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Abstract
The neutron is a cornerstone in our depiction of the visible universe, and the precise measurement of its

charge radius, rn, is among the most essential parts of unraveling its structure. Despite the neutrons net zero
electric charge, the asymmetric distribution of the positively-charged (up) and negatively-charged (down)
quarks in the system lead to a negative r2

n. The determination of rn has historically relied exclusively on
measurements of the neutron-electron scattering length, bne, from neutron scattering off electrons bound
in diamagnetic atoms. The rn measurements accepted by the particle data group are now over two decades
old and have long exhibited unresolved discrepancies. Here we propose a new rn measurement, based
on a novel extraction of the neutron electric form factor, Gn

E , at low four-momentum transfer squared
(Q2) from measurements of the N → ∆ transition, by exploiting the long known connection between
the quadrupole transitions and the neutron electric form factor. The proposed measurements will access
〈r2

n〉 with a ±0.005 ( f m2) uncertainty, and will offer new input toward addressing the long standing
discrepancies in rn measurements. Furthermore, the measurements will test an electric form factor based
charge-radius extraction methodology on the isospin partner of the proton, whose corresponding charge
radius measurements have been questioned recently in light of the proton radius puzzle. New data will also
allow the flavor decomposition of the nucleon electromagnetic form factors at low momentum transfers,
and from the derivative of the flavor dependent Dirac form factors at Q2 = 0 the mean square radii of the
quark distributions will be determined.
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1 Introduction
The study of the nucleon charge radius has been historically instrumental towards the understanding of the
nucleon structure. Employing different techniques in extracting this fundamental quantity has proven most
valuable, as recently exhibited in the case of the proton. The recent disagreement of the proton charge
radius, rp, as determined using the measurement of the Lamb shift in the muonic hydrogen atom1, with the
earlier results based on the hydrogen atom and the electron scattering measurement, gave rise to the proton
radius puzzle2. This, in turn, led to a significant reassessment of the methods and analyses utilized in the
radius extraction, and to the consideration of physics beyond the standard model as potential solutions to
resolve this discrepancy. Many atomic and nuclear physics techniques have been applied to extract the
proton rp, while for the neutron, isospin partner of the proton, the rn determination is more challenging
since no equivalent atomic method is possible and the electron scattering method suffers from severe
limitations due to the absence of a free neutron target. Contrary to the proton, the extraction of rn has
been uniquely based on the measurement of the neutron-electron scattering length bne, where low-energy
neutrons are scattered by electrons bound in diamagnetic atoms. The 〈r2

n〉 measurements adopted by
PDG3–6, the most recent of which is dated two decades ago, exhibit discrepancies, with the values ranging
from 〈r2

n〉 = −0.115± 0.002± 0.003 ( f m2)3 to 〈r2
n〉 = −0.134± 0.009 ( f m2)5. Among the plausible

explanations that have been suggested for this, one can find the effect of resonance corrections and of the
electric polarizability, as discussed e.g. in4, but these discrepancies have not been fully resolved.

An alternative way to determine rn is offered by measuring the slope of the neutron electric form
factor, Gn

E , at Q2→ 0, which is proportional to 〈r2
n〉. In the past, determinations of Gn

E at finite Q2 were
typically carried out by measuring double polarization observables in quasi-elastic electron scattering from
polarized deuterium or 3He targets using polarized electron beams7–20. However, these measurements
were not able to access Gn

E at a sufficiently low Q2 range for the slope, and subsequently the 〈r2
n〉, to be

determined. Here we propose to follow an alternative path to access Gn
E . It has long been known21, 22

that the ratios of the quadrupole to the magnetic dipole transition form factors of the proton, C2/M1 and
E2/M1, are related to the neutron elastic form factors ratio Gn

E/Gn
M. The transition form factors can be

measured with high precision at low momentum transfers, as recent experiments have shown23–27. This,
in-turn, opens up the path to access the Gn

E at low momentum transfers from high precision measurements
of the quadrupole transition form factors, and from the Gn

E slope at Q2 = 0 to determine the neutron charge
radius rn.

