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Abstract

The leading twist tensor structure function b1 of spin-1 hadrons provides a unique tool to

study partonic effects, while also being sensitive to coherent nuclear properties in the simplest

nuclear system. At low x, shadowing effects are expected to dominate b1, while at larger

values, b1 provides a clean probe of exotic QCD effects, such as hidden color due to 6-quark

configuration. Since the deuteron wave function is relatively well known, any novel effects are

expected to be readily observable. All available models predict a small or vanishing value of

b1 at moderate x. However, the first measurement of b1 at HERMES revealed a crossover to an

anomalously large negative value in the region 0.2 < x < 0.5, although with relatively large

experimental uncertainty.

We propose an inclusive measurement of the deuteron tensor asymmetry in the region

0.05 < x < 0.7, for 0.8 < Q2 < 6.5 GeV2 using 6.6 and 8.8 GeV incident beam energies,

and the Hall A SoLID detector. With 14 days production running (half of the total time at

each incident energy), we can determine b1 with sufficient precision to discriminate between

conventional nuclear models, and the more exotic behavior which is hinted at by the HERMES

data. The 6.6 GeV data will be taken simultaneously with a quasi-elastic measurement of Azz ,

which is being submitted as a separate Letter of Intent. The JLab/UVa polarized ND3 target

will be used, along with the Hall A SoLID detector, and an unpolarized 100nA beam. An addi-

tional 3.0 days will be needed for overhead. We are submitting this as an LOI because we have

not yet run a full simulation of the SoLID detector. Instead we have approximated rates based

on the average acceptance and detector characteristics. We’ve assumed a tensor polarization of

25% in this proposal, which is the tensor polarization that arises in a standard Pz= 56% vector

polarized ND3 target. There is an ongoing effort at UNH and UVa to enhance Pzz which will

likely increase the tensor polarization beyond 25%, although we make no assumptions about

the success of that program in this document.

This measurement will provide access to the tensor quark polarization, and allow a test of

the Close-Kumano sum rule, which vanishes in the absence of tensor polarization in the quark

sea. Until now, tensor structure has been largely unexplored, so the study of these quantities

holds the potential of initiating a new field of spin physics at Jefferson Lab.

†Spokesperson
‡Contact Spokesperson



Contents

1 Background and Motivation 3

1.1 Tensor Structure of the Deuteron . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Deep Inelastic Scattering from Spin-1 Targets . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Interpretation in the Parton Model . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 First Measurement of b1(x) by the HERMES Collaboration . . . . . . . . 5

1.3 The Tensor Structure Function b1(x) . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Conventional Nuclear Effects . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Nuclear Pions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Convolution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.4 Relativistic Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.5 Double-Scattering Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.6 Virtual Nucleon Approximation . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.7 Fit to HERMES Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.8 The Close-Kumano Sum Rule . . . . . . . . . . . . . . . . . . . . . . . . 11

2 The Proposed Experiment 12

2.1 Experimental Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Statistical Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2 Systematic Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Polarized Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Polarization Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Depolarizing the Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.3 The Dilution Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.4 Prospects for Improving the Tensor Polarization . . . . . . . . . . . . . . . 27

3 Summary 28

2



1 Background and Motivation

The deuteron is the simplest nuclear system, and in many ways it is as important to understanding

bound states in QCD as the hydrogen atom was to understanding bound systems in QED. Unlike

it’s atomic analogue, our understanding of the deuteron remains unsatisfying both experimentally

and theoretically. A deeper understanding of the deuteron’s tensor structure will help to clarify

how the gross properties of the nucleus arise from the underlying partons. This provides novel

information about nuclear structure, quark angular momentum, and the polarization of the quark

sea that is not accessible in spin-1/2 targets.

In particular, a measurement of the deuteron’s tensor structure function b1 is of considerable

interest since it provides a clear measure of possible exotic effects in nuclei, i.e. the extent to which

the nuclear ground state deviates from being a composite of nucleons only [1]. Such a measurement

is further motivated by its connection with the spin-1 angular momentum sum rule [2].

Jefferson Lab is the ideal place to investigate tensor structure in a deuteron target at intermedi-

ate and large x. We describe such a measurement in this proposal.

1.1 Tensor Structure of the Deuteron

When a spin 1 system such as the deuteron is subjected to a magnetic field along the z-axis, the

Zeeman interaction gives rise to three magnetic sublevels Iz = +1, 0,−1 with population fractions

p+, p−, p0, respectively. These populations are described by both a vector polarization,

Pz = 〈Iz/I〉
= (p+ − p0) + (p0 − p+) = p+ − p− (1)

and a tensor polarization [3]:

Pzz = 〈3I2z − I(I + 1)〉/I2
= (p+ − p0)− (p0 − p−) = 1− 3p0 (2)

which are subject to the overall normalization p+ + p− + p0 = 1.

