. (3)
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Following the Trento conventions [52] all relevant angles are defined in figure 1 [43].2 The final dihadron
invariant mass Mh is assumed to be much smaller than the hard scale Q2 = −q2 ≥ 0 (q = l− l′) of the SIDIS
process, defined by kinematic variables x = Q2/2P · q, y = P · q/P · l, z = P ·Ph/P · q and γ = 2Mx/Q.
With P1 and P2 denoting the hadron momenta, Ph = P1 + P2 and R = (P1 − P2)/2 denote the pair total
momentum and relative momentum, respectively. Finally, this cross section is integrated over dihadron
transverse momentum Ph⊥, and the angle φh, defined as the angle between the lepton scattering plane and
the plane spanned by Ph and q.

The structure functions on the right hand side depend on x, Q2, z, cos θ, and M2
h . The angle θ is defined

in the center-of-mass frame of the two hadrons, where the hadron emission occurs back-to-back; it is defined
as the angle between the direction of hadron-emission and the direction of Ph from the photon-target rest
frame. The angle ψ is the azimuthal angle of `′ around the lepton beam axis, with respect to an arbitrary
fixed direction, which in the case of a transversely polarized target we choose to be the direction of S. The
corresponding relation between ψ and φS is given in Ref. [53]; in deep inelastic kinematics one has dψ ≈ dφS .
The first and second subscript of the above structure functions indicate the respective polarization of beam
and target, and if there is a third subscript, it specifies the polarization of the virtual photon.

In theoretical models, the target polarization is defined with respect to the virtual photon momentum
direction, however this definition is not practical for experiments. In practice, the target polarization is
understood with respect to the incoming electron momentum direction, a frame where the virtual photon
has a nonzero transverse momentum. The conversion of the target polarization between the two frames is
straightforward [53], and it turns out that measurements with longitudinally polarized targets with respect to
the beam receive small contributions from the structure functions with transverse polarization with respect to
the photon. Single-hadron measurements indicate that this contribution is usually negligible. This issue will
be considered with care in our analysis. For the moment, we restrict our attention only to the longitudinal
structure functions.

The relevant spin asymmetries can be built as ratios of structure functions. For the longitudinal polariza-
tion of the beam or of the target, denoted with LU and UL, one can define the following asymmetries:

AsinφR sin θ
LU (x, y, z,Mh, Q) =

1

λe

8
π

∫
dφR d cos θ sinφR (dσ+ − dσ−)∫
dφR d cos θ (dσ+ + dσ−)

=
4
π

√
2 ε(1− ε)

∫
d cos θ F sinφR

LU∫
d cos θ (FUU,T + εFUU,L)

,

AsinφR sin θ
UL (x, y, z,Mh, Q) =

1

SL

8
π

∫
dφR d cos θ sinφR (dσ+ − dσ−)∫
dφR d cos θ (dσ+ + dσ−)

=
4
π

√
2 ε(1 + ε)

∫
d cos θ F sinφR

UL∫
d cos θ (FUU,T + εFUU,L)

. (4)

In particular, this is the sinφR moment of the asymmetry. The beam spin asymmetry ALU requires a
polarized beam and an unpolarized target; if the target is polarized, data sets with each target polarization
are combined, for an effectively unpolarized target. The target spin asymmetry AUL requires a longitudinally
polarized target, and sums over the electron helicity states. Requiring both a polarized beam and polarized
target, the double spin asymmetry ALL is also of interest and similarly defined.

In the M2
h � Q2 limit3 the structure functions can be written in terms of PDF and Dihadron Fragmen-

2 From the theoretical point of view, different definitions for the azimuthal angles may be adopted, as long as they differ by
terms of order γ2.

3 For some discussion of the case of larger Mh, see Ref. [54].
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4

The quark-quark correlator Φ describes the nonpertubative processes determining the distribution of parton a inside
the spin-1/2 target (represented by the lower shaded blob in Fig. 1) and, similarly, the correlator ∆ symbolizes the
fragmentation of quark a producing two tagged leading hadrons in a residual jet (upper shaded blob in Fig. 1).

z

two-hadron plane

TS

scattering plane

y

x

l

l

0

�

h

�

S

�

R

2R

P

h

P

1

P

2

FIG. 2: Kinematics for the SIDIS of the lepton l on a transversely polarized target leading to two hadrons inside the same
current jet.

We are going to focus only on the leading twist contributions to the hadronic tensor of Eq. (5). A method to
extract these contributions consists in projecting the socalled good light-cone components out of the quark field ψ.
As it is evident from the kinematics in the infinite momentum frame, the + and the − light-cone components are the
dominant ones for the parton entering and exiting the hard vertex, respectively. They can be projected out by means
of the operators P± = 1

2γ
∓γ±. Any other component of ψ is automatically of higher twist. Therefore, the hadronic

tensor (5) at leading twist looks like

2MWµν
a = 32zTr

[

P+Φa(x, S)P̄+ γ
µ P−∆a(z, ζ,M

2
h, φR)P̄− γ

ν
]

= 32z [P+Φa(x, S)γ
+]ij [

1
2γ

−γµP−]jl [
1
2γ

+γνP+]mi [P−∆a(z, ζ,M
2
h, φR)γ

−]lm , (8)

where P̄± ≡ γ0P†
±γ

0. In the last step the Dirac indices have been explicitly indicated. In the following, we will
analyze each contribution to Eq. (8) separately.

B. The quark-quark correlator Φ

The leading-twist projection of the quark-quark correlator Φ can be parametrized in terms of the well known
distribution functions [23, 24]3

P+Φa(x, S)γ
+ = (fa

1 (x) + λga1 (x)γ5 + 2ha1(x)γ5 S/T ) P+

=







fa
1 + λga1 0 0 (Sx − iSy)h

a
1

0 0 0 0
0 0 0 0

(Sx + iSy)h
a
1 0 0 fa

1 − λga1






, (9)

where λ = MS+/P+ and ~ST = (Sx, Sy) are the light-cone helicity and transverse components of the target spin,
respectively (P+Φ corresponds to the ~pT -integrated parametrization of Eq. (2) in Ref. [6]). It is possible to rewrite

3 Other common notations are fa

1
(x) = a(x), ga

1
(x) = ∆a(x), ha

1
(x) = δa(x),∆T a(x) [4].

FIG. 1. Definitions of azimuthal angles φh, φR, and φS . The white plane is the lepton scattering plane, the red
plane is the plane spanned by the virtual photon and the dihadron total momentum, and the blue plane contains the
hadron momenta. From [43].

tation Functions (DiFF) in the following way [44]4:

FUU,T = xfq1 (x)Dq
1

(
z, cos θ,Mh

)
, (5)

FUU,L = 0, (6)

F cosφR
UU = −x |R| sin θ

Q

1

z
fq1 (x) D̃<) q

(
z, cos θ,Mh

)
, (7)

F cos 2φR
UU = 0, (8)

F sinφR
LU = −x |R| sin θ

Q

[
M

Mh
x eq(x)H<) q

1

(
z, cos θ,Mh

)
+

1

z
fq1 (x) G̃<) q

(
z, cos θ,Mh

)]
, (9)

F sinφR
UL = −x |R| sin θ

Q

[
M

Mh
xhqL(x)H<) q

1

(
z, cos θ,Mh

)
+

1

z
gq1(x) G̃<) q

(
z, cos θ,Mh

)]
, (10)

F sin 2φR
UL = 0, (11)

FLL= xgq1(x)Dq
1

(
z, cos θ,Mh

)
, (12)

F cosφR
LL = −x |R| sin θ

Q

1

z
gq1(x) D̃<) q

(
z, cos θ,Mh

)
, (13)

where

|R| = 1

2

√
M2
h − 2(M2

1 +M2
2 ) + (M2

1 −M2
2 )2/M2

h . (14)

All the structure functions that vanish can be nonzero at order O
(
M2

Q2 ,
M2
h

Q2

)
. In the above structure

functions, there are essentially three kinds of combinations of PDF and fragmentation functions (FF):5

4 A summation
∑
q e

2
q is understood, and the ~kT -integrated T -odd twist-3 distribution functions h(x) and eL(x) are omitted,

which are expected to vanish if the only source of the T -odd behavior is the gauge link.
5 Leading-twist functions are always indicated by a subscript 1.
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leading-twist PDF and FF (e.g., f1D1), leading-twist PDF and subleading-twist FF (e.g., f1D̃
<)), subleading-

twist PDF and leading-twist FF (e.g., eH<)
1 ). The structure function F sinφR

UL is of most interest in this section,
containing the twist-3 PDF hL(x).

The subleading-twist fragmentation functions D̃<) and G̃<) originate from quark-gluon correlation functions
on the fragmentation side. They vanish in the so-called Wandzura–Wilczek approximation [55]. Although
this approximation is often used in phenomenological works (see, e.g., [56–59] and references therein) there
are no compelling theoretical grounds for supporting its validity [60–63]. At present it is neither confirmed
nor disproved by experimental data [63]. The measurement of cosφR modulations in unpolarized or doubly

polarized collisions (F cosφR
UU and F cosφR

LL ) offers a way to address this question directly and represents an
example of how dihadron measurements can be useful for the study of quark-gluon correlations in general.

The most interesting terms for our purposes are the ones containing the functions e and hL, multiplied by

the interference fragmentation function H<)
1 , occurring in the structure functions F sinφR

LU and F sinφR
UL . The

extraction of the PDF is made possible by the fact that H<)
1 has been extracted [47] from Belle measure-

ments [64]. Unfortunately, the structure functions contain also another term involving the twist-3 fragmen-

tation function G̃<), although a spectator model calculation [65] predicts its magnitude to be small, except

perhaps at low x or high Mh. Measuring the double-spin asymmetry AcosφR
LL as well as evaluating the z and

Mh-dependence of the ratio AsinφR
LU /AsinφR

UL can help evaluate the relative magnitude of G̃<) [3, 66, 67].

C. Partial-wave analysis

Dihadron fragmentation functions can be decomposed in partial waves in the following way [43, 44]:

D1 → D1,ss+pp +D1,sp cos θ +D1,pp

1

4
(3 cos2 θ − 1) , (15)

G⊥1 → G⊥1,sp +G⊥1,pp cos θ , (16)

H<)
1 → H<)

1,sp +H<)
1,pp cos θ , (17)

D̃<) → D̃<)
sp + D̃<)

pp cos θ , (18)

G̃<) → G̃<)sp + G̃<)pp cos θ , (19)

where the relative partial waves of each pion pair are put into evidence. For sake of simplicity, we will make
the replacement D1,ss+pp ≡ D1 since no ambiguity arises in the following. A thorough study of the cross
section with partial-wave analysis has been recently presented in [50], with a different notation compared to
the one adopted here. The functions on the right hand side depend on z and Mh. It may be useful to note
that a symmetrization f(θ) + f(π− θ) gets rid of all the cos θ terms [68]. In general, those terms will vanish
even if the θ acceptance is not complete but still symmetric about θ = π/2.

Measuring asymmetry modulations in θ enable the ability to constrain the DiFF partial waves. In the full
generalization of [50], the DiFF partial waves are associated with angular momentum eigenvalues ` = 0, 1, 2
and m = −`, . . . , `. Each partial wave term corresponds to a particular interference between two dihadrons
which are either in the s-wave or p-wave: a dihadron in the s-wave is unpolarized, whereas one in the p-wave
has pseudovector polarization, decomposed into longitudinal and transverse components. The partial wave
with ` = 0 corresponds to the interference of two s-wave dihadrons, ` = 1 corresponds to the interference of
an s-wave dihadron with a p-wave dihadron, and ` = 2 corresponds to the interference between two p-wave
dihadrons. The value of m enumerates the possible relative polarizations of the two dihadrons for each fixed
value of `. Consequently, measuring θ-modulations of asymmetries grants access to correlations between
the fragmenting quark spin and the angular momentum of the final dihadron state. Understanding such
correlations can help shed light on production mechanisms for dihadrons with a specific angular momentum,
such as those which originate from the decay of the ρ, a vector meson.

D. Flavor structure

We now discuss the flavor structure of the structure functions. The analysis will be different depending on
the kind of target and final-state hadrons. We will consider here π+π−, K+K−, or K+π− final-state pairs.
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Isospin symmetry and charge conjugation suggest the the following relations [47]:

Du→π+π−

1 = Dd→π+π−

1 = Dū→π+π−

1 = Dd̄→π+π−

1 , (20)

Ds→π+π−

1 = Ds̄→π+π−

1 , (21)

Dc→π+π−

1 = Dc̄→π+π−

1 , (22)

H<)u→π+π−

1 = −H<)d→π+π−

1 = −H<)ū→π+π−

1 = H<)d̄→π+π−

1 , (23)

H<)s→π+π−

1 = −H<)s̄→π+π−

1 = H<)c→π+π−

1 = −H<)c̄→π+π−

1 = 0 . (24)

For G̃<) we expect the same relations as for H<)
1 . In practice, for π+π− and neglecting charm quarks, there

are only two independent D1 functions and one H<)
1 (and G̃<)).