2 Measurement of Gn
E

A consequence of the SU(6) spin and flavor symmetry group in which the nucleon and the ∆ resonance
belong leads to the following expression21

Gn
E(Q

2)

Gn
M(Q2)

=
Q
|q|

2Q
MN

1
nb(Q2)

C2
M1

(Q2) (1)

where q is the virtual photon three-momentum transfer magnitude in the γN center of mass frame,
MN is the nucleon mass, and nb describes three-quark current terms that slightly increase the C2/M1
ratio (or correspondingly decrease the Gn

E/Gn
M), an SU(6) symmetry breaking correction that has been

theoretically quantified to ≈ 10%21 (i.e. nb ≈ 1.1). If one follows the most conservative path, a theoretical
uncertainty can be assigned that is equal to the full magnitude of the symmetry breaking contributions
i.e. nb = 1.1±0.1. Considering the confidence with which the underlying theory is able to determine the
level of the symmetry breaking contributions, the above assumption leads to a safe estimation, and most
likely to an overestimation, of the theoretical uncertainty.
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Figure 1. a) The Gn
E/Gn

M: neutron world data7–20 (open-circles), ratios calculated from the N→ ∆

measurements23–31 through Eq. 1 for nb = 1 (filled-squares), and LQCD results (filled-circles)32.
b) The breaking corrections nb (dashed line) and δnb uncertainty (shaded band) as determined by the
experimental data in panel (a). The solid line indicates the theoretical determination of nb

21.
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Figure 2. The Gn
E/Gn

M results from the large-Nc analysis with the Coulomb quadrupole data (filled
diamonds) and with the Electric quadrupole data (filled boxes) from the experiments23–31. The neutron
world data (open-circles) and the LQCD results (filled-circles)32 are the same as in Fig 1.
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Figure 3. a) Green diamonds: the Gn
E results from the SU(6)21 analysis of the measurements23–27. Red

boxes: the Gn
E results from the Large-Nc

22 analysis of the data. The fit to the data from the
parametrization of Eq. 6 is shown with the dashed and the solid curves, respectively.
b) Blue circles: The final Gn

E results extracted from the weighted average result of the SU(6) and the
large-Nc analysis of the23–27 measurements. The variance of the two data sets is quantified as a theoretical
uncertainty. The solid curve shows the fit to the data from the parametrization of Eq. 6, with its
uncertainty (shaded band). The Gn

E world data (open-circles)7–20 are also shown.

The wealth of the C2/M123–31 and of the Gn
E/Gn

M
7–20 world data allow to go one step further and

determine the magnitude of the symmetry breaking corrections. In Fig. 1a we compare the neutron Gn
E/Gn

M
world data7–20 to the Gn

E/Gn
M ratios that have been derived from the C2/M1 measurements23–31 through

Eq. 1 with nb = 1, i.e. uncorrected for the symmetry breaking contributions. The nb(Q2) can be determined
experimentally by parametrizing the two data sets, FR(Q2) and F∗R (Q

2) respectively, and forming their
ratio nb(Q2) = F∗R (Q

2)/FR(Q2). A variety of functional forms have been explored to identify those that
can provide a good fit to the data, and all the appropriate functions are considered in the determination of
nb. The experimentally determined nb(Q2) is shown in Fig. 1b. In order to further refine this procedure,
at low momentum transfers where neutron data do not exist, we have extracted the ratio Gn

E/Gn
M from

numerical simulations within lattice Quantum Chromodynamics (LQCD) using the Gn
E and Gn

M data of
Ref32. The LQCD data provide input on the Q2-dependence of the Gn

E/Gn
M ratio based on ab-initio QCD

calculations, they allow for further improvements to the parametrization of the neutron data, and lead to a
rather small refinement of ≤ 0.003 in the nb determination.

The LQCD results exhibit a remarkable agreement with the experimental world data, as shown in
Fig. 1a. The parameters of the LQCD calculation are such that they reproduce the physical value of the
pion mass. Thus, such a calculation eliminates a major source of systematic uncertainties, that is, the need
of a chiral extrapolation. Furthermore the lattice results include both the connected and disconnected
diagram, and therefore Gn

E and Gn
M include both valence and sea quark contributions.

The experimentally determined nb(Q2) is in excellent agreement with the theoretical prediction21, as
seen in Fig. 1b, and this fact offers further credence to the theoretical effort in the literature21. Furthermore,
it allows to constrain the nb(Q2) uncertainty by a factor of two compared to the most conservative
nb = 1.1± 0.1, as indicated by the width of the uncertainty band in Fig. 1b. For the analysis of the
proposed (projected) measurements, as well as that of the existing data23–27 at low-Q2, we have explored
the Gn

E extraction under both scenarios i.e. with nb = 1.1±0.1, and with the nb as determined from the
experimental data (Fig. 1b). The two sets of results come to a remarkable agreement, within a ≤ 3% level
(much smaller compared to the overall Gn

E uncertainty), a consequence of the excellent nb agreement
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between the two cases. A slightly smaller Gn
E uncertainty is obtained in the latter case due to a smaller

level of the nb uncertainty, which in-turn naturally leads to a slightly improved rn-uncertainty; nevertheless
as this uncertainty is not a leading factor in the rn extraction the difference in the final result is very small.