Fig. 1 graphically demonstrates the dependence of the two nucleon distribution on the spin

projection. If the two nucleons are in a relative m = 0 state, the surface of constant density is

toroidal, while if they are in the m = ±1 state, the surface has a dumbbell shape.

In the case of deuteron spins in thermal equilibrium with the solid lattice, and neglecting the

small quadrupole interaction [3], the tensor polarization is related to the vector polarization via:

Pzz = 2−
√

4− 3P 2
z (3)

The maximum absolute value of Pzz = −2 occurs only for vanishing populations in the m = ±1
states. If, on the other hand, only the m = 1 or m = −1 state are occupied, the vector polarization

reaches its maximum value of +1, and Pzz = +1.
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Figure 1: Nucleon densities of the deuteron in its two spin projections, Iz = 0 (left) and Iz = ±1
(right), respectively. Reproduced from [4, 5].

1.2 Deep Inelastic Scattering from Spin-1 Targets

Four independent helicity amplitudes are sufficient to describe virtual Compton scattering from a

spin-1/2 target, after requiring parity and time reversal invariance. This number doubles for a spin-

1 target, as the spin can be in three states (+, 0, -). This gives rise to a tensor structure which was

first discussed for the deuteron for the real photon case by Pais [6], and later in the virtual photon

case, by Frankfurt and Strikman [7]. Hoodbhoy, Jaffe and Manohar [8] introduced the notation

which we now follow, whereby the tensor structure is described by the four functions b1, b2, b3 and

b4. To summarize, the hadronic tensor can be decomposed as:

Wµν = −F1gµν + F2
PµPν

ν

−b1rµν +
1

6
b2(sµν + tµν + uµν)

+
1

2
b3(sµν − uµν) +

1

2
b4(sµν − tµν)

+i
g1
ν
ǫµνλσq

λsσ + i
g2
ν2

ǫµνλσq
λ(p · qsσ − s · qpσ) (4)

where the purely kinematic expressions rµν , sµν , tµν and uµν can be found in [8]. The terms are

all proportional to the polarization of the target E. The spin-1 structure functions F1, F2, g1 and

g2 have the same expressions and are measured the same way as for a spin-1/2 target. The spin-

dependent structure functions b1, b2, b3, b4 are symmetric under µ ↔ ν and E ↔ E∗ and therefore

can be isolated from F1 and g1 by unpolarized beam scattering from a polarized spin-1 target.

We focus in this document on the leading twist structure function b1. A Callan-Gross type

relation allows access to b2 once b1 is determined, and b3 and b4 do not contribute at leading twist.

1.2.1 Interpretation in the Parton Model

In the infinite momentum frame∗ of the parton model, the scattering of the virtual photon from a

free quark with spin up (or down), which carries a momentum fraction x of the spin-m hadron, can

∗All spins and momenta are along the z-axis.
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be expressed through the hadronic tensor W (m)
µν :

W (1)
µν =

(

− 1

2
gµν +

x

ν
PµPν

)

(

q1↑(x) + q1↓(x)
)

+
iǫµνλσq

λsσ

2ν

(

q1↑(x)− q1↓(x)
)

,

for a target of spin projection equal to 1 along the z-direction, and:

W (0)
µν =

(

− 1

2
gµν +

x

ν
PµPν

)

2q0↑(x) (5)

for a target of spin projection equal to zero along the z-direction. The tensor structure functions b1
and b2 can be expressed from the comparison of W (1)

µν −W (0)
µν with Eq. 4 as follows:

b1(x) =
1

2

(

2q0↑(x)− q1↑(x)− q1↓(x)
)

(6)

b2(x) = 2xb1(x) (7)

where qm↑ (qm↓ ) represents the probability to find a quark with momentum fraction x and spin up

(down) in a hadron which is in helicity state m. The tensor structure function b1 depends only on

the spin-averaged parton distributions†

q1(x) = q1↑(x) + q1↓(x)

q0(x) = q0↑(x) + q0↓(x) = 2q0↑(x)

so it can be expressed as:

b1(x) =
q0(x)− q1(x)

2
(8)

Explicitly, b1 measures the difference in partonic constituency in an |m|=1 target and an m=0

target. From this we see that while b1 is defined in terms of quark distributions, it interestingly

depends also on the spin state of the nucleus as a whole.