For dihadrons involving kaons, similar considerations will lead to similar sets of independent dihadron
fragmentation functions. For example, the K+K− channel has the following relations:

Du→K+K−

1 = Dū→K+K−

1 , (25)

Ds→K+K−

1 = Ds̄→K+K−

1 , (26)

Dd→K+K−

1 = Dd̄→K+K−

1 , (27)

Dc→K+K−

1 = Dc̄→K+K−

1 , (28)

H<)u→K+K−

1 = −H<)ū→K+K−

1 (29)

H<)s→K+K−

1 = −H<)s̄→K+K−

1 , (30)

H<)d→K+K−

1 = −H<)d̄→K+K−

1 = H<)c→K+K−

1 = −H<)c̄→K+K−

1 = 0 . (31)

Thus, neglecting charm quarks, there are three independent D1 functions and two H<)
1 functions, for the

K+K− channel.

E. Asymmetries

Using the expressions of the structure functions (9), and (10), along with the partial-wave expansion of
the fragmentation functions in section II C, we can rewrite the asymmetries of equation 4 as

AsinφR sin θ
LU (x, y, z,Mh, Q) = −W (y)

A(y)

M

Q

|R|
Mh

∑
q e

2
q

[
xeq(x)H<),q

1,sp(z,Mh) + Mh

zM fq1 (x) G̃<),qsp (z,Mh)
]

∑
q e

2
q f

q
1 (x)Dq

1(z,Mh)
,

(32)

AsinφR sin θ
UL (x, y, z,Mh, Q) = −V (y)

A(y)

M

Q

|R|
Mh

∑
q e

2
q

[
xhqL(x)H<),q

1,sp(z,Mh) + Mh

zM gq1(x) G̃<),qsp (z,Mh)
]

∑
q e

2
q f

q
1 (x)Dq

1(z,Mh)
.

(33)

For the specific case of the π+π− final state from a proton target, we can introduce in the flavor sum the
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assumptions (20)–(24), and we get

AsinφR sin θ
LU (x, y, z,Mh, Q) ≈ −W (y)

A(y)

M

Q

|R|
Mh

×
H<),u

1,sp

[
4xeu−ū(x)− xed−d̄(x)

]
+ Mh

zM G̃<),usp

[
4fu−ū1 (x)− fd−d̄1 (x)

]
Du

1

[
4fu+ū

1 (x) + fd+d̄
1 (x)

]
+Ds

1 f
s+s̄
1 (x)

, (34)

AsinφR sin θ
UL (x, y, z,Mh, Q) ≈ −V (y)

A(y)

M

Q

|R|
Mh

×
H<),u

1,sp

[
4xhu−ūL (x)− xhd−d̄L (x)

]
+ Mh

zM G̃<),usp

[
4gu−ū1 (x)− gd−d̄1 (x)

]
Du

1

[
4fu+ū

1 (x) + fd+d̄
1 (x)

]
+Ds

1 f
s+s̄
1 (x)

,

(35)

where for the PDF we adopt the compact notation fq±q̄1 (x) = fq1 (x) ± f q̄1 (x), and similarly for the other
functions. For neutron targets, assuming isospin symmetry, we can simply interchange the role of u and d
quarks in the PDF. In this way, the flavor dependence of e and hL is accessible.

The ratio of beam spin to target spin asymmetries may shed some light on the relative contribution of

G̃<):

AsinφR sin θ
LU

AsinφR sin θ
UL

=
W (y)

V (y)

H<),u
1,sp

[
4eu−ū(x)− ed−d̄(x)

]
+ Mh

zM G̃<),usp

[
4fu−ū1 (x)− fd−d̄1 (x)

]
H<),u

1,sp

[
4hu−ūL (x)− hd−d̄L (x)

]
+ Mh

zM G̃<),usp

[
4gu−ū1 (x)− gd−d̄1 (x)

] . (36)

If G̃<),usp is negligible, this ratio simplifies to

AsinφR sin θ
LU

AsinφR sin θ
UL

=
W (y)

V (y)

4eu−ū(x)− ed−d̄(x)

4hu−ūL (x)− hd−d̄L (x)
, (37)

which is not dependent on z or Mh. Thus if G̃<),usp is zero, we expect the asymmetry ratio to be constant in
z and Mh [67]; while the converse of this claim may not necessarily be true, the observation of z and/or Mh

dependence of this ratio could hint at a non-negligible contribution from G̃<).

F. Parameterization of the DiFF H^
1

The chiral-odd DIFF H<) q
1 [42] describes the correlation between the transverse polarization of the frag-

menting quark with flavor q and the azimuthal orientation of the plane containing the momenta of the
detected hadron pair. H<)q

1,sp is the component of H<)q
1 that is sensitive to the interference between the frag-

mentation amplitudes into pion pairs in relative s wave and in relative p wave, from which comes the common
name of Interference Fragmentation Functions [40]. For this reason, we expect the function to be sizeable in
kinematic regions where s and p waves are present. This is typically true where spin-1 resonances (e.g., ρ or
K∗) are present.

Before the Belle measurement of the angular distribution of two pion pairs in e+e− annihilation [64], the
only estimates of DiFFs were based on model calculations [42, 45, 69]. The unpolarized D1 was tuned to
Monte Carlo event generators [45] and the polarized H<)

1,sp compared to HERMES asymmetry data [70].

The recent analysis of the so-called Artru–Collins asymmetry [71] by the Belle collaboration gave rise to
new parameterization of both D1 and H<)

1,sp for the production of π+π−. The former was parameterized to
reproduce the two-hadron yields of the PYTHIA event generator, which is known to give a good description
of data. Three main decay channels were considered for π+π−: (i) ρ resonance decaying into the two pions,
(ii) ω resonance decaying into the two pions, plus the fragmentation into a ω resonance decaying into π+π−π0

with π0 unobserved, (iii) the continuum, i.e. the fragmentation into an “incoherent” π+π− pair. Combining
the fit of the asymmetry data with the parameterization of its denominator allowed the extraction of H<)

1,sp

[72].
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FIG. 6. The ratio R of Eq. (28), summed over all channels,
at the hadronic scale Q2

0 = 1 GeV2. Upper panel for R as
a function of Mh for z = 0.25 (solid line), z = 0.45 (dashed
line), and z = 0.65 (dot-dashed line). Lower panel for R as a
function of z for Mh = 0.4 GeV (solid line), Mh = 0.8 GeV
(dashed line), and Mh = 1.0 GeV (dot-dashed line). For the
calculation of the uncertainty bands, see details in the text.
The ratio is affected also by a 10% systematic error.

B. Results for H^
1

In Fig. 6, we show the ratio

R(z,Mh) =
|R|
Mh

H^u
1,sp(z,Mh;Q2

0)

Du
1 (z,Mh;Q2

0)
, (28)

summed over all channel, at the hadronic scale Q2
0 = 1

GeV2. The upper panel displays the ratio as a function
of Mh at three values of z: 0.25 (solid line), 0.45 (dashed
line), and 0.65 (dot-dashed line). The lower panel dis-
plays it as a function of z at Mh = 0.4 GeV (solid line),
0.8 GeV (dashed line), and 1 GeV (dot-dashed line).
The uncertainty bands correspond to the statistical er-
rors of the fitting parameters (see Tab. III). They are
calculated through the standard procedure of error prop-
agation using the covariance matrix provided by MINUIT
(with ∆χ2 = 1). Due to differences between the Monte

Carlo simulation and the experimental cross section, we
estimated a 10% systematic error in the determination of
R. In the upper panel, the solid line stops at Mh = 0.9
GeV because there are no experimental data at higher in-
variant masses for z = 0.25. The fit is less constrained in
that region and the error band becomes larger. The same
effect is visible in the lower panel for the highest displayed
Mh (dot-dashed line) at low z. Note that in the upper
panel all three curves display a dip at Mh ∼ 0.5 GeV.
It corresponds to the peak for the K0

S → π+π− decay,
which is present in the denominator of R (viaDu

1 ) but not
in the numerator (we recall that we assume H^u

1,sp ≈ 0 for

this channel, see the discussion after Eqs. (20) and (21)).
In Fig. 7, we show the Artru–Collins asymmetry at

Q2 = 100 GeV2. Each panel corresponds to the indicated
experimental z bin, ranging from [0.2, 0.27] to [0.7, 0.8].
In each panel, the points with error bars indicate the
Belle measurement for the experimental Mh bins [42].
For each bin (zi,Mh j), the solid line represents the top
side of the histogram for the fitting asymmetry obtained
by inverting Eq. (22), i.e.

Ath
ij = − 〈sin2 θ2〉

〈1 + cos2 θ2〉
〈sin θ〉 〈sin θ〉 5

9

Hth
ij

Dij
, (29)

where Dij is defined in Eq. (26), Hth
ij is defined in the

discussion about Eq. (27), and the average values of the
angles in the considered bin are taken from Ref. [42].
The shaded areas are the statistical errors of Ath

ij , de-
duced from the parameter errors in Tab. III through the
standard formula for error propagation. Note that the
statistical uncertainty of the fit is very large for the high-
est Mh bin.

V. CONCLUSIONS AND OUTLOOKS

In this paper, we have parametrized for the first time
the full dependence of the dihadron fragmentation func-
tions (DiFFs) that describe the nonperturbative frag-
mentation of a hard parton into two hadrons inside the
same jet, plus other unobserved fragments. The depen-
dence of DiFFs on the invariant mass and on the energy
fraction carried by a (π+π−) pair produced in e+e− anni-
hilations, is extracted by fitting the recent Belle data [30].

The analytic formulae for both unpolarized and po-
larized DiFFs at a starting hadronic scale are inspired
by previous model calculations of DiFFs [12, 22, 33].
Then, they are evolved at leading order using the HOPPET
code [34], suitably extended to include chiral-odd split-
ting functions that can describe scaling violations of
chiral-odd polarized DiFFs.

In the absence of published data for the unpolarized
cross section, we extract the unpolarized DiFF (appear-
ing in the denominator of the asymmetry) by fitting the
simulation produced by the PYTHIA event generator [35]
at Belle kinematics, since this code is known to give a
good description of the e+e− total cross section [36].
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a function of Mh for z = 0.25 (solid line), z = 0.45 (dashed
line), and z = 0.65 (dot-dashed line). Lower panel for R as a
function of z for Mh = 0.4 GeV (solid line), Mh = 0.8 GeV
(dashed line), and Mh = 1.0 GeV (dot-dashed line). For the
calculation of the uncertainty bands, see details in the text.
The ratio is affected also by a 10% systematic error.

B. Results for H^
1

In Fig. 6, we show the ratio

R(z,Mh) =
|R|
Mh

H^u
1,sp(z,Mh;Q2

0)

Du
1 (z,Mh;Q2

0)
, (28)

summed over all channel, at the hadronic scale Q2
0 = 1

GeV2. The upper panel displays the ratio as a function
of Mh at three values of z: 0.25 (solid line), 0.45 (dashed
line), and 0.65 (dot-dashed line). The lower panel dis-
plays it as a function of z at Mh = 0.4 GeV (solid line),
0.8 GeV (dashed line), and 1 GeV (dot-dashed line).
The uncertainty bands correspond to the statistical er-
rors of the fitting parameters (see Tab. III). They are
calculated through the standard procedure of error prop-
agation using the covariance matrix provided by MINUIT
(with ∆χ2 = 1). Due to differences between the Monte

Carlo simulation and the experimental cross section, we
estimated a 10% systematic error in the determination of
R. In the upper panel, the solid line stops at Mh = 0.9
GeV because there are no experimental data at higher in-
variant masses for z = 0.25. The fit is less constrained in
that region and the error band becomes larger. The same
effect is visible in the lower panel for the highest displayed
Mh (dot-dashed line) at low z. Note that in the upper
panel all three curves display a dip at Mh ∼ 0.5 GeV.
It corresponds to the peak for the K0

S → π+π− decay,
which is present in the denominator of R (viaDu

1 ) but not
in the numerator (we recall that we assume H^u

1,sp ≈ 0 for

this channel, see the discussion after Eqs. (20) and (21)).
In Fig. 7, we show the Artru–Collins asymmetry at

Q2 = 100 GeV2. Each panel corresponds to the indicated
experimental z bin, ranging from [0.2, 0.27] to [0.7, 0.8].
In each panel, the points with error bars indicate the
Belle measurement for the experimental Mh bins [42].
For each bin (zi,Mh j), the solid line represents the top
side of the histogram for the fitting asymmetry obtained
by inverting Eq. (22), i.e.