The Gn
E uncertainty arises from the following factors:

1. Experimental (statistical and systematic) uncertainties in the determination of C2/M1.

2. Model uncertainties in the determination of C2/M1 due to the presence of non-resonant pion
electro-production amplitudes that interfere with the extraction of the resonant amplitudes. These
effects have been studied by employing theoretical pion electro-production models33–37 in the data
analysis (e.g. see Refs.23–27), and were experimentally investigated by measuring C2/M1 through
an alternative reaction channel, the p(e,e′p)γ27, were one employs a different theoretical framework
for the ratio extraction.

3. The uncertainty of the symmetry breaking contributions δnb.

4. In order to extract the Gn
E from the Gn

E/Gn
M ratio, we use a parametrization of the well known Gn

M, as
typically done in such cases (e.g.9, 16 etc). Here we have used the one from Ref.38. The uncertainty
introduced by Gn

M is studied by employing different Gn
M-parametrizations, and is found ≈ 0.5%, a

small effect compared to the total uncertainty.

The relation between the Gn
E and the quadrupole transition form factors has also been established

through large-Nc relations22. The relations take the form

E2
M1

(Q2) =

(
MN

M∆

)3/2 M2
∆
−M2

N
2Q2

Gn
E(Q

2)

F p
2 (Q

2)−Fn
2 (Q

2)
(2)

C2
M1

(Q2) =

(
MN

M∆

)3/2 Q+Q−
2Q2

Gn
E(Q

2)

F p
2 (Q

2)−Fn
2 (Q

2)
(3)

where F p(n)
2 are nucleon’s Pauli form factors, M∆ is the mass of the ∆, and Q± = ((M∆±MN)

2 +Q2)
1
2 .

Here one is free from any additional correction terms, such as the symmetry breaking contributions of
Eq. 1. Another advantage is that the experimental data base is extended to include the Electric quadrupole
(E2) transition, which in turn allows for an improved extraction of the Gn

E . Being able to extract the Gn
E

independently through the Coulomb and the Electric quadrupole transitions offers a strong experimental
test to the validity of the large-Nc relations and allows to quantify their level of theoretical uncertainty. The
above relations come with a 15% theoretical uncertainty22 that is treated accordingly in the Gn

E analysis.
The Gn

E extraction from the Coulomb and from the Electric quadrupole transitions world data agree nicely
within that level, as can be seen in Fig. 2, and validate this number. For the well known Gp

E , Gp
M and Gn

M
that enter in the expressions through the Pauli form factors we use recent parametrizations; for the Gp

M
and Gn

M we use38, while for Gp
E we performed an updated parametrization so that we may include recent

measurements from39 that were not yet available in38 using the widely used functional form

Gp
E =

1+(
2
∑

i=1
aixi

i)

(1+
4
∑
j=1

b jx
j
j)

. (4)
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In order to exhibit the potential of the method we have performed the Gn
E analysis with the JLab/Hall-A

and MAMI/A1 measurements23–27 at low-Q2, in a kinematical region similar, and partially overlapping, to
the proposed measurements. The results of the SU(6) based analysis and of the large-Nc analysis is in
remarkable agreement as exhibited by the red and green points in Fig. 3(a). The weighted average of the
two values leads to the final Gn

E result that is shown in Fig. 3(b) (blue circles), where the variance of the
two values from the different analyses is assigned as an additional Gn

E theoretical uncertainty.

3 Neutron radius extraction
The neutron mean square charge radius is related to the slope of the neutron electric form factor as Q2→ 0
through

〈r2
n〉= −6

dGn
E(Q

2)

dQ2

∣∣∣∣
Q2→0

. (5)

The Gn
E(Q

2) has to be parametrized and fitted to the experimental data, and from the slope at Q2 = 0 the
〈r2

n〉 is determined. Our studies, utilizing the low-Q2 Gn
E data from the analysis of the JLab/Hall-A and

MAMI/A1 measurements23–27 as well as projected measurements from this proposal, have shown that the
most robust function for the radius extraction takes the form

Gn
E(Q

2) = (1+Q2/A)−2 Bτ

1+Cτ
, (6)

where τ = Q2/4m2
N , and A,B,C are free parameters. It involves a similar form to the Galster40. The

Galster is a long standing phenomenological parametrization that could adequately describe the early Gn
E

data, but as recent experiments revealed it does not have sufficient freedom to accommodate reasonable
values of the radius, without constraining or compromising the fit. Here, instead of using the standard
dipole form factor with Λ2 = 0.71(GeV/c)2 an additional free parameter A is introduced (see Eq. 6). A
second parametrization, giving a good fit to the data, involves the sum of two dipoles

Gn
E(Q

2) =
A

(1+ Q2

B )2
− A

(1+ Q2

C )2
. (7)