1.2.2 First Measurement of b1(x) by the HERMES Collaboration

The HERMES collaboration made the first measurement [9, 10] of b1 in 2005. The experiment

explored the low x region of 0.001 < x < 0.45 for 0.5 < Q2 < 5 GeV2. An atomic beam source

was used to generate a deuterium gas target with high tensor polarization. The HERA storage ring

provided 27.6 GeV positrons incident on the internal gas target.

As displayed in Fig. 2, the tensor asymmetry Azz was found to be non-zero at about the two

sigma level, with an apparent zero crossing around x = 0.3. The tensor structure function b1
exhibits a steep rise as x → 0, which is qualitatively in agreement with the predictions of coherent

double-scattering models. See for example Ref. [11]. The authors of Ref. [10] interpret the rapid

rise at low x in terms of the same mechanism that leads to nuclear shadowing in unpolarized

scattering, i.e. double scattering of the lepton, first from the proton, then from the neutron, with

sensitivity to the spatial alignment of the two nucleons.

†since, by parity, qm↑ = qm↓
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Figure 2: Top: HERMES [9] measurement of the inclusive tensor asymmetry Azz(x) and xb1(x)
of the deuteron. Bottom : The tensor structure function b1(x) without x-weighting, which reveals

a steep rise as x → 0.
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As is often the case with a pioneer measurement, the precision of the results leaves some room

for ambiguity. Despite the surprisingly large magnitude and interesting trend of the data, all points

are roughly within two sigma from zero, which calls for a higher precision measurement. Another

issue is that some of the HERMES momentum transfer values are low, so that quark structure

functions may not be the correct language. The Q2 variation in each x-bin is also quite wide (≈10

GeV2 for x ∼ 0.3), which complicates the interpretation of this data, since several models predict

significant Q2-dependence of b1. See for example Fig. 3.

1.3 The Tensor Structure Function b1(x)

The leading twist tensor structure function b1 quantifies effects not present in the case of spin-1/2

hadrons. However, tensor effects only exist in nuclear targets, so the study of b1 serves as a very

interesting bridge between nucleon and nuclear physics. On the one hand, deep inelastic scattering

(DIS), clearly probes partonic degrees of freedom, i.e. quarks, but on the other hand, b1 depends

solely on the deuteron (nuclear) spin state as seen in Eq. 7. We discuss now several predictions for

the x dependence of b1.

1.3.1 Conventional Nuclear Effects

In Ref. [8], the authors note that b1(x) is small and calculable for a weakly bound system like the

deuteron, and that its measurement would provide a clear signature for exotic components in a spin

one nucleus. In effect, b1(x) measures the extent to which a target nucleus deviates from a trivial

bound state of protons and neutrons. The authors evaluate the value of b1 in three conventional

scenarios for the deuteron constituents and their dynamics:

I. If the deuteron is composed of two spin-1/2 non-interacting nucleons at rest, then the eight

helicity amplitudes characteristic of a spin-1 target are expressed in terms of the four he-

licity amplitudes of each spin-1/2 nucleons, and therefore the total number of independent

amplitudes is reduced from eight to four. All structure functions of the deuteron are then the

simple sum of the structure functions of the two nucleons, and the tensor structure functions

vanish: b1 = b2 = b3 = b4 = 0.

II. If instead, the deuteron is composed of two spin-1/2 nucleons moving non-relativistically

in a central potential, then the target motion modifies the helicity amplitudes. Using the

convolution formalism, it was found that the contribution of these moving nucleons to b1 is

small and is dominated by the lower component of the nucleon’s Dirac wave function.

III. In the final scenario considered, the deuteron contains a D-state admixture. Because the

proton and the neutron are moving in opposite directions, an additional term due to the

S − D interference appears in the convolution procedure. This extra contribution to b1 is

predicted to be even smaller than in the previous case.

All three scenarios predict a small or vanishing b1, leading the authors to predict that b1 ≈ 0
for the deuteron.
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Figure 3: Theoretical predictions. Left plot: Double-scattering contribution to b2(x,Q
2) as a

function of x [12]. Note the strong Q2 dependence at low x. Right plot: HERMES results [10]

compared to calculations from S. Kumano [13] and from the one-pion exchange effects of G.

Miller [14, 15].

Figure 4: Prediction for bD
1 (x) (solid curve) from Ref. [1], the S-D contribution to bD

1 (x) (dashed

curve), and the D-D contribution to bD
1 (x) (dot-dashed curve). Note the vertical scale which would

make the curve mostly indiscernible from zero in Fig. 3 (right). Reproduced from Ref. [1].
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1.3.2 Nuclear Pions

In 1988, Miller also examined the tensor structure function b1 [14]. The basic mechanism is that

the virtual photon hits an exchanged pion which is responsible for the binding of the deuteron.