Ath
ij = − 〈sin2 θ2〉

〈1 + cos2 θ2〉
〈sin θ〉 〈sin θ〉 5

9

Hth
ij

Dij
, (29)

where Dij is defined in Eq. (26), Hth
ij is defined in the

discussion about Eq. (27), and the average values of the
angles in the considered bin are taken from Ref. [42].
The shaded areas are the statistical errors of Ath

ij , de-
duced from the parameter errors in Tab. III through the
standard formula for error propagation. Note that the
statistical uncertainty of the fit is very large for the high-
est Mh bin.

V. CONCLUSIONS AND OUTLOOKS

In this paper, we have parametrized for the first time
the full dependence of the dihadron fragmentation func-
tions (DiFFs) that describe the nonperturbative frag-
mentation of a hard parton into two hadrons inside the
same jet, plus other unobserved fragments. The depen-
dence of DiFFs on the invariant mass and on the energy
fraction carried by a (π+π−) pair produced in e+e− anni-
hilations, is extracted by fitting the recent Belle data [30].

The analytic formulae for both unpolarized and po-
larized DiFFs at a starting hadronic scale are inspired
by previous model calculations of DiFFs [12, 22, 33].
Then, they are evolved at leading order using the HOPPET
code [34], suitably extended to include chiral-odd split-
ting functions that can describe scaling violations of
chiral-odd polarized DiFFs.

In the absence of published data for the unpolarized
cross section, we extract the unpolarized DiFF (appear-
ing in the denominator of the asymmetry) by fitting the
simulation produced by the PYTHIA event generator [35]
at Belle kinematics, since this code is known to give a
good description of the e+e− total cross section [36].

FIG. 2. The ratio |R|H<),u
1,sp/MhD

u
1 as a function of z and Mh respectively. The error band comes from the calculation

of error propagation from the fit.

The ratio |R|H<),u
1,sp(z,Mh)/MhD

u
1 (z,Mh) at the scale Q2 = 1 GeV2 is depicted in figure 2. The panels are

for the cases integrated over Mh or z, respectively. The error band is estimated through the propagation of
errors based on the fit’s results.

As an aside, there is at the moment no data on interference fragmentation functions for Kπ pairs. In
order to have an estimate of the magnitude of the effect, we assume it to have the form:

|R|H<)
1,sp(z,Mh)

MhD1(z,Mh)
≈ 3Mh

|R|
√
D1con(z,Mh)D1K∗(z,Mh)

MhD1(z,Mh)
, (38)

where with D1con and D1K∗ we mean the components of the fragmentation function that describe the Kπ
continuum and the K∗ resonance, respectively. We estimate these fragmentation function components using
the LEPTO Monte Carlo event generator. The above ansatz is motivated by the fact that the function H<)

1,sp

arises from the interference between pairs produced in s wave and p wave (as explained at the beginning of
the section). The above ansatz applied to the π+π− system reproduces the size and qualitative feature of
the extracted ratio displayed in figure 2. Finally, for Kπ pairs we assume that the fragmentation function is
the same for all flavors (the largest component should anyway come from the u quark).

G. Collinear twist-3 parton distribution functions e(x) and hL(x)

The PDFs e(x) and hL(x) are twist-3 functions which can be decomposed in the following way [22, 51]:

xe = xẽ+
m

M
f1 + xesing, (39)

xhL = xh̃L +
p2
T

M2
h⊥1L +

m

M
g1L. (40)

The functions on the left-hand side can be expressed in terms of quark fields only. This property allows an
explicit calculation in quark models [73]. The functions with the tilde on the right-hand side are related to
quark-gluon-quark correlators and are specifically referred to as “pure twist-3” contributions [60]. The rest
of each expression on the right-hand side contains only twist-2 functions, corresponding to the Wandzura–
Wilczek part. For e(x), there is a term from the unpolarized PDF, along with the local term esing, which
gives rise to a δ-function at x = 0. For hL(x), the wormgear PDF h⊥1L contributes, along with the helicity
PDF g1L.

It is insightful to take Mellin moments of e(x) and hL(x), where the nth Mellin moment a PDF p(x) is
given by

∫
dxxn−1p(x). The first moment of e(x) is proportional to the pion-nucleon sigma-term, which
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FIG. 3. The functions eu(x), huL(x), and fu1 (x) in the bag model [73].

relates to the quark mass contribution to the proton mass (see [22] and references therein), while the second
moment is proportional to the number of valence quarks [66]. The third moment of the twist-3 part of
e(x) can be interpreted in deep inelastic scattering as the transverse force acting on a transversely polarized
quark, immediately after interaction with the virtual photon, within an unpolarized nucleon [15].

Regarding Mellin moments of hL(x), first note that the third moment of the twist-3 part vanishes iden-
tically; if it would not vanish, it would correspond analogously to the third moment of e(x), but with the
parent nucleon having longitudinal polarization, a scenario which would violate parity [16]. The third mo-
ment of hL(x) only has a twist-2 part, proportional to the third moment of transversity h1(x). The higher
moments of hL(x) are more interesting, whereas higher moments of e(x) are difficult to interpret. In par-
ticular, the fourth moment of the twist-3 part of hL(x) is related to the average longitudinal gradient of
the transverse force acting on transversely polarized quarks; the sign of this gradient provides insights on
correlations between the nucleon spin and its color-magnetic field. This moment also can help understand
the torque on the struck quark from the color fields, which may provide clues on differences between the
Jaffe-Manohar and Ji decompositions of the proton spin [16].

There are a few model calculations concerning the twist-3 PDFs: MIT bag model [73–75], diquark spectator
model [76], instanton QCD vacuum calculus [77, 78], chiral quark soliton model [79–83], and the perturbative
light-cone Hamiltonian approach to O(αS) with a quark target [84, 85]. In these calculations there are no
contributions from either strange or sea quarks, except for in the chiral quark soliton model.

The bag model has given several powerful results and predictions concerning PDFs as well as TMDs. It
is a relativistic model where quarks and antiquarks are excitations inside the confined bag. It is generally
assumed that the proton wave function is invariant under the SU(6) spin-flavor symmetry. In the case of
two-body problems, this symmetry leads to proportionality between the different flavor components. The
contribution to e(x) in the bag is entirely due to the bag boundary, and therefore to the quark-gluon-quark
correlation. The result of the model calculation of the twist-3 eu(x), huL(x), as well as of the unpolarized
distribution fu1 (x), is depicted in figure 3; this can be compared with the chiral quark soliton model, shown
in figure 4, which includes additional flavors. On the other hand, the function hL(x) contains twist-2 and
pure twist-3 contributions. Although it is a popular assumption that pure twist-3 (and mass) terms are
small [56–59], this has rarely been justified by theoretical calculations.

In the bag model, assuming for simplicity the Wandzura–Wilczek approximation G̃<) = 0, the asymme-
tries (35) become:

AsinφR sin θ
LU (x, y, z,Mh, Q) = −W (y)

A(y)

M

Q

|R|
Mh

(
4− 1

2

)
xeu(x)H<),u

1,sp(z,Mh)(
4 + 1

2

)
fu1 (x)Du

1 (z,Mh)
, (41)

AsinφR sin θ
UL (x, y, z,Mh, Q) = −V (y)

A(y)

M

Q

|R|
Mh

(
4 + 1

4

)
xhuL(x)H<),u

1,sp(z,Mh)(
4 + 1

2

)
fu1 (x)Du

1 (z,Mh)
. (42)

In the spectator model calculation [76], the nucleon states do not strictly follow the SU(6) symmetry and
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All results are LO-evolved to Q2 = 2.5 GeV2.

there is no flavor symmetry for a given distribution. Adopting the same approximation as before, in the
spectator model the asymmetries (35) become:

AsinφR sin θ
LU (x, y, z,Mh, Q) = −W (y)

A(y)

M

Q

|R|
Mh

x
(
4 eu(x)− ed(x)

)
H<),u

1,sp(z,Mh)(
4 fu1 (x) + fd1 (x)

)
Du

1 (z,Mh)
, (43)

AsinφR sin θ
UL (x, y, z,Mh, Q) = −V (y)

A(y)

M

Q

|R|
Mh

x
(
4huL(x)− hdL(x)

)
H<),u

1,sp(z,Mh)(
4 fu1 (x) + fd1 (x)

)
Du

1 (z,Mh)
. (44)

The results for the twist-3 PDF e(x), hL(x), and the unpolarized f1(x) in the spectator model of Ref. [76]
are depicted in figure 5 for both the u and d flavor.

In all model results above the scale is rather low: Q2
0 ∼ 0.1 GeV2. We neglect the evolution effects on

the PDF part of the asymmetries. However, we expect QCD evolution to affect the distributions in pushing
them towards lower x values. The missing QCD evolution of the twist-3 PDF is believed to be the largest
source of errors in the predictions.

As a final note on twist-3 PDFs, figure 6 shows the first extraction of e(x) [66], based on CLAS6 beam
spin asymmetry data. In this figure, the Wandzura-Wilczek approximation is assumed. The higher statistics
beam spin asymmetries from CLAS12 will further constrain e(x), while the target spin asymmetries proposed
in this document will analogously constrain hL(x).
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FIG. 1: On the left panel, the x-dependent projection of the preliminary BSA used to extract

e(x). On the right panel, the extraction of the combination eV ≡ 4euV (xi, Q
2
i )/9 − edV (xi, Q

2
i )/9

in the WW scenario. The error bars correspond to the propagation of the experimental and DiFF

errors.

that we expect to be bigger than G̃∢. These results indicate that the cosφ modulation of
the Double Spin Asymmetry (DSA) is very small w.r.t. the constant term Eq. (13) [45].

In this scenario, the BSA Eqs. (23) is straightfowardly inverted to get

x2i e
V
WW

(xi, Q
2
i ) = −

A(yi)

W (yi)

Qi

M
AsinφR

LU

(
xi, mππ, i, zi;Q

2
i , yi

)

×
1

9

4xif
u+ū
1 (xi, Q

2
i )nu,i(Q

2
i ) + xif

d+d̄
1 (xi, Q

2
i )nd,i(Q

2
i ) + xif

s
1 (xi, Q

2
i )ns,i(Q

2
i )

n↑
u,i(Q

2
i )

. (24)

The results are given in Tab. I and shown in Fig. 1. Notice that the range of integration in
mππ goes beyond the range of known validity of the DiFF data set, i.e. the Belle data with
2mπ < mππ < 1.29 GeV. The error ∆

(
eV (x)

)
reflects the propagation of the experimen-

tal –statistical and systematical– error from Ref. [40] and the error onH∢

1 taken from Ref. [4].

To check the presence of a possible twist-3 DiFF contribution, we have tried to reproduce
the (z,mππ)-dependences with the DiFF fits of Ref. [4]. In the approximation of Du

1 = Dd
1

and neglecting the strange quark contributions, we can write each projection as:

AsinφR

LU,fit (xi, mππ,i, zi;Qi, yi) = −
W (yi)

A(yi)

M

Qi

nx

∫ zmax, i

zmin, i
dz

∫ (mππ,max)i
(mππ,min)i

|R|
mππ

H∢,u
1 (z,mππ, Q

2
i )

∫ zmax, i

zmin, i
dz

∫ (mππ,max)i
(mππ,min)i

Du
1 (z,mππ, Q2

i )
,

(25)

where the respective values of bins for the z projections and the mππ’s are given in Table. II.
Within that approximation, the x-dependence is then only a scaling factor,

nx =

∫ xmax

xmin
dx eV (x,Q2)

∑
q e

2
q

∫ xmax

xmin
dxf q+q̄(x,Q2)

, (26)

that in principle depends on Q2
i and on the interval [xmin, i, xmax, i]. This number is not known,

but is related to the scale of the 1D projections. We show the result on Fig. 2 for nx = 0.21,
value estimated in the rescaling of the fitting predictions Eq. (25) w.r.t. the data.

9

FIG. 6. Extraction of eV (x) = 4euV (x,Q2)/9− edV (x,Q2)/9 from CLAS6 data. From [66].
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FIG. 7. Hadronization within the quark-jet model including spin (left) and model calculations for the ratios of G⊥1
and H^
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1 reflect a process dependence in the

definitions for this particular model (e+e− versus SIDIS). Here, the H̃^SIDIS
1 is relevant, where the˜denotes that the

functions have been integrated over the mass of the dihadron system. Figures taken from [89]

III. Novel spin-orbit correlations in hadronization in DiFFs

As described earlier, having an additional degree of freedom allows the existence of DiFFs that have no
correspondence in single-hadron fragmentation. An exciting example is the DiFF G⊥1 , which describes the
azimuthal dependence of an unpolarized hadron pair on the helicity of the outgoing quark [87]. Similar to,
e.g., the Boer-Mulders effect, this effect needs intrinsic transverse momentum acquired in the fragmentation
process. Fragmentation functions are not accessible on the lattice [2], therefore this channel presents a unique
opportunity to extend our knowledge of spin-momentum dynamics in hadronization.