This form has been explored in the past16 but with only two free parameters and with the 〈r2
n〉 already

constrained by the measurement of the neutron-electron scattering length bne. Here we have removed
the constraint on the neutron charge radius and we have introduced an additional free parameter. The
fitted results of the two parametrizations come to an excellent agreement, with the two curves being nearly
indistinguishable by eye, resulting to a nearly identical result for the rn. Nevertheless, our studies revealed
that the two-dipole fit suffers from limitations in the determination of the radius, and we will thus for
consistency adopt only the paramterization of Eq. 6 for the extraction of 〈r2

n〉. The radius extraction will be
repeated with multiple Gn

M parametrizations so that the uncertainty introduced by the Gn
M parametrization

is quantified; our studies have shown that this uncertainty is approximately an order of magnitude smaller
compared to the total 〈r2

n〉 uncertainty.

4 Flavor dependent form factors
The proposed Gn

E measurements will allow a unique insight into the flavor decomposition of the elastic
nucleon electromagnetic form factors at low Q2. To that end, one can follow the same line of work as
previously done with the high Q2 measurements41. Starting from the Dirac and Pauli nucleon form factors
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Figure 4. The projected measurements from the u- and d-quark flavor decomposition of the F1 form
factor. The F1 form factor as derived for the neutron world data (empty-symbols) and from the Gn

E
analysis of the23–27 measurements (empty-crossed-symbols) is shown. The LQCD results that have been
extracted using the data of32 are also shown on the figure.

Fp(n)
1 and Fp(n)

2 , under charge symmetry we perform the flavor decomposition of the form factors using
the relations

Fu
1(2) = 2F p

1(2) + Fn
1(2) Fd

1(2) = 2Fn
1(2) + F p

1(2) (8)

where with Fu
1(2) and Fd

1(2) we refer to the up and down quark contributions to the Dirac (Pauli) form
factors of the proton. The normalizations of the Dirac form factors at Q2 = 0 are given by Fu

1 (0) = 2 and
Fd

1 (0) = 1 so as to yield a normalization of 2 and 1 for the u and the d-quark distributions in the proton,
respectively. For the Pauli form factors at Q2 = 0 the normalizations are given by Fq

2 (0) = κq, where
κu and κd can be expressed in terms of the proton (κp) and neutron (κn) anomalous magnetic moments
as κu ≡ 2κp +κn = +1.67 and κd ≡ κp + 2κn = −2.03. The proposed measurements will extend the
flavor decomposition of the form factors down to Q2 = 0.015 (GeV/c)2, as seen in Fig. 4. Each data point
corresponds to a Gn

E measurement, while for Gp
E , Gp

M and Gn
M a parametrization is utilized, as described

earlier. The slopes of the flavor dependent Dirac form factors at Q2 = 0 are related to the mean square
radius of the quark distributions

〈b2
u(d)〉=

−4

Fu(d)
1 (0)

dFu(d)
1 (Q2)

dQ2

∣∣∣∣∣
Q2→0

(9)

where b denotes the quark position in the plane transverse to the longitudinal momentum of a fast moving
nucleon. Fitting the experimental Fu(d)

1 data we will extract these quantities with a high precision. This
will in turn offer a direct measurement that will allow to cross check, and quantify, the indirect conclusion
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derived by the high-Q2 measurements41, where a wider distribution for the singly-represented quark,
compared to the doubly-represented quarks, in the nucleon is suggested.

5 N→ ∆ transition form factors
The first excited state of the nucleon dominates many nuclear phenomena at energies above the pion-
production threshold and plays a prominent role in the physics of the strong interaction. The study
of the transition form factors in-turn has allowed to explore various aspects of the nucleonic structure.
Hadrons are composite systems with complex quark-gluon and meson cloud dynamics that give rise to
non-spherical components in their wavefunction, which in a classical limit and at large wavelengths will
correspond to a “deformation"42–44. The determination and subsequent understanding of the shapes of the
fundamental building blocks in nature is a particularly fertile line of investigation for the understanding of
the interactions of their constituents amongst themselves and the surrounding medium. For hadrons this
means the interquark interaction and the quark-gluon dynamics. For the proton, the only stable hadron, the
vanishing of the spectroscopic quadrupole moment, due to its spin 1/2 nature, precludes access to the most
direct observable of deformation. As a result, the presence of the resonant quadrupole amplitudes E3/2

1+ and

S3/2
1+ (or E2 and C2 photon absorption multipoles respectively) in the predominantly magnetic dipole M3/2

1+
(or M1) γ∗N→ ∆ transition has emerged as the experimental signature for such an effect23–31, 33, 34, 36, 42–71.
Nonvanishing quadrupole amplitudes will signify that either the proton or the ∆+(1232) or more likely
both are characterized by non-spherical components in their wavefunctions. These amplitudes have
been explored up to four momentum transfer squared Q2 = 7 (GeV/c)2 23–31, 48–56, 56–59, 62–64 and the
experimental results are in reasonable agreement with models invoking the presence of non-spherical
components in the nucleon wavefunction.