In this early calculation, the convention used by Miller for b1 was different from that used in the

HERMES results and in Ref. [13]. A recent update to this calculation [15], which uses a consistent

convention and the pion structure function from [16], is shown in Fig. 3. The spread of the curve

originates from the parameter As = (.9 ± 0.3) which governs the strength of the sea in the pion.

Miller’s calculation, similar to other ‘non-exotic’ models, is unable to reproduce the trend of the

HERMES data, and predicts very small values of b1(x) at intermediate and large x.

1.3.3 Convolution Model

Khan and Hoodbhoy [1] evaluated b1(x) in a convolution model with relativistic and binding en-

ergy corrections. They use this to evaluate the effect of nuclear Fermi motion and binding on the

deuteron structure functions. They observe that for zero Fermi motion and binding bD1 (x) = 0.

They also predict a small enhancement of b1 in the region of x ∼ 0.3, as seen in Fig. 4. Note

however, that the absolute scale of this predicted b1 is O(10−4), while the HERMES data implies

that the scale is more than an order of magnitude larger than this.

1.3.4 Relativistic Calculation

Umnikov [17] calculated b1(x) and b2(x) within a covariant approach, based on the relativistic

convolution formalism for DIS and the Bethe-Salpeter formalism for the deuteron bound state.

Fig. 5 sets the scale for b1(x) at the 10−3 level. Both the relativistic and non-relativistic calculations

are consistent with the CK sum rule (see Sec. 1.3.8), although the nonrelativistic convolution model

results in an incorrect behavior of at low x.

1.3.5 Double-Scattering Effects

Using Vector Meson Dominance (VMD), the authors of Ref. [12] isolate the double-scattering

contribution to b1. The existence time of a vector meson can be described by the coherence length:

λ =
Q2

Mx(M2
v +Q2)

(9)

which is the length over which the vector meson propagates during the time ∆t = 1/∆E. For

significant shadowing or double scattering to occur, a minimum coherence length of ≈ 1.7 fm

(the inter-nucleon separation) is required. At x > 0.3, the coherence length is only about the

size of the nucleon, so double scattering contributions are anticipated to be negligible. However,

for x ≤ 0.1, double-scattering should be significant in b1 behaving as (1 − x)2δ/x1+2δ, where δ is

determined from the soft pomeron intercept αP (t = 0) = 1+δ. The authors predicted a significant

enhancement of b1 at low x (≤ 0.01) due to the quadrupole deformation of the deuteron, which is

qualitatively confirmed by the HERMES data. See Fig. 2.
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Figure 5: Relativistic convolution calculation of bD1 (x) and bD2 (x). Curves: BS - solid, Bonn -

dotted, Bonn with cut -dashed. Reproduced from Ref. [17].

1.3.6 Virtual Nucleon Approximation

M. Sargsian [18] recently calculated the tensor asymmetry Azz for deep inelastic scattering. See

Figs. 6 & 7. In the approximation in which only proton-neutron component of the deuteron is taken

into account and nuclear parton distributions are generated through the convolution of partonic

distribution of nucleon and deuteron density matrix (see e.g. Refs. [19, 20]), the deuteron structure

function b1 is related directly to the d-partial wave of the deuteron wave function [18, 19]. As

a result, this approximation predicts negligible magnitude for b1 for x ≤ 0.6 due to small Fermi

momenta involved in the convolution integral. However, the predicted magnitude of b1 is large

at x ≥ 0.7 where one expects substantial contribution from the d-waves due to high momentum

component of the deuteron wave function involved in the convolution picture of DIS scattering

off the deuteron. In this case, b1 is very sensitive to the relativistic description of the deuteron

and its measurement can be used for checking the different approximations of high momentum

component of deuteron wave function.

In the calculation presented, two Virtual Nucleon and Light-Cone approximations are used

to calculate the tensor polarization for DIS scattering off the deuteron. In both approximations

only the proton-neutron component of the deuteron is taken into account. In the Virtual Nucleon

approximation, the covariant scattering amplitude is reduced by estimating the spectator nucleon

propagator at its on-energy shell in the lab frame of the deuteron. Within this approximation the

baryonic sum rule is satisfied while the momentum sum rule is not. The latter is due to the fact

that part of the light cone momentum of the bound virtual nucleon is lost to the unaccounted

non-nucleonic degrees of freedom in the deuteron wave function. In the light cone approximation

the scattering amplitude is estimated the E + pz pole of the spectator nucleon on the light cone.
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In this case the wave function is defined on the light-cone reference frame and it satisfies both

baryon number and momentum sum rules. For the detailed comparison of these approximations,

see Ref. [20].