In quark-jet models [88, 89], which describe in the transverse case the observed H^
1 well, the intrinsic

transverse momentum is acquired in the quark-to-quark splitting in the fragmentation process, and through
the associated spin transfer the recoiling quarks acquire a non-zero transverse polarization. These polar-
izations are correlated, leading to an effect which is predicted to be significant, with the magnitude of G⊥1
about 30% of the magnitude of H^

1 [88]. This process, along with the model predictions for G⊥1 compared
to H^

1 , are shown in figure 7. We know that H^
1 is large, therefore it is reasonable to expect that we should

be able to observe effects sensitive to G⊥1 , which is about one third in magnitude.
Another model prediction is from the spectator model [90]. Figure 8 shows the ratio6 of G⊥1 to the

unpolarized DiFF D1; there is a sign change at the ρ resonance (770 MeV). The authors proceed to extract
a corresponding prediction of the target spin asymmetry, which is compared to the COMPASS results from
[4]. While the relevant asymmetry measured by COMPASS is consistent with zero within the experimental
precision, the spectator model predicts a small asymmetry, which is fairly close to the COMPASS result, as
shown in in figure 9.

Aside from the COMPASS results, in the literature there are no constraints on G⊥1 from data. In section
VI B we show the recent CLAS12 preliminary result on beam spin asymmetries in dihadron production,
which shows promise to provide the first significant constraints. While the analysis is not finalized, it does
indicate the presence of a sign change of G⊥1 at the ρ meson mass, consistent with the above spectator
model. A longitudinal target would allow for complementary access to G⊥1 through target spin asymmetries,
providing further constraints on any extraction.

A. Access to the helicity DiFF

The differential cross section for dihadron production given in equation 2 is integrated over φh and P 2
h⊥,

causing several terms to vanish. Additional modulations are present if this integration is not performed, the

6 lowest-order partial waves only
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most relevant for this proposal being [50]:

F
P`,m sin(m(φh−φR⊥ ))

LU,T = −I
[
2 cos

(
m(φh − φp)

)
f1G

⊥|`,m〉
1

]
, (45)

F
P`,m sin(m(φh−φR⊥ ))

UL = −I
[
2 cos

(
m(φh − φp)

)
g1LG

⊥|`,m〉
1

]
, (46)

F
P`,m sin((2−m)φh+mφR⊥ )

UL = −I
[
|kT ||pT |
MMh

cos
(
(m− 2)φh + φk + (1−m)φp

)
h⊥1LH

⊥|`,m〉
1

]
, (47)

where I denotes a weighted convolution of the PDF and FF. The notation |`,m〉 denotes a partial wave of
the DiFF, parameterized by angular momentum eigenvalues ` and m. The modulations are are expressed as
products of a Fourier sinusoid dependent on φh, φR, and m, with an associated Legendre polynomial P`,m
dependent on θ.

The helicity-dependent DiFF G⊥1 is found in equations 45 and 46, and is experimentally accessible via
target-spin and beam-spin asymmetries AUL and ALU . In ALU it couples to the spin-averaged PDF f1(x),
whereas in AUL it couples to the helicity distribution g1(x), both of which have a significant magnitude.
Additionally, equation 47 shows sensitivity to the wormgear distribution function h⊥1L coupled to the H⊥1
DiFF partial waves7.

Some of the initial interest in G⊥1 was motivated by its connection to the so-called jet-handedness [87],
which in turn might receive contributions from CP-violating QCD vacuum fluctuations [22]. This was one
reason for the measurement at Belle [91] which did not find a signal. However, after a revisit of the original
calculation by another theory group [92], it became clear this was due to a sign-mistake in the original
calculation. For SIDIS, they propose a measurement of dihadron asymmetries with the weight factors
[93, 94]:

A =
〈Ph⊥ sin(φh − φR)/Mh〉

〈1〉
=

∫
dLUPh⊥ sin(φh − φR)/Mh∫

dUU
. (48)

This weight breaks the convolution of the PDF and DiFF between the initial and final quark transverse
momenta, returning a product of the PDF and DiFF; note that the DiFFs (and PDFs) are themselves
integrated over the initial quark transverse momentum. The corresponding weighted spin asymmetries are:

A⇒UL(x, z,M2
h) = SL

∑
a e

2
a g

a
1L(x) z G⊥a1 (z,M2

h)∑
a e

2
a f

a
1 (x) Da

1(z,M2
h)

, (49)

A⇒LU (x, y, z,M2
h) = λl

C ′(y)

A′(y)

∑
a e

2
a f

a
1 (x) z G⊥a1 (z,M2

h)∑
a e

2
a f

a
1 (x) Da

1(z,M2
h)

. (50)

The aforementioned CLAS12 preliminary result is of this beam spin asymmetry, while the target spin asym-
metry is another proposed measurement for the longitudinal target program. A measurement of both is
complementary, since each corresponds to a coupling with a different PDF.

This is the first time that a TMD DiFF will be measured, and it can also be accessed in a re-measurement
of G⊥1 in e+e− annihilation, which is well motivated to test the validity of factorization. A comparison with
the SIDIS measurements might be sensitive to parity violating vacuum fluctuations as discussed above.

B. Transverse Momentum Dependent DiFFs

It is interesting to draw analogies between single-hadron TMD FFs, accessible in Λ production, to TMD
DiFFs. Table II shows an attempt at a comparison, where the left half is for single-hadron FF and the right
half for DiFFs. Dihadron polarization is better understood within the partial wave expansion, however, so
it is more correct to expand the matrix to include the interference between relative s and p waves.

To do the expansion, we first enumerate the possible polarization pairings in the interference terms.
Truncating the expansion at ` = 2, which limits us to consider only up to a relative p wave difference, the

7 which include the interference fragmentation function H^
1 , along with the dihadron-analog of the Collins fragmentation

function H⊥1 .
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h/q U L T h/q U L T

U D
Λ/q
1 H

⊥,Λ/q
1 U D

h1h2/q
1 H

⊥,h1h2/q
1

L G
Λ/q
1 H

Λ/q⊥
1L L

T D
⊥Λ/q
1T G

⊥Λ/q
1T H

Λ/q
1 ,H

⊥Λ/q
1T T G

⊥h1h2/q
1 H

<)h1h2/q
1

TABLE II. TMD FFs for Λ production (left) and dihadrons (right) appearing at leading order in 1/Q2 in the SIDIS
cross section. The U, L, and T labels of the rows (columns) represent the dependence of the distributions on the
polarization (unpolarized, longitudinally, transversely) of the quark (hadron).

h1h2/q U L T

UU D1,OO H⊥1,OO

LU D1,OL H⊥1,OL

LL D1,LL H⊥1,LL

TU D1,OT G⊥1,OT

{
H⊥1,OT if m < 0

H^
1,OT if m > 0

TL D1,LT G⊥1,LT

{
H⊥1,LT if m < 0

H^
1,LT if m > 0

TT D1,TT G⊥1,TT

{
H⊥1,TT if m < 0

H^
1,TT if m > 0

TABLE III. Table of DiFFs, where the rows are the dihadron polarizations, i.e., interference, and the columns are
the fragmenting quark polarization; the DiFFs follow the notation given in [50]

s-state dihadron is unpolarized (denoted U or O), and the p-state dihadron has either transverse (T ) or
longitudinal (L) polarization; ` = 0 corresponds to the ss terms, ` = 1 to the sp terms, and ` = 2 to the pp
terms. We can then rearrange these partial waves into an enhanced table of DiFFs, following the notation
given in equations 62-74 of [50]. Table III is the updated table, where rows are grouped by the following
classifications:

• unpolarized only, the ss terms

• interference with longitudinally polarized dihadron, but not transverse, which contains sp and pp terms
with m = 0

• interference with transversely polarized dihadron, which contains sp and pp terms with m = 1, 2

It is interesting to note that G⊥1 necessitates the interference with a transversely polarized dihadron, while
this DiFF encodes a correlation of fragmenting quark with longitudinal polarization; this correlation of
longitudinal quark polarization to transverse dihadron polarization could represent a contribution from a
“wormgear-like” splitting.
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IV. Correlations in hadron production in the current and target fragmentation region

All of the above asymmetries assume the factorization model with the hadron production occurring from
the scattered parton, that is, in the Current Fragmentation Region (CFR). It is possible to study hadroniza-
tion which originates from the target as well, which is called the Target Fragmentation Region (TFR).
Correlations between hadrons from the CFR with those from the TFR represent another class of dihadron
production which is of interest in this section.

As it has become clear during the last decades, the study of the three dimensional spin-dependent partonic
structure of the nucleon requires excellent understanding of the hadronization process after hard lepton-
quark scattering. The unique feature of CLAS12 is the wide coverage of the produced hadron phase space;
in contrast to previous SIDIS experiments, we will have access not only to the CFR but also to the TFR.
These two regions are defined in the virtual photon-target nucleon center of mass frame, with the z-axis
aligned to the virtual photon momentum. The CFR includes hadrons produced in the forward hemisphere
(along the virtual photon), whereas the TFR is for hadrons produced in the backward hemisphere.

The QCD description of this process for collinear kinematics includes new nonperturbative objects, the
fracture functions, which were first introduced by Trentadue and Veneziano [48]. Recently this approach
was generalized by Anselmino, Barone and Kotzinian [49] to the spin and transverse momentum dependent
case. The fracture functions represent the conditional probabilities to find an unpolarized, a longitudinally
polarized, or a transversely polarized quark with longitudinal momentum fraction x and transverse momen-
tum k inside a nucleon, fragmenting into a hadron carrying a fraction ζ = P−h /P

− ' Eh/E of the nucleon
longitudinal momentum and a transverse momentum Ph.

The general LO cross section expression for SIDIS in the TFR is presented in [49] and gives access only to
four quark-transverse-momentum integrated fracture functions. To gain access to all LO fracture functions,
one has to “measure” the final quark transverse polarization. The Double SIDIS process, outlined in the
next section, allows this by means of the Collins effect for hadrons produced in the CFR. Exploiting SIDIS
in TFR, Double SIDIS will allow us to check the validity of factorization and deepen our understanding of
the hadronization mechanism.

A. The Double SIDIS (DSIDIS) process

Let us consider the polarized SIDIS process in equation 1 with one hadron produced in the current
fragmentation region (CFR) and the other in the target fragmentation region (TFR) [95], shown in figure
10. The LO expression for Spin and Transverse Momentum Dependent (STMD) DSIDIS is given as:

dσ`(l,λ)+N(P,S)→`(l′)+h1(P1)+h2(P2)+X

dx dQ2 dφS dz d2PT1 dζ d2PT2
=
∑
q

Mh2

q,s/N,S ⊗
dσ`(l,λ)+q(k,s)→`(l′)+q(k′,s′)

dQ2
⊗Dh1

q,s′ , (51)

where Mh2

q,s/N,S are the STMD fracture functions, and Dh1

q,s′ are the STMD fragmentation functions to a

spinless hadron from unpolarized and transversely polarized quarks (see, for example, [51]),

Dh1

q,s′(z,p) = D1(z, p2) +
p× s′

mh
H1(z, p2), (52)

where p is a transverse momentum of the hadron, with respect to the fragmenting quark momentum.
The cross section for the DSIDIS from a polarized lepton scattering off a longitudinally polarized nucleon

can be written in the form:

dσ`(l,λ)+N(P,S)→`(l′)+h1(P1)+h2(P2)+X

dx dy dφS dz d2PT1 dζ d2PT2
=

α2 x

Q4y

(
1 + (1− y)2

)
(σUU + SL σUL + ST σUT + λDllσLU + λSLDll σLL + λSTDll σLT ) , (53)

where

Dll(y) =
y(2− y)

1 + (1− y)2
. (54)
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FIG. 10. DSIDIS description with hadronization function. From [95].