In the constituent-quark picture of hadrons, the non-spherical amplitudes are a consequence of the non-
central, color-hyperfine interaction among quarks43, 46. However, it has been shown that this mechanism
only provides a small fraction of the observed quadrupole signal at low momentum transfers, with the
magnitudes of this effect for the predicted E2 and C2 amplitudes47 being at least an order of magnitude
too small to explain the experimental results and with the dominant M1 matrix element being ≈ 30% low.
A likely cause of these dynamical shortcomings is that such quark models do not respect chiral symmetry,
whose spontaneous breaking leads to strong emission of virtual pions (Nambu-Goldstone Bosons)45. These
couple to nucleons as ~σ ·~p where ~σ is the nucleon spin, and ~p is the pion momentum. The coupling is
strong in the p wave and mixes in non-zero angular momentum components. Based on this, it is physically
reasonable to expect that the pionic contributions increase the M1 and dominate the E2 and C2 transition
matrix elements in the low Q2 (large distance) domain. This was first indicated by adding pionic effects
to quark models65–67, subsequently in pion cloud model calculations33, 34, and recently demonstrated in
Chiral Effective Field Theory calculations68. With the existence of these non-spherical amplitudes well
established, recent high precision experiments and theoretical efforts have focused on testing in depth the
reaction calculations and decoding the underlying nucleon dynamics. This proposal focuses on the low
momentum transfer region, where the mesonic cloud dynamics is predicted to be dominant and rapidly
changing (e.g. see Fig. 5), offering a test bed for chiral effective field theory calculations. Furthermore,
the new measurements will be able to test the theoretical prediction that the Electric and the Coulomb
quadrupole amplitudes converge as Q2→ 0.
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Figure 5. The effect of the pion cloud to the resonant amplitudes as predicted by the Sato Lee
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6 The Experiment
6.1 Experimental apparatus and set-up
The experiment will involve measurements of the p(e,e′p)π0 reaction. As shown in Fig. 6, the SHMS will
detect the scattered electrons and the HMS will detect the protons. The undetected pion will be identified
through the missing mass reconstruction. The spectrometers will employ their standard detector packages
which are shown in Fig. 7 and Fig. 8 for the HMS and SHMS. For the SHMS, the Argon/Neon Cerenkov
would be replaced by a vacuum pipe which is an additional standard SHMS detector stack configuration.
This will reduce the multiple scattering before the SHMS drift chambers and improve the missing mass
resolution. The target requested is a 4 cm LH2 cell, while the a beam current will be ranging from 6 µA to
15 µA. With the small expected π− to electron rate (see Table 2) the calorimeter alone in the SHMS will
provide all the needed π− from electron separation. With the proton’s momenta under 1.0 GeV/c, timing
information will be more than sufficient to separate protons from π+’s in the HMS. Dedicated optics runs
will be required for the SHMS spectrometer since it will acquire data in momenta around 1 GeV/c, as
well as a set of elastic runs for calibration and normalization purposes. The beam energy required is 1.3
GeV for all kinematic settings.

6.2 Kinematical Settings
The kinematical settings are summarized in Table 1. The SHMS spectrometer will be set to access a
range of Q2 settings, and for each one of these settings the HMS spectrometer will cover an extended
phase space through a series of sequential measurements. The phase space that will be covered by the
measurements is shown in Fig. 9, after the first layer of acceptance cuts and phase space masking has
been applied. For the data analysis, the phase space will be further binned in nine Q2 bins (increments of
0.005 (GeV/c)2) and in 2 deg. bins in θ ∗pq. The beam current for the settings b, c, and d will be 15 µA.
For the settings in group-a the beam current will be set to 6 µA so that the SHMS rate can stay below
the 1 MHz level (recently, during the summer 2019 running period, we were able to operate the SHMS
spectrometer at the 1.3 MHz rate without any concern, in a similar configuration during the E12-15-001
experiment). The HMS singles rate is at a comfortable level of a few tens of KHz for all the settings, as
shown in Table 2. These rates have been calculated using the well established Wiser calculations for pions
and protons, and the Bosted inelastic calculation folded with the SHMS acceptance for electron-singles.
The signal-to-noise ratio (S/N), within a coincidence timing window of 1.5 ns, ranges between 1.2 and 7,
as given in Table 1. Further suppression of accidentals can be achieved by applying a missing mass cut in
the data analysis.
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Figure 6. An illustration of the experimental hall and the proposed kinematic settings in Hall-C. See
Tab. 1 for exact central angle and central momentum settings for each spectrometer arm.
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Figure 7. HMS Detector stack.