1.3.7 Fit to HERMES Data

Kumano [13] points out that the twist-2 structure functions b1 and b2 can be used to probe orbital

angular momentum. He then extracts the tensor polarized quark and anti-quark distributions from

a fit to the HERMES data [10]. He finds that a non-negligible tensor polarization of the sea is

necessary to reproduce the trend of the data, as shown in Fig. 3. However, this conclusion has to

be considered with caution due to the extended Q2 coverage (Fig. ??), and large uncertainty of

each HERMES data point. In particular, the author calls for better measurements of b1 at large x
(> 0.2), and further investigation of the tensor structure functions in general.

1.3.8 The Close-Kumano Sum Rule

Following the formalism from the parton model in [8], Close and Kumano [21] related the tensor

structure function b1 to the electric quadrupole form factor of the spin-1 target through a sum rule‡:

∫ 1

0
dx b1(x) = − 5

12M2
lim
t→0

t FQ(t) +
1

9

(

δQ+ δQ̄
)

s

=
1

9

(

δQ+ δQ̄
)

s
= 0 (10)

where FQ(t) is the electric quadrupole form factor of a spin-1 hadron at the momentum squared t.
The Close Kumano (CK) sum rule is satisfied in the case of an unpolarized sea. The authors note

that in nucleon-only models, the integral of b1 is not sensitive to the tensor-polarization of the sea,

and consequently the sum rule is always true, even when the deuteron is in a D-state.

The authors of Ref. [1] calculated the first moment of b1(x) in a version of the convolu-

tion model that incorporates relativistic and binding energy corrections. They found a value of

-6.65·10−4, and emphasize that deviations from this will serve as a good signature of exotic effects

in the deuteron wave function. Similarly, Ref. [17] predicts 5 · 10−4 and 3 · 10−5 for the relativistic

and nonrelativistic calculation of Eq. 10, respectively.

A truncated version of Eq. 10 was evaluated by the HERMES [9, 10] experiment and found to

be:

∫ 0.85

0.0002
b1(x)dx = 0.0105± 0.0034± 0.0035 (11)

which possibly indicates a breaking of the Close-Kumano sum rule, and consequently a tensor-

polarized quark sea. However, since the comparison is only at the two sigma level, more precise

data is needed for a true test.

‡Efremov and Teryaev evidently proposed the same relation for mesons in Ref. [22].
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E Forward Det. Forward Det. Large θ Det. Large θ Det. Time

Physics Rates Total Rates Physics Rates Total Rates

(GeV) (kHz) (kHz) (kHz) (kHz) (days)

6.6 101 540 0.51 4.4 7

8.8 63 239 0.89 3.56 7

Table 1: Summary of the kinematics and physics rates using the SoLID detector.

x δbstat1 δbsys1

×10−2 ×10−2

0.05 0.031 0.913

0.10 0.025 0.621

0.15 0.021 0.447

0.20 0.018 0.336

0.25 0.019 0.263

0.30 0.023 0.212

0.35 0.029 0.166

0.40 0.036 0.103

0.45 0.045 0.034

0.50 0.047 0.029

0.55 0.080 0.025

Table 2: Summary of the expected statistical uncertainty after combining overlapping x-bins for

E = 6.6 GeV. Values represent the statistics weighted average of all events that satisfy our DIS

cut.

2 The Proposed Experiment

We will measure the leading twist tensor structure function b1 via the tensor asymmetry Azz for

0.05 < x < 0.7, 0.8 < Q2 < 6.5 GeV2 and W ≥ 1.85 GeV. Figs. 8, 9, 10, and 11 show

the planned kinematic coverage utilizing the SoLID forward and large angle detectors with beam

energies of 6.6 GeV and 8.8 GeV. The 6.6 GeV data can be taken simultaneously with a quasi-

elastic measurement of Azz, which is being submitted as a separate Letter of Intent.

The polarized ND3 target is discussed in section 2.2. The magnetic field of the target will be

held constant along the beamline at all times, while the target state is alternated between a polarized

and unpolarized state. We are submitting this as a LOI instead of a full proposal because a full

simulation of the SoLID detector has not yet been performed. Instead, an updated version of the

software used in the C12-13-011 spectrometer-based proposal was used to calculate the rates. The

tensor polarization and packing fraction used in the rates estimate are 25% and 0.65 , respectively.