The terms depending on the longitudinal polarization of initial particles are given by [96]:

σUU = F M̂ ·D1
0 −Dnn

[
P 2
T1

m1mN
F
ĥ⊥1 ·H1

kp1 cos(2φ1)

+
PT1PT2

m1m2
F
ĥh1 ·H1

p1 cos(φ1 + φ2)

+

(
P 2
T2

m1mN
F
ĥ⊥1 ·H1

kp2 +
P 2
T2

m1m2
F
ĥh1 ·H1

p2

)
cos(2φ2)

]
, (55)

σUL = −PT1PT2

m2mN
F
M̂⊥hL ·D1

k1 sin(φ1 − φ2)

+ Dnn

[
P 2
T1

m1mN
F
ĥ⊥1L·H1

kp1 sin(2φ1)

+
PT1PT2

m1m2
F
ĥh1L·H1

p1 sin(φ1 + φ2)

+

(
P 2
T2

m1mN
F
ĥ⊥1L·H1

kp2 +
P 2
T2

m1m2
F
ĥh1L·H1

p2

)
sin(2φ2)

]
, (56)

σLU = −PT1PT2

m2mN
F
ĝ⊥h1 ·D1

k1 sin(φ1 − φ2) , (57)

σLL = F ĝ1L·D1

0 , (58)

where

Dnn(y) =
(1− y)

1 + (1− y)2
. (59)

The structure functions F∆M̂L·D1
0 , F∆M̂⊥h·D1

k1 , etc. are convolutions of the fracture function M and



22

fragmentation function D (see appendix B). For example, we have

FUU = C
[
f̌1D1

]
, (60)

F cos 2φ1

UU = C
[
−

2
(
ĥ · kT

) (
ĥ · pT

)
− kT · pT

MMh
ȟ⊥1 H

⊥
1

]
, (61)

F sin 2φ1

UL = C
[
−

2
(
ĥ · kT

) (
ĥ · pT

)
− kT · pT

MMh
ȟ⊥1LH

⊥
1

]
, (62)

FLL = C
[
ǧ1LD1

]
, (63)

where the standard convolution notation

C
[
wfD

]
= x

∑
a

e2
a

∫
d2k d2p δ(2)

(
k − p− Ph⊥/z

)
w(k,p) fa(x, ζ,k2)Da(z,p2) (64)

is used, the unit vector ĥ = Ph⊥/|Ph⊥|, and

f̌1(x, ζ,k2) =

∫
d2Ph f̂1 , (65)

ǧ1L(x, ζ,k2) =

∫
d2Phĝ1L , (66)

ȟ⊥1L(x, ζ,k2) =

∫
d2Ph

(
ĥ⊥1L +

mN

mh

k ·Ph

k2
ĥh1L

)
, (67)

ȟ⊥1 (x, ζ,k2) = −
∫

d2Ph

(
ĥ⊥1 +

mN

mh

k ·Ph

k2
ĥh1

)
. (68)

The fracture functions which depend on quark polarization have the notation ĝ for longitudinally polarized

quarks and ĥ for transversely polarized quarks, whereas f̂ corresponds to unpolarized quarks.
Equations 55-58 indicate the various fracture functions that azimuthal modulations of DSIDIS spin asym-

metries are sensitive to. Beam spin asymmetries give access only to ĝ1, the fracture function of longitudinally
polarized quarks in an unpolarized nucleon. With the addition of target polarization, several other fracture
functions become accessible in modulations of the target spin and double spin asymmetries:

• M̂L: unpolarized quark in a longitudinally polarized nucleon

• ĥ1L: transversely polarized quark in a longitudinally polarized nucleon (note there are two types for

this case: ĥh1L which includes a factor of Ph⊥ and ĥ⊥1L which includes a factor of k⊥).

• ĝ1L: longitudinally polarized quark in a longitudinally polarized nucleon; this one is accessible in the
double spin asymmetry

Significant SSAs have been measured by CLAS for azimuthal correlations of hadrons in the target and
current fragmentation regions, providing direct access to underlying fracture functions [97]. Figure 11 shows
that ALU is very significant at large x, which is the kinematic region of most interest for our proposal.

Finally, we mention the DSIDIS cross section LO expressions can be studied for three different cases: (i)
integrated over TFR hadron transverse momentum, (ii) integrated over CFR hadron transverse momentum
and (iii) not integrated over transverse momenta. The expressions are rather simple for (i) and (ii), but
experimental measurements of azimuthal asymmetries in these cases will be more difficult since azimuthal
acceptance corrections will be needed. In (iii), the three-dimensional (in azimuths) analysis will allow to
avoid this problem and will give access to all TMD fracture functions. Measured single and double leading
twist asymmetries for pion and kaon pairs in a large range of kinematic variables (x, Q2, z, Ph⊥, and φ),
with longitudinally polarized targets, will thus provide a first glimpse into the fracture functions.
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CLAS Preliminary

H. Avakian, DIS 2016 12 

B2B hadron production  in SIDIS: First measurements   
M. Anselmino, V. Barone and A. Kotzinian, 
Physics Letters B 713 (2012) 

Asymmetry transverse momentum 
dependence consistent with theory prediction 

FIG. 11. A
sin(φ2−φ1)
LU dependence on x (left) and on PTπPTp (right), for the process ep→ e′pπ+X with pion xF > 0

and proton xF < 0 and 0.4 < zπ < 0.7. The different point sets correspond to different data sets. From the
presentation associated with [97].
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V. Experimental details

A. CLAS12

The proposed measurements will be taken simultaneously with the approved CLAS12 experiments for
semi-inclusive DIS studies with CLAS12 [7–12], with longitudinally polarized proton and deuteron targets.
We will use the upgraded CLAS12 spectrometer [98] with part of the low threshold Cherenkov counter
replaced by the ring-imaging Cherenkov detectors, which will help allow for kaon identification. We will run
at the standard magnetic field configurations. The central tracker will also be used for coincident detection
of protons, pions and kaons, both in target and current fragmentation regions. The solenoid for the central
tracker is also used simultaneously to provide the magnetic field for the polarized target.

B. CLAS12 Particle Identification

In the baseline design of CLAS12 [98, 99], particle identification (PID) in the forward detector is obtained
by using a high threshold Cerenkov counter (HTCC) [100], a low threshold Cerenkov counter (LTCC) [101],
and time-of-flight scintillator arrays (TOF) [102, 103]. In the ∼2.5–5 GeV/c momentum region, the kaon-
pion separation relies only on the LTCC performance, and it is not possible to separate protons from kaons
in the 4.7–8 GeV/c momentum region. While, in general, this PID system matches the requirements of the
physics program at 12 GeV, it turns out to be insufficient for some physics reactions of high interest, such
as the ones covered by this proposal that require charged kaon detection. More specifically, since the K/π
production ratio is of the order of 10–15% (see figure 12), a very high rejection factor for pions is needed
in order to keep the contamination of misidentified kaons at a few percent level, while, with the baseline
configuration and assuming a 10% pion detection inefficiency for the LTCC, the π/K contamination is 1:1.

An improved hadron PID is therefore needed, which can be achieved with a Ring Imaging Cherenkov
(RICH) detector. Currently, one of the CLAS sectors (out of 6) is covered by a new RICH detector [104],
which has been installed in place of the LTCC. The RICH ensures a 1:500 rejection factor for pions, corre-
sponding to a 4σ pion-kaon separation in the 3–8 GeV/c momentum range. A second RICH sector, currently
under construction, is planned to be ready by the time of the proposed run period. With the two RICH
detectors in operation, installed in opposite sectors, it will be possible to meet the PID performances needed
for SIDIS dihadron measurements with πK and KK final states where the kaon has large momentum.
Note that since in the dihadron channel the momentum is shared between the outgoing hadrons, one of the
hadrons usually has a low enough momentum to be discriminated with the CLAS12 baseline PID detectors
(i.e., without the RICH).

C. The polarized target

The target configuration will be that of the approved experiments using the polarized target [7–12].
Further information on the target design can be found in [105–107]. The targets will be polarized via the
method of Dynamic Nuclear Polarization (DNP), which is a well established technique that has been used
extensively in nuclear and particle physics experiments, including the ones performed in Hall B of Jefferson
Lab. Dynamically polarized target systems consist of a hydrogenated (polarized protons) or deuterated
(polarized neutrons) compound containing paramagnetic centers, such as unpaired electrons, placed in a
high magnetic field and cooled to low temperatures, with a B/T ratio of the order of 5 Tesla/Kelvin. In
these conditions, the free electron spins can approach polarization of 100%. The high polarization of unpaired
electrons is then transferred dynamically to the nucleons by irradiating the target material at frequency near
that of electron spin resonance. This technique typically allows to achieve a proton polarization of 80–
90%, and a deuteron polarization of 30–40%. The nucleons in the target will be polarized either parallel or
anti-parallel to the electron beam direction.

The main systems required to realize DNP are a superconducting magnet, a 4He evaporation refrigerator
to maintain the target material at 1 K, a target insert, which will house the target material and some
additional instrumentation, a microwave system to transfer the polarization to the nucleon spins, and a
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Nuclear Magnetic Resonance (NMR) system to determine the state of polarization.
In CLAS12 the polarizing magnetic field will be provided by the superconducting solenoid of the central

detector. Ammonia (NH3) and deuterated ammonia (ND3) will be used as target materials. In order to
determine the dilution factor (fraction of events originating from polarized target materials) for each process
with sufficiently high accuracy, a fraction of the running time will be devoted to auxiliary measurements
with carbon and helium targets; for the helium target, the target chamber itself is empty and the scattering
is primarily from the 4He evaporation refrigerant.

For measurements on polarized protons, we plan to use the NH3 target, and for measurements on polarized
neutrons, the ND3 target. Additionally, for greater statistical precision from polarized neutrons it would be
useful to include data from a 3He target, which is also proposed to this year’s PAC [108] (see also [109]). The
3He target has similar dilution, but a higher polarization of 50%. With a higher polarization, the statistical
uncertainties on the asymmetries will be lower; moreover, having two different targets could lead to a better
understanding of systematics. It would be most advantageous to make use of data from both targets for a
full analysis with polarized neutrons.

The target polarization will be monitored during the run via the NMR system, in the field of the solenoid
magnet [110]. The calibration of the proton NMR can be done by measurements of polarization in thermal
equilibrium, taken with the polarizing magnet. The experiment will run with a beam of about 10 nA on
a 5 cm long ammonia target, resulting in a luminosity of 1035/cm2s. The beam will be rastered over the
diameter of the polarized target to minimize the dose density (we will need at most one anneal every other
day under these conditions).

D. The data set and analysis

The expected kinematical coverage in the DIS region with an 11 GeV beam at CLAS12 is shown in figure
13. This coverage constitutes a substantial increase over the existing CLAS6 data in both x and Q2, while
the precision of the expected data in the valence region will be far superior to existing DIS experiments from
other labs.

Realistic MC simulations are crucial for separation of different contributions to azimuthal moments arising
from higher twists, both kinematical [111] and dynamical [112–115], radiative corrections [116, 117] and in
particular from the detector acceptance. The CLAS12 FAST-MC program was used to simulate the physics
events and study the extraction of azimuthal moments and acceptance corrections. The large acceptance of



26

C. Dilks  5

Data

Q
2

 (G
eV

2 )

Longitudinally Polarized Electron Beam
● E = 10.6 GeV
● P = 86%

Unpolarized Liquid H
2
 Fixed Target

Torus magnet → electrons inbending

~3% of available fixed H
2
 target data analyzed

Liquid D
2
 target data → Flavor separation

Plans for a polarized target in the near future

CLAS12 Kinematic Reach

FIG. 13. Kinematical coverage at CLAS12.

CLAS12 allows detection of final state hadrons produced both in target and current fragmentation regions.
The 2D xF -distributions are shown on figure 14. By selecting different kinematical regions, one can measure
azimuthal asymmetries in those regions and extract underlying non-perturbative functions.

Figure 15 shows the typical mass distribution for π+π− dihadron production, along with contributions from
various meson decay channels. The CLAS12 data occupy the same region shown on the figure. In particular
there is a large contribution from ρ-mesons, which can be selected by a cut on Mh and additionally on the
angular momentum from a partial wave analysis. Because such a large fraction of pions can originate from
a ρ decay, understanding the ρ production mechanism from the perspective of dihadrons can help clarify
single pion production.

In projected results we assume a beam polarization of 0.8, which has been routinely achieved in recent
experiments running at Jefferson Lab. The beam helicity will be flipped in a pseudo-random pattern every
33 ms. We will use the standard Hall B beam devices to monitor and stabilize the beam intensity and
position. In particular, we will reduce any helicity-correlated beam asymmetries to less than 10−3.

The data will consist of the number of counts for beam and/or proton helicity parallel (N+) and anti-
parallel (N−) states, each normalized to the dead-time corrected integrated beam charge; details of the
trigger system are found at [118]. We will subtract from these rates the backgrounds from misidentified
kaons/pions (which can be obtained from fits to the distribution of photo-electrons in the high-threshold
Cerenkov counter and the measured ratio of visible energy deposited in the electromagnetic calorimeter
to the measured momentum) and from electrons coming from pair-symmetric decays (e.g., π0 → e+e−

or π0 → γe+e− as well as γ → e+e− conversions). From the corrected counts, we will form the ratio
Araw = (N+ − N−)/(N+ + N−). This ratio is “raw” in the sense that it has to be divided by the target
polarization and the dilution factor.