Figure 8. SHMS Detector stack. For this experiment, the standard SHMS configuration in which the
Argon/Neon Cerenkov is replaced with a vacuum pipe will be used.
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Setting SHMS θ (deg) SHMS P (MeV/c) HMS θ (deg) HMS P (MeV/c) S/N Time (hrs)
1a

7.29 952.26

18.77 532.53 2 7
2a 25.17 527.72 2 7
3a 33.7 506.61 3.2 6
4a 42.15 469.66 4.3 5
5a 50.44 418.56 4.9 5
6a 54.47 388.38 4.9 5
7a 12.37 527.72 2.7 6
1b

8.95 946.93

22.01 547.54 1.2 6
2b 28.24 542.61 1.4 6
3b 36.52 520.95 2.5 5
4b 44.64 483.08 3.4 4
5b 52.68 430.78 3.7 4
6b 56.53 399.92 3.5 4
7b 12.46 535.98 1.6 5
1c

10.37 941.61

24.40 562.00 1.5 9
2c 30.47 556.95 1.9 9
3c 38.52 534.79 3.5 6
4c 46.47 496.06 4.4 6
5c 54.17 442.64 4.8 6
6c 57.85 411.16 4.8 6
7c 12.69 543.24 2 6
1d

11.63 936.28

26.24 575.96 1.8 12
2d 32.16 570.80 2.5 11
3d 40.01 548.17 4.5 8
4d 47.73 508.64 5.5 8
5d 55.18 454.17 6.9 7
6d 58.71 422.13 6 8
7d 12.47 548.17 2.1 10

Table 1. The kinematical settings of the proposed measurements. The signal-to-noise ratio and the
required beam time are given for each setting.
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Setting SHMS e− (KHz) SHMS π−(KHz) HMS p (KHz) HMS π+ (KHz)
1a

970.2 5.04

5.1 25.6
2a 5.6 23.5
3a 5.3 19.1
4a 4.3 15.9
5a 3.2 14.8
6a 2.6 15.1
7a 4.0 23.8
1b

885.1 11.5

11.6 49.7
2b 11.8 42.7
3b 10.4 33.3
4b 8.2 27.7
5b 5.8 26.2
6b 4.7 27.3
7b 8.4 49.3
1c

510.0 12.0

11.9 45.3
2c 11.6 37.3
3c 9.8 28.4
4c 7.5 23.5
5c 5.2 22.9
6c 4.1 24.2
7c 8.6 49.1
1d

331.1 12.3

11.9 40.9
2d 11.2 32.8
3d 9.2 24.6
4d 6.9 20.5
5d 4.7 20.3
6d 3.6 21.7
7d 8.6 48.7

Table 2. Singles rates for the SHMS and the HMS spectrometers.
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Figure 9. The phase space that will be accessed by the proposed measurements, after a first layer of
acceptance cuts and phase space masking has been applied.

6.3 Data analysis and projected results
The cross section of the p(e,e′p)π◦ reaction is sensitive to a set of independent partial responses
(σT ,σL,σLT ,σT T ) :

d5σ

dωdΩedΩcm
pq

= Γ(σT + ε·σL− vLT ·σLT ·cosφ
∗
pq + ε·σT T ·cos2φ

∗
pq)

where vLT =
√

2ε(1+ ε) is a kinematic factor, ε is the transverse polarization of the virtual photon, Γ

is the virtual photon flux, and φ∗pq is the proton azimuthal angle with respect to the electron scattering
plane. The differential cross sections (σT ,σL,σLT ,σT T , and σLT ′) are all functions of the center-of-
mass energy W, the Q2, and the proton center of mass polar angle θ ∗pq (measured from the momentum
transfer direction). The σ0 = σT + ε ·σL response is dominated by the M1+ resonant multipole while
the interference of the C2 and E2 amplitudes with the M1 dominates the Longitudinal - Transverse
and Transverse - Transverse responses, respectively. Cross section measurements will be performed
on the nucleon resonance region, extending from Q2 = 0.015 (GeV/c)2 to Q2 = 0.055 (GeV/c)2 and
covering the θ ∗pq range from 0◦ to 90◦. For part of the θ ∗pq coverage (due to space limiataions of the
experimental setup) the proton spectrometer will be sequentially placed at φ∗pq = 0◦ and 180◦, thus allowing
to measure the in-plane azimuthal asymmetry of the cross section with respect to the momentum transfer
direction, A(φpq=0,π) = [σφpq=0−σφpq=180]/[σφpq=0 +σφpq=180], which will enhance the sensitivity to the
measurement of the Coulomb quadrupole amplitude. Here, for the pair of φ∗pq = 0◦ and 180◦ measurements
the cross sections and asymmetries will be obtained with the phase space matched in (W,Q2,θ ∗pq). A first
level of acceptance cuts will be applied in the data analysis in order to limit the phase space to the central
region of the spectrometers and to ensure that potential edge effects will be avoided, and after that the
phase space will be further binned. Point cross sections will be extracted from the finite acceptances
by utilizing the cross section calculations from the state of the art theoretical models33–37 in the Monte
Carlo simulation, while radiative corrections will also be applied to the data analysis using the Monte
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Figure 10. The parasitic measurement of the p(e,e′p)π◦ reaction at Q2 = 0.3 (GeV/c)2 during the
E12-15-001 data taking, using the same experimental arrangement that will be used in the proposed
measurements. The simulation has been weighted with the MAID cross section.