The dilution factor was calculated individually for each x bin and is approximately 0.285 on

average. With an incident electron beam current of 100nA, the expected deuteron luminosity is

1.36 × 1035 / cm2·s1. The SoLID detector was incorporated assuming a momentum resolution of

dP/P = 2%, dθ = 0.6 mrad, and dφ = 5 mrad. The forward detector assumes an acceptance of

12



x δbstat1 δbsys1

×10−2 ×10−2

0.05 0.717 0.716

0.1 0.555 0.554

0.15 0.427 0.426

0.2 0.330 0.329

0.25 0.256 0.255

0.3 0.197 0.196

0.35 0.152 0.151

0.4 0.117 0.115

0.45 0.087 0.084

0.5 0.061 0.056

0.55 0.041 0.032

0.6 0.033 0.017

0.65 0.032 0.012

0.7 0.044 0.008

Table 3: Summary of the expected statistical uncertainty after combining overlapping x-bins for

E = 8.8 GeV. Values represent the statistics weighted average of all events that satisfy our DIS

cut.

8◦ ≤ θ ≤ 14.8◦ and 1.0 GeV/c ≤ P ≤ 7.0 GeV/c. The large angle dector assumes an acceptance

of 16◦ ≤ θ ≤ 24◦ and 3.5 GeV/c ≤ P ≤ 7.0 GeV/c. The invariant mass W was kept to W ≥ 1.85
GeV for all settings. The projected uncertainties for Azz and b1 are displayed in Figs. 6 and 7.

A total of 14 days of beam time is requested for production data, with an additional 3.0 days of

expected overhead.
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Figure 6: Projection for 7 PAC days at an incident energy of 6.6 GeV with the SoLID detector.

Top: Projected statistical errors for the tensor asymmetry Azz. Bottom: Projected statistical

errors for the tensor structure function b1. Data at different Q2 are combined with an x-binning that

varies slightly per point, but is approximately ±0.05. Also shown are the HERMES data [10], and

the calculations from Kumano [13], Miller [14, 15], and Sargsian [18]. The black points are the

projected uncertainties for the C12-13-011 experiment in Hall C.
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Figure 7: Projection for 7 PAC days at an incident energy of 8.8 GeV with the SoLID detector.

Top: Projected statistical errors for the tensor asymmetry Azz. Bottom: Projected statistical

errors for the tensor structure function b1. Data at different Q2 are combined with an x-binning that

varies slightly per point, but is approximately ±0.05. Also shown are the HERMES data [10], and

the calculations from Kumano [13], Miller [14, 15], and Sargsian [18]. The black points are the

projected uncertainties for the C12-13-011 experiment in Hall C.
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Figure 8: Kinematic coverage for incident beam energy of 6.6 GeV. The red points are for the for-

ward detector and the blue are for the backward detector. The black/grey settings are not included

in our rates estimates since they fall below W ≥1.85GeV.
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Figure 9: Kinematic coverage for incident beam energy of 6.6 GeV. The red points are for the for-

ward detector and the blue are for the backward detector. The black/grey settings are not included

in our rates estimates since they fall below W ≥1.85GeV.
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Figure 10: Kinematic coverage for incident beam energy of 8.8 GeV. The red points are for the for-

ward detector and the blue are for the backward detector. The black/grey settings are not included

in our rates estimates since they fall below W ≥1.85GeV.
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Figure 11: Kinematic coverage for incident beam energy of 8.8 GeV. The red points are for the for-

ward detector and the blue are for the backward detector. The black/grey settings are not included

in our rates estimates since they fall below W ≥1.85GeV.
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2.1 Experimental Method

The measured DIS double differential cross section for a spin-1 target characterized by a vector

polarization Pz and tensor polarization Pzz is expressed as,

d2σp

dxdQ2
=

d2σ

dxdQ2

(

1− PzPBA1 +
1

2
PzzAzz

)

, (12)

where, σp (σ) is the polarized (unpolarized) cross section, PB is the incident electron beam polar-

ization, and A1 (Azz) is the vector (tensor) asymmetry of the virtual-photon deuteron cross section.

This allows us to write the positive polarized tensor, 0 < Pzz ≤ 1, asymmetry using unpolarized

electron beam as,

Azz =
2

Pzz

(

σ1

σ
− 1

)

(13)

where σ1 is the polarized cross section for

Pzz =
n+ − 2n0 + n−

n+ + n− + n0

, for n+ + n− > 2n0. (14)

Here nm represents the portion of the ensemble in the m state.