For the polarized target configuration, following the procedure developed for the single-hadron case [10],
the dilution factor can be calculated from a detailed model of the target content. The only ingredient
needed is the packing fraction (the fraction of the cell volume occupied by the ammonia beads), which can
be extracted by comparing the rate from ammonia to that from an auxiliary carbon target. Additional
measurements on empty and liquid-helium only targets will also be needed. Past experience with the EG1
experiment in Hall B has shown that a typical error of 3% on the dilution factor can be achieved [119]. An
additional correction for the small polarization in 15N and contamination by 14N and, in the case of the
deuterated ammonia, H, will be applied as well. Section VI C includes some plots that show the dependence
of dilution factors on kinematic variables.

The beam (PB) and target (PT ) polarization will be independently measured using Möller scattering
and NMR, respectively. The target polarization, however, can be extracted from the product of PB ∗
PT with higher precision directly from our data, by measuring the asymmetry of elastic (quasi-elastic)

scattering ~p(~e, e′p) (~d(~e, e′p)) from the NH3 (ND3) targets, respectively. We did a full simulation of this
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compared to a Pythia6 Monte Carlo simulation. Both distributions are normalized to unity. The

main resonances contributing to the simulated spectrum are shown separately.

mass. In Ref. [38], the imaginary part of the ω resonance is also taken into account, giv-

ing rise to an additional contribution to the fragmentation function in the region around

Mππ ≈ 0.5 GeV.

The Mππ dependence of the measured modulation amplitude shows no sign change

at the ρ0 mass, contrary to the prediction in Ref. [15]. This leads to the conclusion that

ρ-σ interference is not the dominant contribution to the fragmentation function H∢,sp
1 ,

and that in general interference patterns observed in semi-inclusive π+π− production are

different from those observed in π+π− scattering. The dependences on Mππ and z of the

model calculations of Ref. [38] (see also [50]), one of which is reproduced in Fig. 4, are not

inconsistent in shape with the present data. However, the predictions are at least a factor

of two larger.

In summary, a measurement of A
sin(φR⊥+φS) sin θ
U⊥ of the transverse-target-spin asymme-

try in the lepto-production of π+π− pairs has provided the first evidence that a naive-T-odd

chiral-odd dihadron fragmentation function H∢

1,q and in particular H∢,sp
1,q is nonzero. The

average value of the amplitude is A
sin(φR⊥+φS) sin θ
U⊥ = 0.018±0.005stat±0.002b−scan+0.004acc,

with an additional 8.1% scale uncertainty. The amplitude is positive in the whole range in

the invariant mass of the π+π− pairs, in contrast to a previous expectation [15] of a sign

change around the mass of the ρ0 meson. Possibly the most striking aspect of the reported

results is the relatively large size of an asymmetry caused by a complicated interference

effect.

A mechanism analogous to the one investigated in this paper offers perhaps the most

promising way to access transversity in pp collisions at Rhic. Our results show for the first

time that this mechanism can indeed give a sizeable signal. The Belle collaboration can

extract dihadron fragmentation functions from their e+e− data. Such results could then

be combined with DIS and pp data to extract transversity in the proton.

– 10 –

FIG. 15. Typical mass distribution for π+π− dihadrons, including contributions from decays. From [68].

method, including radiative effects, CLAS12 acceptance, and expected beam parameters. We found that the
uncertainty on PT for the proton will be about 3% and on the deuteron about 5%.

1. Event Selection Criteria

We focus the analysis on inclusive dihadron production. For each event, we build a list of dihadrons, where
each dihadron is a permutation of 2 hadrons from the event, along with the coincident scattered electron. We
plan to use particle identification provided by the CLAS12 event builder [99], along with any refinements, to
select the dihadron channel of interest as well as the scattered electron. The electron momentum determines
the following variables, which are listed here along with criteria for analysis:

• Virtual photon momentum-squared: Q2 > 1 GeV2, to select the DIS regime

• Invariant mass of proton + photon: W > 2 GeV, which is above the resonance region

• Fraction of beam energy carried by photon: y < 0.8, since radiative effects are more severe at high y

For the dihadron, denoted h1h2, we require

• Fraction of virtual-photon energy carried by the dihadron: zh1h2 < 0.95, to reduce contributions from
the exclusive region

• Missing mass: MX > 1.5 GeV, to stay above exclusive events and resonances
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• Feynman-x: xF > 0 for each hadron, to enhance the probability that both hadrons are produced in
the current fragmentation region

• Hadron momentum: ph1,2
> 1.25 GeV, to ensure high track reconstruction efficiency

While these cuts are still being refined, their aim is to provide a clean sample of inclusive dihadrons with
minimal systematic uncertainties and maximal statistics. These cuts are similar to those used for the CLAS6
analysis on dihadron beam spin asymmetries [120], as well as the recent CLAS12 preliminary results described
in section VI B.

Finally, it is worth noting that these cuts can be further tuned for different analyses. For example, while
these cuts are well studied for the ππ channel, there may be some alterations or further cuts necessary for
πK or KK channels. For the case of DSIDIS, a cut requiring xF of one hadron to be positive and that of the
other hadron to be negative is necessary; however, this may not be sufficient enough to separate the target
and current fragmentation regions, requiring further cut refinement.

2. Asymmetry Measurement

There are many techniques to extract the asymmetry from data. Because there are multiple modulations
of the dihadron cross section, including partial wave expansions, we employ an unbinned extended maximum
likelihood method (MLM).

Let hb and ht respectively denote the electron beam helicity and the target helicity. The ratio of the cross
section for a particular combination of helicities to the total cross section can be written in terms of the spin
asymmetries:

dσhbht
dσ

=
1

4
(1 + hbALU + htAUL + hbhtALL) . (69)

Without loss of generality, we will proceed with focus on the target spin asymmetry; the same procedure is
applicable to beam spin and double spin asymmetries.

Since the focus is on the target spin asymmetry, for brevity we use a single subscript for denoting cross
sections corresponding to each target polarization, and sum over the beam polarizations: let dσ± = dσ+± +
dσ−±, where + and − respectively denote positive and negative helicity. Equation 69 becomes

dσ±
dσ

=
1

2
(1±AUL) . (70)

The asymmetry AUL is written in terms of cross sections for each helicity, which can be converted into
yields N , divided by luminosity L and acceptance Ω. This is the experimentally measured asymmetry,
which represents a fraction fP of the true asymmetry, where f is the dilution factor and P is the target
polarization. In other words:

AUL =
dσ+ − dσ−

dσ
=⇒ fPAUL =

N+/L+Ω+ −N−/L−Ω−
N/LΩ

. (71)

We can then define the following probability distributions

p± =
N±
N

= µ± (1± fPALU ) , (72)

where µ± = L±Ω±/2LΩ represents a normalization factor.
Both the numerator and denominator of AUL expand in terms of structure functions, each modulated

by functions of φh, φR, and θ, and scaled by depolarization factors k(ε, y). For the unpolarized differential
cross section in the denominator, in practice one integrates it to obtain the total cross section; this assumes
that the modulations of the unpolarized cross section are linearly independent from a constant, which is
not necessarily true, however we will return to this concern later when discussing systematics. The total
unpolarized cross section is then the product of the depolarization factor kconst

UU = A(y) (see Appendix A)
and structure function F const

UU , which is FUU,T from equation 5.
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Expanding the numerator in terms of modulations ψi(φh, φR, θ), we have

AUL =
∑
i

kψiULF
ψi
UL

kconst
UU F const

UU

ψi =
∑
i

AψiULψi, (73)

where we have defined

AψiUL = Kψi
UL

FψiUL
FUU

, (74)

with Kψi
UL = kψiUL/k

const
UU , the ratio of depolarization factors. AψiUL is the amplitude of the ψi modulation of

AUL, and it is proportional to a ratio of structure functions.
To isolate the ψi modulation amplitude, one can take the ψi moment of the numerator and all terms will

vanish except for AψiUL. In practice however, the modulations ψi may not be completely linearly independent;
it is therefore more appropriate to implement a simultaneous determination of several modulation amplitudes.
We have chosen to perform the simultaneous determination using an unbinned exteneded MLM fit, based
on the probability distributions

p± =
N±
N

= µ±

(
1± fP

∑
i

AψiULψi

)
. (75)

From here, we can proceed with an extended unbinned MLM fit, which is a standard procedure (see [121],
for example). These two probability distributions, one for each target helicity state, are used simultaneously
to build an extended likelihood function, which depends on the asymmetry amplitudes and kinematics (in-
dependent variables), as well as the normalization. The set of asymmetry amplitudes which maximizes the
likelihood function is the result of the fit. In practice, this is a minimization problem since it is computa-
tionally favorable to minimize the negative logarithm of the likelihood.

The data over which the likelihood is minimized consist of the yields for each target helicity state. This is
a discrete data set, and therefore must be binned discretely in the full phase space; however, in the unbinned
limit, the bins are taken to be small enough such that only 0 or 1 event is present in each bin. Finally, the
independent normalizations of the two probability densities are allowed to float, which can compensate for
any difference in the luminosities from the two target helicities; for this reason, the likelihood fit is called
extended.
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Figure 1: Beam-spin asymmetries are shown. The present results (open triangles) are compared with another
CLAS experiment (open circles), but with different target (H2) instead of NH3.
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Figure 2: Target-spin asymmetries are shown. The sinφ (open triangles) and sin2φ (open squares) depen-
dencies are plotted together.

4. Conclusion

Di-hadron SIDIS is a very powerful channel in order to access information about the collinear
structure of the proton and the CLAS detector at Jefferson Lab is an ideal place to provide such
data. These are the first simultaneous measurements of di-hadron ALU , AUL and ALL asymmetries
with a non-zero BSA, TSA and DSA for π+π− pairs. The comparison between unpolarized H2

and longitudinally-polarized NH3 target ALU asymmetries indicates the absence of nuclear effects.
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FIG. 17. CLAS6 preliminary double spin asymmetries [3].

VI. Expected results

Before discussing the expected results and projections, it is useful to review the current data on SIDIS
dihadron spin asymmetries.

A. Existing data on target spin and double spin asymmetries

Preliminary data from CLAS [3] at 6 GeV indicate large azimuthal sinφR moments both for unpolarized
and polarized targets, that is, in both the beam spin and the target spin asymmetries. The target spin
asymmetry shown in figure 16 (open-triangles) is sensitive to the collinear twist-3 PDF hL(x). An additional
moment, sin(2φR), is included in the figure and is consistent with zero; this is a modulation of a twist-2
structure function, which includes a convolution of the wormgear distribution h⊥1L and the dihadron frag-
mentation function H⊥1,OO. Figure 17 shows the double spin asymmetries, where the constant modulation

is sensitive to g1D1 and the cosφR modulation is sensitive to g1D̃, where D̃ is a twist-3 DiFF; these results

indicate that D̃ is at least an order of magnitude smaller than D1.
COMPASS also measured various modulations of the target spin and double spin asymmetries in dihadron

production from inelastic scattering of muons on a polarized solid ammonia target [4]; this measurement was
at a higher energy than at CLAS12, and is sensitive to lower x. Figure 18 shows the average asymmetry
amplitudes for a variety of modulations. The sin(φh−φR) amplitude of the target spin asymmetry, sensitive
to the helicity distribution convolved with G⊥1 , is consistent with zero even when binned in Mh, although
with these uncertainties it is not inconsistent with the spectator model prediction from [90] shown in figure

9. The amplitude AsinφR
UL shows a slight rise as a function of x and of z, up to about 1%; this is at a lower x

range than the CLAS6 measurement in figure 16. The other target spin asymmetries correspond to structure
functions which involve the wormgear distribution, or higher order partial waves, and are all consistent with
or close to zero, as are the double spin asymmetries.
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III. DATA ANALYSIS

This work comprises the analysis of combined data,
obtained by scattering naturally polarized µ+ with a
nominal momentum of 160 GeV/c during a dedicated
data taking in 2007, respectively of 200 GeV/c in 2011,
off a longitudinally polarized solid state NH3 target. A
priori the Q2-evolution and the kinematic dependences
of the considered asymmetries are unknown. Still, from
general considerations, these kind of effects are expected
to be small or negligible within experimental accuracy.
Hence, we find it reasonable to merge both data sets,
although different beam energies were used.