Carlo simulation. The cross section systematic uncertainties will be of the order of 3%, dominating
over the better than 1% statistical uncertainties. The systematic uncertainties are driven by the level of
understanding of the acceptance, the uncertainty of the beam energy and of the scattering angle, and to a
smaller extent by the target density, detector efficiencies, target cell background, target length, beam charge,
dead time corrections (each contributing in the range of 0.5% to 0.3%). In the asymmetry measurements
the systematic uncertainties will be further suppressed through the cross section ratio, while an advantage
is presented here by the fact that the electron spectrometer position and momentum settings do not change
during the asymmetry measurements. This level of uncertainties has been successfully demonstrated in
similar measurements that we have performed in the past, at JLab and at MAMI, with similar experimental
setups e.g. 23–26 and at a similar Q2 range. Furthermore, we recently had the opportunity to measure the
same reaction channel, through a parasitic measurement, during the running of the E12-15-001 experiment.
This measurement was performed at a slightly higher momentum transfer, at Q2 = 0.3 (GeV/c)2, but with
the exact same experimental setup that we propose here i.e. with the SHMS and the HMS spectrometers
detecting electrons and protons in coincidence, respectively. The preliminary analysis of this data has
demonstrated an excellent understanding of the coincidence acceptance and of the systematic uncertainties,
as well as the readiness of all the experimental and theoretical tools involved in this effort. In Fig. 10
the comparison of the data with the simulation is presented. The simulation has been weighted with the
MAID cross section, which has been tested to be very successful in this kinematical region. The data have
been corrected for all known efficiencies (and they have not been arbitrarily normalized to the simulation).
The comparison illustrates the excellent understanding of the acceptance within the simulation, as well as
the excellent measurement of the reaction’s cross section.

An important aspect of these measurements involves the treatment of the non-resonant pion electro-
production amplitudes that interfere with the extraction of the resonant amplitudes in the N→ ∆ transition.
These interfering contributions, small in magnitude but large in number, can not be sufficiently constrained
by the experimental measurements, and they thus result into a model uncertainty for the quadrupole
transition form factors. In the past these contributions have been frequently poorly studied or quoted as an
uncertainty. Here, the effect of these amplitudes has been studied in the following manner. State of the art
theoretical pion electroproduction models33–37 will be employed in the data analysis. Fits of the resonant
amplitudes will be performed while taking into account the contributions of background amplitudes from
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Figure 11. Projected cross section measurements at Q2 = 0.02 (GeV/c)2 and φ∗pq = 180◦. The solid
line shows the MAID cross section (C2/M1=-4.5%). The dashed line shows the cross section prediction
for C2=0.

the different models. The models offer different descriptions for the background amplitudes, leading to
deviations in the extracted values of the transition form factors that are quantified as a model uncertainty.
This uncertainty will in-turn be appropriately treated in the extraction of the Gn

E . This procedure has been
previously applied in earlier measurements that our group has performed at JLab and at MAMI e.g.23–26.
The validity of the model uncertainties can be experimentally tested when one studies the excitation
through the weak p(e,e′p)γ channel. In this case the same physics signal can be extracted within a
different theoretical framework, thus offering an ideal cross-check to the model uncertainties associated
with the pion electroproduction channel. The branching ratio of the photon channel is very small (0.6%),
two orders of magnitude smaller compared to the pion-electroproduction, and as such it was not studied
until recently. To that end, the first such measurement was conducted at MAMI (A1)27. Measurements
were performed at the same Q2 and utilizing the same experimental setup, as in the measurement of the
pion channel. The results were found in very good agreement between the two channels26, 27, thus giving
credence to the quantification of the model uncertainties with the above procedure.