Eq. 13 reveals that the asymmetry Azz compares two different cross sections measured under

different polarization conditions of the target, positively tensor polarized and unpolarized. To

obtain the relative cross section measurement in the same configuration, the same target cup and

material will be used at alternating polarization states (polarized vs. unpolarized), and the magnetic

field providing the quantization axis will be oriented along the beamline at all times. This field will

always be held at the same value, regardless of the target material polarization state. This ensures

that the acceptance remains consistent within the stability (10−4) of the super conducting magnet.

Since many of the factors involved in the cross sections cancel in the ratio, Eq. 13 can be

expressed in terms of the charge normalized, efficiency corrected numbers of tensor polarized N c
1

and unpolarized N c counts,

Azz =
2

fPzz

(

N c
1

N c
− 1

)

(15)

The dilution factor f corrects for the presence of unpolarized nuclei in the target.

The measured tensor asymmetry allows for an extraction of the tensor structure function b1
using the world data on the leading-twist structure function F d

1 ,

b1 = −3

2
F d
1Azz (16)

In Eq. 15, the dilution factor is defined as,

f =
NDσD

NNσN +NDσD + ΣNAσA

, (17)

where ND is the number of deuterium nuclei in the target and σD is the corresponding inclusive

double differential scattering cross section, NN is the nitrogen number of scattered nuclei with
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Source Systematic

Polarimetry 8.0%

Dilution/packing fraction 4.0%

Radiative corrections 1.5%

Charge Determination 1.0%

Detector resolution and efficiency 1.0%

Total 9.2%

Table 4: Estimates of the scale dependent contributions to the systematic error of Azz.

cross section σN , and NA is the numbers of other scattering nuclei of mass number A with cross

section σA. The denominator of the dilution factor can be written in terms of the relative volume

ratio of ND3 to LHe in the target cell, otherwise known as the packing fraction pf . In our case of a

cylindrical target cell oriented along the magnetic field, the packing fraction is exactly equivalent

to the percentage of the cell length filled with ND3. The dilution factor is discussed in further

detail in Sec. 2.2.3.

The time necessary to achieve the desired precision δA is:

T =
NT

RT

=
16

P 2
zzf

2δA2
zzRT

(18)

where RT is the total rate and NT = N1 + N is the total estimated number of counts to achieve

the uncertainty δAzz.

2.1.1 Statistical Uncertainty

To investigate the statistical uncertainty we start with the equation for Azz using measured counts

for polarized data N1 and unpolarized data N ,

Azz =
2

fPzz

(

N1

N
− 1

)

. (19)

The absolute error with respect to counts in then,

δAzz =
2

fPzz

√

√

√

√

(

δN1

N

)2

+

(

N1δN

N2

)2

. (20)

For small asymmetries, N1 ≈ N , so that twice N is required to obtain the total number of counts

NT for the experiment. This leads to:

δAzz =
4

fPzz

1√
NT

. (21)
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2.1.2 Systematic Uncertainty

Table 4 shows a list of the scale dependent uncertainties contributing to the systematic error in Azz.

With careful minimization, the uncertainty in Pz can be held to better than 4%, as demonstrated

in the g2p/GEp experiment [23]. This leads to a relative uncertainty in Pzz of 7.7%. Alterna-

tively, the tensor asymmetry can be directly extracted from the NMR lineshape as discussed in

Sec. 2.2, with similar uncertainty. The uncertainty from the dilution factor and packing fraction

of the ammonia target contributes at the 4% level. The systematic effect on Azz due to the QED

radiative corrections will be quite small. For our measurement there will be no polarized radiative

corrections at the lepton vertex, and the unpolarized corrections are known to better than 1.5%.

Charge calibration and detector efficiencies are expected to be known better to 1%, but the impact

of time-dependent drifts in these quantities must be carefully controlled.

Time dependent factors

Eq. 15 involves the ratio of counts, which leads to cancellation of several first order systematic

effects. However, the fact that the two data sets will not be taken simultaneously leads to a sensi-

tivity to time dependent variations which will need to be carefully monitored and suppressed. To

investigate the systematic differences in the time dependent components of the integrated counts,

we need to consider the effects from calibration, efficiency, acceptance, and luminosity between

the two polarization states.

In order to look at the effect on Azz due to drifts in beam current measurement calibration and

detector efficiency, we rewrite Eq. 15 explicitly in terms of the raw measured counts N1 and N ,

Azz =
2

fPzz

(

N c
1

N c
− 1

)

=
2

fPzz

(

QεlA
Q1ε1lA

N1

N
− 1

)

(22)

where Q represents the accumulated charge, and ε is the detector efficiency. The target length l
and acceptance A are identical in both states, to first order.