The standard COMPASS DIS cuts were applied. In
particular was the four-momentum transfer limited to
Q2 > 1 (GeV/c)2, the fractional energy transfer of the
muon set to 0.1 < y < 0.9 and the invariant mass of the
hadronic system required to beW > 5 GeV/c2. To match
COMPASS kinematics, the Bjorken variable was limited
to 0.0025 < x < 0.7. Per selected event, all possible com-
binations of hadron pairs were included in the analysis.
The fractional energy for each hadron was required to
be z1/2 > 0.1 and the Feynman variable xF,1/2 > 0.1.
To further exclude exclusive events from the sample, the
missing energy

Emiss =
(P + q − Ph)

2 − q2

2M
=
M2
X −M2

2M
, (10)

was required to fulfill Emiss > 3 GeV. Here, M and
MX stand for the mass of the proton, respectively the
mass of the undetected recoiling system. Finally, a cut
RT > 0.07 was applied, to ensure the well-definition of
the corresponding hadronic plane, hence the angle φR.

A further remark should be given concerning the
polarization of the target. Since it is practically po-
larized along beam direction, there enters a transverse
spin contribution when considering the frame where the
z-axis points along the direction of the virtual photon. In
this analysis, this contribution of transverse polarization
components along the photon axis is neglected due to its
strong suppression in COMPASS kinematics.

All azimuthal asymmetries are extracted in bins of x,
z = z1 + z2 and the invariant mass Minv, including a
correction per kinematic bin regarding the beam polar-
ization, the target polarization, the dilution of the target,
as well as for respective depolarization factors.

IV. RESULTS

Our results for the asymmetries arising at leading
twist are shown in Fig. 3 and Fig. 4, where the statistical
errors are represented by the error bars and the system-
atic uncertainties are indicated by color bands on the
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Figure 2. Measured integrated azimuthal asymmetries arising
in the di-hadron cross-section up to subleading twist, consid-
ering scattering off longitudinally polarized protons. Shown
are the mean values when integrating over the entire kine-
matic range. The upper nine values correspond to asymme-
tries arising in a TMD approach at leading twist while the last
two refer to the asymmetries at subleading twist in a collinear
approach.

bottom of each plot. No eminent kinematic dependence
is observed on any of the considered variables. The
asymmetries are found to be quite narrowly distributed
around zero over the entire kinematic ranges.

Fig. 5 shows our results for the two asymmetries at

subleading twist. The single spin asymmetry A
sin(φR)
UL is

found to be clearly positive within experimental preci-
sion, averaging

A
sin(φR)
UL = 0.0050± 0.0010(stat)± 0.0007(sys). (11)

This measurement confirms non-zero results from CLAS,
measured in the high x-region. As already motivated in
Sec. II the presented results can serve to access the still
unknown PDF hL(x).

The double spin asymmetry A
cos(φR)
LL was found to av-

erage

A
cos(φR)
LL = −0.0135± 0.0064(stat)± 0.0046(sys). (12)

The fact, that this asymmetry is found to be small
within the experimental precision could consequently
corroborate the Wandzura-Wilzcek assumption of negli-
gible quark-gluon correlations on the fragmentation side,

FIG. 18. COMPASS preliminary target spin and double spin asymmetries [4].

HERMES measured transverse target spin asymmetries [68], sensitive to the transversity h1(x) and the
interference fragmentation function H^

1 . These measurements, in conjunction with those by Belle on H^
1 [64],

allowed the extraction of the transversity distribution from SIDIS data [122–124]. Significant asymmetries
were observed, and a future program with a transversely polarized target at CLAS12 as well as the EIC can
help improve and extend these measurements.

B. Preliminary CLAS12 dihadron beam spin asymmetries

CLAS12 recently released a preliminary measurement of the dihadron beam spin asymmetries, shown in
figure 19 [125, 126]. The blue triangles show the sinφR amplitude which is sensitive to the collinear twist-3
PDF e(x) and shows a rise in Mh to about 4%. The sin(φh − φR) modulation is sensitive to the helicity
DiFF G⊥1 , convolved with the unpolarized PDF f1(x), and exhibits a clear sign change near the ρ-meson
mass, somewhat similar to the spectator model from figure 9. The spectator model prediction [90] was for
the target spin asymmetry, which involves the helicity distribution instead of f1(x); since g(x) < f1(x),
it is natural to assume their prediction for the beam spin asymmetry is larger in magnitude, and possibly
consistent with these preliminary results. Finally, the sinφh modulation is included as well, because it turns
out that all three amplitudes are linearly dependent and must be fit altogether simultaneously.
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Asymmetry Modulation Physics Goal Depolarization Ratio K(ε, y) 〈K(ε, y)〉

ALU
sin(φR) e(x) W/A 0.7

sin(φh − φR) G⊥1 C/A 0.8

AUL

sin(φR) hL(x) V/A 1.3

sin(φh − φR) G⊥1 A/A 1

sin(φh + φR) h⊥1L B/A 0.6

ALL
cos(mφh −mφR) D

|`,m〉
1 C/A 0.8

cos(φh + φR) D̃ W/A 0.7

TABLE IV. Table of beam spin, target spin, and double spin asymmetries, and corresponding physics goals.

Target Dilution f Polarization P

NH3 0.2 0.85

ND3 0.285 0.35

TABLE V. Targets along with estimated averages of dilution and polarization.

C. Statistical projections for this proposal

Table IV shows a summary of beam spin, target spin, and double spin asymmetries, along with the primary
physics goals, each a PDF or a DiFF. Shown additionally are the corresponding kinematic depolarization
ratios K(y, ε), which depend on y and ε through equation 3 (see appendix A for definitions), along with
their average values based on present CLAS12 data, taken by Run Group A. In the following statistical
projections of target spin and double spin asymmetries, we base our predicted statistical uncertainty on the
assumption of running on NH3 and ND3 targets, respectively with 120 and 60 PAC days.8

Note that measurements of asymmetries from the ND3 target, as compared to those from the NH3 target,
will have lower statistical precision, because of the lower polarization of ND3 relative to NH3. It would
be advantageous to supplement data from the ND3 target with data from a 3He target, which is a part of
another proposal submitted to PAC48 in parallel with this one; the asymmetry measurements proposed in
this document can also be done with a 3He target, and with their request of 30 PAC days, similar statistical
precision to our proposed measurements with the ND3 target would be achieved.

In principle one could use the fast Monte Carlo to extrapolate asymmetry projections (see appendix C),
however given that we have plenty of data from Run Group A, it is simpler and more accurate to extrapolate
dihadron yields from the data rate, assuming the luminosities will be the same. By counting the number
of dihadrons which pass all event selection criteria from a selection of Run Group A data with minimal
downtime, we estimate a rate of 5.1 Hz for dihadron acquisition.

In addition to the extrapolated dihadron yield, the polarization and dilution factors are also needed.
Table V shows the targets along with mean dilution and polarization factors. Dilution factors for each
target, estimated with the fast Monte Carlo assuming an ideal target,9 are shown in figures 20 and 21, as
a function of the relevant kinematic variables. While there is some mild kinematic dependence, we have
elected to use the average values of the dilution factors in table V for the statistical projections shown below.
Lastly, for projections of the double spin asymmetries, a beam polarization of 0.8 is assumed.

In order to estimate the magnitudes of the expected target spin asymmetries, we make use of the CLAS12
preliminary results on the beam spin asymmetries from a proton (p) target, denoted ApLU , and mean kine-
matic depolarization factors from the data. Note that while it is possible to measure a beam spin asymmetry
in parallel with the proposed measurements, it is not the priority. Nonetheless, it may be interesting to at
least take a preliminary look at the beam spin asymmetry for the different targets.

First we discuss AsinφR
UL , which is sensitive to hL(x). We first assume that for the unpolarized PDFs,

fd(x) = 0.4fu(x). Since some models claim huL(x) to be a bit larger than eu(x), whereas others claim the
opposite, we make the assumption that huL(x) ≈ eu(x). We also make the assumption that ed(x) can range

8 PAC days is a unit of beam time which assumes 100% data-taking efficiency.
9 Note that the target walls and other components may cause a worse dilution factor than our estimates show, but that remains

to be studied.
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FIG. 20. NH3 proton dilution factors versus Mh, x, and z. Only statistical errors shown.
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FIG. 21. ND3 deuteron dilution factors versus Mh, x, and z. Only statistical errors shown.

between 0 and eu(x), which is motivated by the existing models. The remaining freedom is in the ratio
R = hdL(x)/huL(x). Models suggest that R is likely small, and the asymmetries with the smallest magnitudes
occur when |R| < 0.25, so we will consider this range for our projections. For a proton target, the value of
ApUL is approximately twice the value of ApLU , for all values of R in the range. For neutrons (n), however, AnUL
is zero for R = 0.25, approximately equal to ApLU for R = 0, and approximately twice ApLU for R = −0.25;
if R > 0.25, then AnUL will have the opposite sign as ApLU . We therefore have chosen to plot the projections
along a polynomial curve which fits the CLAS12 preliminary data on k · ApLU , where k = 2 for the ApUL
projection and k = 1 for AnUL. Figure 22 shows the resulting projections.

For the other primary target spin asymmetry modulation, A
sin(φh−φR)
UL , the ratio of Ap,nUL to ApLU depends

on the ratio of the helicity PDF to the unpolarized PDF. We find that, for approximate values of these PDFs
taken at x ∼ 0.3, ApUL ≈ 0.4ApLU and AnUL ≈ −0.05ApLU . The smaller target spin asymmetry, relative to the
beam spin asymmetry, is compatible with the recent spectator model predictions [90], so we have therefore
decided to draw the predictions for ApUL and AnUL along a curve which approximates the spectator model
predictions10. The projections are given in figure 23; note that the asymmetry measurement from the ND3

target will not likely be discernible from zero.
Figure 24 shows the projected statistical uncertainties for the cosφR modulation of ALL, which is sensitive

to the twist-3 TMD PDF eL convolved with the interference fragmentation function H^
1 , summed with the

helicity g1(x) convolved with the twist-3 DiFF D̃. Since eL is not collinear, it will vanish under an integral
over the quark transverse momentum, thus a measurement of this asymmetry can constrain the twist-3 DiFF

D̃. Measurements of the collinear twist-3 PDFs e(x) and hL(x) include an additional term involving the

twist-3 DiFF G̃, which is thought to be smaller than D̃. Thus a constraint on D̃ can in turn help further
constrain e(x) and hL(x). COMPASS and CLAS6 measurements of this asymmetry were consistent with zero
[3, 4], so the projected points are also set to zero; no model is assumed and figure 24 shows only statistical
projections.

The numerical values for these projections are given in tables VI-XI. The first and second columns give
the bins in which the asymmetries are shown, written as the bin range and mean. In all projections, the

10 Although these predictions are for COMPASS and EIC energies, the dependence of the model on
√
s appears to be negligible.
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x range 〈x〉 AUL σAUL
[0.00, 0.12) 0.1 0.041 0.0046

[0.12, 0.15) 0.14 0.047 0.004

[0.15, 0.18) 0.16 0.051 0.0041

[0.18, 0.21) 0.19 0.055 0.0044

[0.21, 0.25) 0.23 0.058 0.0044

[0.25, 0.32) 0.28 0.059 0.0041

[0.32, 1.00) 0.4 0.052 0.0043

TABLE VI. Data table for the projection of AsinφR
UL in bins of x, for the NH3 target. See figure 22, left panel.

x range 〈x〉 AUL σAUL
[0.00, 0.12) 0.1 0.021 0.011

[0.12, 0.15) 0.14 0.024 0.0097

[0.15, 0.18) 0.16 0.026 0.0099

[0.18, 0.21) 0.19 0.027 0.011

[0.21, 0.25) 0.23 0.029 0.01

[0.25, 0.32) 0.28 0.03 0.0099

[0.32, 1.00) 0.4 0.026 0.01

TABLE VII. Data table for the projection of AsinφR
UL in bins of x, for the ND3 target. See figure 22, right panel.

bin boundaries are chosen as approximate quantiles. The third column is the value of the asymmetry (only
reported in tables VI-IX), and the fourth column is its statistical uncertainty.

Although we have not prepared projections for the DSIDIS process, we again remark that careful studies
of the separation of the current and target fragmentation regions are needed. As a first step toward this
separation, we can compare the ratio of the number of dihadrons where one hadron has xF < 0 with the
other having xF > 0, to the number of current fragmentation region dihadrons, where both hadrons have
xF > 0. In Run Group A data the ratio is approximately 15% or 5% for π+π− dihadrons, and it depends
on which hadron is associated with which xF cut. Thus the estimated statistical uncertainty of DSIDIS
asymmetries may be a factor of 2–4 times larger than those presented in figures 22-24. If the asymmetries
are not large, then at least a measurement of DSIDIS asymmetries could provide upper bounds and still
constrain the fracture functions.
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FIG. 22. Projection of the sinφR modulation of AUL, versus x, for 120 PAC days with a polarized NH3 target (left)
and for 60 PAC days with a polarized ND3 target (right). See text for details.
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Mh range 〈Mh〉 AUL σAUL
[0.00, 0.46) 0.38 0.0048 0.0046

[0.46, 0.60) 0.53 0.0096 0.0049

[0.60, 0.72) 0.66 0.0077 0.0045

[0.72, 0.81) 0.77 0.0004 0.004

[0.81, 0.93) 0.87 -0.0072 0.0035

[0.93, 1.10) 1 -0.0097 0.0032

[1.10, 3.00) 1.3 -0.0016 0.003

TABLE VIII. Data table for the projection of A
sin(φh−φR)
UL in bins of Mh, for the NH3 target. See figure 23, left panel.