The two quadrupole transition amplitudes will be measured with a 20% to 25% uncertainty, depending
on the kinematics, while the dominant magnetic dipole amplitude will be measured to a few % level.
The projected measurements for the two quadrupole amplitudes are shown in Fig. 12. The Gn

E will
then be extracted from the quadrupole amplitudes, following the procedure described in the earlier
section. The variance of the extracted values from the large-Nc and from the SU(6) data analysis will be
assigned as a theoretical uncertainty for Gn

E . This uncertainty is typically a factor of 2 smaller compared
to the experimental uncertainty, as can be seen e.g. in Fig. 3(a), and is not a dominant factor in the
neutron charge radius extraction. The projected Gn

E measurements are shown in Fig. 14. The 〈r2
n〉 will

be derived through Eq. 5 by fitting the parametrization of Eq. 6, as described in the radius extraction
section. The measurements will allow to extract the 〈r2

n〉 with an uncertainty of ±0.005 ( f m2), as shown
in Fig. 13, thus offering a measurement of equivalent precision to the radius extraction that is based on the
measurement of the neutron-electron scattering length. From the Gn

E measurements we will perform the
flavor decomposition of the nucleon form factors, as described earlier in the flavor-dependent form factors
section; the projected measurements are shown in Fig. 4. From the Fu(d)

1 data, the mean square radius of
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Figure 12. The projected CMR and EMR measurements (red) and the world data (blue).

the quark distributions 〈b2
u(d)〉 will be determined through Eq. 9. A variety of functional forms will be

employed in the fits, so that all functions that can provide a good fit are considered, and the variance of the
fitted results is accounted for in the uncertainty. The projected measurements will allow to determine the
〈b2

u(d)〉 at the percent level.

7 Summary
In this Letter of Intent we propose to measure the neutron charge radius. The neutron, along with it’s
isospin partner the proton, are cornerstones in our depiction of the visible universe, since they together
comprise more than 99% of it’s matter. A precise determination of the nucleon’s size is unquestionably
an essential piece in our understanding of the nucleon’s structure. The neutron has proved to be a very
challenging system to study in the lab. Contrary to the proton, there is no equivalent atomic method
possible for the measurement of its radius, and the electron scattering method suffers from limitations due
to the absence of a free neutron target. As a result, the determination of the neutron charge radius, rn, has
in the past relied solely on one method, the measurement of the neutron-electron scattering length. The
most recent measurements date back to the end of the previous century3, while the PDG adopted results
exhibit discrepancies that remain unresolved to this day3,5.

Here, we propose to measure the neutron’s charge radius using a new approach: by determining the
Gn

E slope at Q2→ 0, taking advantage of the long known connection between the quadrupole transition
form factors of the proton and the neutron electric form factor, which comes as a result of the fundamental
symmetry of the two systems. Following that path, we can overcome the limitations of previous methods
and access otherwise inaccessible low momentum transfers, thus making a precise rn extraction possible.
The connection between the quadrupole amplitudes and the neutron electric form factor comes with a
theoretical uncertainty at the 10% to 15% level which is accounted for in the radius extraction. That level
of uncertainty is well justified on very strong theoretical foundations, but can be further supported also by
experimental data. Furthermore, it is not a limiting factor in these measurements since the experimental
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Figure 13. The proposed 〈r2
n〉 measurement is shown (red point) projected on the PDG value. The

measurements from the references3–6 that are included in the PDG analysis for the 〈r2
n〉 are also shown.

The band marks the PDG averaged 〈r2
n〉 value.

uncertainties overtake the level of theoretical uncertainties. The proposed measurements carry significant
scientific merit for a number of reasons. First, it offers valuable input towards addressing the long standing
unresolved discrepancies of the rn measurements. Secondly, it opens a new path for further improvement
of the rn extraction. Thirdly, for the first time an alternative method is presented for the measurement of
this fundamental quantity; alternative methods have proven most valuable in the case of the proton where
the disagreement of the charge radius, rp, as determined using different experimental approaches1 gave
rise to the proton radius puzzle2 and led to a significant effort in39, 72–74. Considering the fundamental
symmetry between the neutron and the proton systems, it becomes important to extensively study the
neutron charge radius by exploring alternative methods, for the exact same nature of reasons.

The experiment will require standard Hall C equipment, namely a 4 cm liquid hydrogen target, an
1.3 GeV beam with I = 15 µA, and the SHMS and the HMS spectrometers with their standard detector
packages, for the measurement of electrons and protons, respectively. The experiment will need to acquire
data for 7.8 days at full efficiency, and an additional day for optics and normalization measurements, so
that the 〈r2

n〉 can be determined within ±0.005 ( f m)2.
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