Mh range 〈Mh〉 AUL σAUL
[0.00, 0.46) 0.38 -0.0006 0.011

[0.46, 0.60) 0.53 -0.0012 0.012

[0.60, 0.72) 0.66 -0.00096 0.011

[0.72, 0.81) 0.77 -0.00005 0.0096

[0.81, 0.93) 0.87 0.0009 0.0084

[0.93, 1.10) 1 0.0012 0.0078

[1.10, 3.00) 1.3 0.0002 0.0073

TABLE IX. Data table for the projection of A
sin(φh−φR)
UL in bins of Mh, for the ND3 target. See figure 23, right panel.

z range 〈z〉 σALL
[0.00, 0.43) 0.39 0.0039

[0.43, 0.48) 0.46 0.0041

[0.48, 0.52) 0.5 0.0044

[0.52, 0.57) 0.54 0.0039

[0.57, 0.62) 0.59 0.0041

[0.62, 0.68) 0.65 0.0043

[0.68, 1.00) 0.73 0.0043

TABLE X. Data table for the projected statistical uncertainties of AcosφR
LL in bins of z, for the NH3 target. See figure

24, left panel.

z range 〈z〉 σALL
[0.00, 0.43) 0.39 0.0095

[0.43, 0.48) 0.46 0.01

[0.48, 0.52) 0.5 0.011

[0.52, 0.57) 0.54 0.0095

[0.57, 0.62) 0.59 0.01

[0.62, 0.68) 0.65 0.01

[0.68, 1.00) 0.73 0.01

TABLE XI. Data table for the projected statistical uncertainties of AcosφR
LL in bins of z, for the ND3 target. See figure

24, right panel.
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D. Systematic Uncertainty

The proposed spin asymmetry measurements are rather insensitive to uncertainties in acceptance and
charge normalization, since those are independent of helicity and largely cancel in a ratio of cross sec-
tions. There are systematic uncertainty contributions that do impact the asymmetry magnitude, however.
Uncertainty on the target polarization contributes to a systematic uncertainty on the scale of target spin
asymmetries, and double spin asymmetries receive an additional systematic uncertainty contribution from
the beam polarization uncertainty; both of these uncertainties are estimated to be around 3%. The un-
certainty on the dilution factor also contributes to the asymmetry, along with the ratio of the longitudinal
to transverse photo-absorption cross sections; each of these can also contribute to the uncertainty on the
asymmetry scale of approximately 3–4%.

Additional uncertainties require more thorough study to understand, and many require the data to be
acquired. Uncertainty from radiative corrections, which originate from correcting for QED effects, can affect
the asymmetry. The uncertainty from acceptance effects can be obtained by comparisons of data and Monte
Carlo. Some dihadrons can come from baryonic resonances, which if one chooses to subtract them out of
the asymmetry as a background contribution, can result in an asymmetry with a different scale. Lastly,
dihadrons from vector meson decays can in-turn contribute to higher order partial waves of the unpolarized
dihadron fragmentation function, which will affect the asymmetry extraction. These additional systematic
uncertainties are all being considered in the present CLAS12 analysis of dihadron beam spin asymmetries
[125, 126], since these uncertainty contributions also apply to those measurements, however their evaluation
is not yet mature enough to provide an estimate.
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VII. Summary and Request

Detailed measurements of target spin and double spin asymmetries as a function of relevant kinematical
variables in different bins of x, z, Q2, and Mh, combined with measurements of single-pion and single-
kaon measurements [8, 10], will allow to study the underlying distributions and fragmentation processes.
The use of different polarized targets, NH3 and ND3, will provide access to flavor dependence, while kaon
identification provided by the RICH will allow detection of pion-kaon and kaon-kaon pairs, allowing for
studies of the effect of strange and non-strange sea on the flavor and spin structure of the nucleon.

In recent years, significant experimental and theoretical efforts have been made to understand QCD beyond
twist-2. Twist-3 functions, describing multiparton correlations corresponding to the interference of higher
Fock components in the hadron wave functions, offer fascinating insights into the nucleon structure. In
particular, they describe effects of the transverse color force on quarks, along with correlations between the
color magnetic field and the spin of the nucleon [15, 16].

The main goal of the proposal is to extract information on the twist-3 collinear PDFs e(x) and hL(x),
using the recent progress in understanding of dihadron fragmentation functions (DiFFs) and their extraction
from e+e− data. The formalism of DiFFs is based on collinear factorization with well defined evolution
equations. The plan is to gather a data set on hadron pairs produced from SIDIS in the region 0.1 ≤ x ≤ 0.8,
0.5 ≤Mh ≤ 1.2, and 0.2 ≤ z ≤ 0.8. Global analysis of the data will provide fits to higher twist distribution
functions e(x) and hL(x). Furthermore, double spin asymmetries can help establish limits on the twist-3
dihadron fragmentation functions, which in turn help with the extractions of e(x) and hL(x).

The measurements outlined in this proposal include subleading twist asymmetries, which offer valuable
insights toward understanding why subleading twist effects appear to be larger than leading twist effects

(Acosφ
UU was larger than Acos 2φ

UU [127], Asinφ
UL was larger than Asin 2φ

UL [17]). Precise data on the production of
dihadrons would have an important impact, and motivate further theoretical studies. Ultimately, through a
global study of all of these observables, one could simultaneously obtain better knowledge of twist-3 collinear
functions and twist-2 TMDs, and at the same time test the validity of the formalism.

These data will also help constrain the helicity-dependent DiFF G⊥1 , along with its partial waves. G⊥1 is
sensitive to spin-momentum correlations in hadronization, and may require the interference with a trans-
versely polarized dihadron. Preliminary measurements of beam spin asymmetries at CLAS12 provide the
first experimental evidence of a sizeable G⊥1 , and additionally, indication of a possible sign change of G⊥1
above and below the ρ-resonance mass. The proposed target spin asymmetry measurements will serve to
complement the beam spin asymmetry, helping constrain G⊥1 . Furthermore, the selection of different partial
waves can also help pin down production mechanisms of dihadrons with a particular angular momentum, such
as those from ρ-meson decays. In particular, partial waves of the unpolarized DiFF D1 are also accessible,
via double spin asymmetry measurements.

Another interesting topic of exploration is dihadrons with one hadron produced in the current fragmen-
tation region and the other in the target fragmentation region. This process is known as Double SIDIS [95],
and is sensitive to the fracture functions, which describe the probability of the production of a hadron in the
target fragmentation region, on the condition that a quark in the target was struck and later fragments into
additional hadrons. The large acceptance at CLAS allows for the unique opportunity for this measurement.

The proposed set of measurements with longitudinally polarized proton and deuteron targets, respectively
the NH3 and ND3 targets, will yield a comprehensive set of azimuthal moments in spin-dependent and
independent SIDIS, providing access to corresponding distribution and fragmentation functions in a wide
range of x, Q2, z, and Mh. Our data, combined with the data from HERMES, COMPASS, and Belle, will
provide independent (and complementary to e+/e−) measurements of pion and kaon dihadron fragmentation
functions and will allow a study of subleading twist distributions complementary to single hadron SIDIS
analyses. To achieve these measurements, we request to run as a Run Group C addition. The measurements
are proposed to occur during the approved beam time for Run Group C experiments [7–12] of 185 PAC days:
120 days with the polarized NH3 target and 60 days with the polarized ND3 target, plus 5 days for auxiliary
data.
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Appendices

A. Depolarization Factors

The depolarization factors from Eq.2 can be written as

y2

2 (1− ε)
=

1

1 + γ2

(
1− y + 1

2 y
2 + 1

4 γ
2y2
)
≈
(
1− y + 1

2 y
2
)
≡ A(y), (76)

y2

2 (1− ε)
ε =

1

1 + γ2

(
1− y − 1

4 γ
2y2
)

≈ (1− y) ≡ B(y), (77)
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√
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(
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2 y
)

≈ y
(
1− 1

2 y
)
≡ C(y). (80)

B. Convolutions

For an arbitrary function w(k,p) we introduce the notation

C[M̂ ·Dw] =
∑
a

e2
a

∫
d2k d2p δ(2)(zk + p−PT1) M̂a(x, ζ,k2,P2

T2,k ·PT2)Da(z,p2)w, (81)

where k,PT1 and PT2 are the two-dimensional transverse momenta of quark, hadrons 1 and 2 with respect
to virtual photon momentum and p is a hadron 1 transverse momentum with respect to fragmenting quark
momentum. Then, using the identity for Kronecker delta-function in two-dimensional vectors space(

P2
T1P

2
T2 − (PT1 ·PT2)2

)
δij = P2

T2P
i
T1P

j
T1 + P2

T1P
i
T2P

j
T2 − (PT1 ·PT2)

(
P iT1P

j
T2 + P jT1P

i
T2

)
, (82)

we have the following general tensorial decomposition over independent structures:

C[M̂ ·D] = F M̂ ·D0 ,

C[M̂ ·Dki] = P iT1 F
M̂ ·D
k1 + P iT2 F

M̂ ·D
k2 ,

C[M̂ ·Dpi] = P iT1 F
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j
T1 F

M̂ ·D
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j
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j
T1 F

M̂ ·D
kp1 + P iT2P

j
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C[M̂ ·Dkikjpk] = P iT1P
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M̂ ·D
kkp1 + P iT1P

j
T1P
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+ P kT1δ
ij F M̂ ·Dkkp5 + P kT2δ

ij F M̂ ·Dkkp6 . (83)

Note, that the functions in the r.h.s. of above equations depend on x, z, ζ,P2
T1,P

2
T2,PT1 ·PT2.

From Eq.(83), after contracting by appropriate tensorial combinations, constructed from components of
PT1 and PT2 and δij , we can easily obtain

F M̂ ·Dk1 = C

[
M̂ ·D (PT1 ·PT2)(PT2 · k)− (PT1 · k)P2

T2

(PT1 ·PT2)
2 −P2

T1P
2
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]
,
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[
M̂ ·D (PT1 · k)(PT1 ·PT2)− (PT2 · k)P2

T1

(PT1 ·PT2)
2 −P2

T1P
2
T2

]
. (84)
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F M̂ ·Dp1 = C

[
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F M̂ ·Dkp1 = C
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C. Simulation

The CLAS12 FAST-MC program was used to simulate the physics events and study the extraction of
azimuthal moments and acceptance corrections. Events were generated with the clas12DIS generator [128],
which is basically an implementation of the LUND Monte Carlo package called PEPSI (Polarized Electron-
Proton Scattering Interactions) [129]. It is based on polarized and unpolarized parton distribution functions
and the LUND string model for hadronization (both in target and current fragmentation region), and has
been tested successfully against several low-Q2 experiments with 5.7 GeV beam at Jefferson Lab.

A fast Monte Carlo simulation program has been used to define the acceptance and resolution of the
CLAS12 detector with all of the standard (base) equipment in place. The kaons were assumed identified
100% in sectors covered by CLAS12-RICH, and also at energies above 5 GeV, where the pions start to fire
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FIG. 25. Missing mass distributions for kaons and pion pairs from PEPSI MC for ehhX events.
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FIG. 26. x and W -distribution of pion pairs.

the High Threshold Cherekov Counter (HTCC). The events generated by clas12DIS are used as input and
all particles are followed through all detector elements.

The resolution of the detector is simulated by a simple smearing function which modifies a particle’s track
by a random amount in momentum and angles according to a Gaussian distribution of the appropriate width.
The amount of smearing follows the design specifications of the CLAS12 detector. The resolution in x varies
between 0.01 < σx < 0.035 and is therefore finer than our planned x bin size of 0.05 in all cases. Figures
25–32 show various kinematic distributions from this simulation.

A full Monte Carlo simulation (GEANT-based) of CLAS12 with all resolution effects will be used to
determine the effective mean x (and Q2) for each x-bin we will use to bin our data so we can accurately
extract the x-dependence of the measured asymmetries.
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FIG. 27. z and y-distributions of pion pairs.
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FIG. 29. The Q2-distribution of pion pairs (left) and the φR-distribution of the pair (right).
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