We can then express Q1 as the change in beam current measurement calibration that occurs in

the time it takes to collect data in one polarization state before switching such that Q1 = Q(1−δQ).
In this notation, δQ is a dimensionless ratio of charges in the different polarization states. A similar

representation is used for drifts in detector efficiency leading to,

Azz =
2

fPzz

(

N1Q(1− δQ)ε(1− δε)

NQε
− 1

)

. (23)

which leads to,

Azz =
2

fPzz

(

N1

N
(1− δQ− δε+ δQδε)− 1

)

. (24)

We can obtain estimates of δQ and δε from previous experiments. For the HRS detector drift

during the JLab transversity experiment E06-010, the detector response was measured such that the

normalized yield for the same condition over a three month period indicated little change (< 1%).

These measurements indicated that for the short time (20 minutes) between target spin flips, the
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detector drift should be less than 1% times the ratio of the time period between target spin flips and

three months.

For the present proposal, we use the same estimate except that the period between target po-

larization states is ≈12 hours leading to an overall drift δε ∼ 0.01%. A similar approach can be

used to establish an estimate for δQ using studies from the data from the (g2p/GEp) experiment,

resulting in δQ ∼ 0.01%.

To express Azz in terms of the estimated experimental drifts in efficiency and current measure-

ment we can write,

Azz =
2

fPzz

(

N1

N
− 1

)

± 2

fPzz

δξ. (25)

where δξ = δQ+ δε. This leads to a contribution to Azz on the order of 1× 10−3,

dAdrift
zz = ± 2

fPzz

δξ = ±3.7× 10−3. (26)

The polarization state of the target will be changed every 12 hours, so each of our settings will

involve between N = 12 to N = 60 polarization cycle pairs. This further suppreses the effect of

any drift to less than the 10−3 level. Though a very important contribution to the error, this value

allows a clean measurement of Azz = 0 at x = 0.45 without overlap with the Hermes error bar.

For this estimate we assumed only two polarization state changes in a day. Increasing this rate

decreases the systematic effect in Azz accordingly, but at the cost of increased overhead.

Detector efficiencies can drift for a variety of reasons, including fluctuations in gas quality, high

voltage drift, or drifts in the spectrometer magnetic fields. All of these types of variation can be

controlled and minimized during the experiment through careful monitoring as well as systematic

studies of the data collected.

The identical configuration of the two polarization states minimizes the relative changes in

luminosity with respect to time. Consistency checks on the measured cross section data can be

implemented to ensure the quality of each run used in the asymmetry analysis. Fluctuations in

luminosity due to target density variation can be kept to a minimum by keeping the material beads

at the same temperature for both polarization states through control of the microwave and the LHe

evaporation. The He vapor pressure reading provides an accuracy of material temperature changes

at the level of ∼0.1%. Beam rastering can also be controlled to a high degree.

The dominant source of any variation in acceptance A from state to state will be the stability

of the target magnetic field. The capacity to set and hold the target super conducting magnet to a

desired holding field is δB/B =0.01%. The same target cup will be used for each state, which

removes any variation in the target length l.

2.1.3 Overhead

Table 5 summarizes the expected overhead, which sums to 3.0 days. The dominant overhead comes

from switching from the polarized to unpolarized state and vice versa. Target anneals will need to

be performed about every other day, and the material replaced once a week. Measurements of the

dilution from the unpolarized materials contained in the target, and of the packing fraction due to

the granular composition of the target material will be performed with a carbon target.
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Overhead Number Time Per (hr) (hr)

Polarization/depolarization 8 2.0 16.0

Target anneal 4 4.0 16.0

Target T.E. measurement 4 4.0 16.0

Target material change 2 1.0 2.0

Packing Fraction/Dilution runs 4 1.0 4.0

BCM calibration 2 2.0 4.0

Optics 2 4.0 8.0

Linac change 1 8.0 8.0

3.0 days

Table 5: Contributions to the experimental overhead.

2.2 Polarized Target

This experiment will use the JLab/UVa dynamically polarized solid ND3 target operated in longi-

tudinal mode. The target is typically operated with a specialized slow raster, and beamline instru-

mentation capable of characterizing the low current 50-115 nA beam. All of these requirements

have been met previously in Hall A for the E08-027/E08-007 run.

The target operates on the principle of Dynamic Nuclear Polarization, to enhance the low tem-

perature (1 K), high magnetic field (5 T) polarization of solid materials by microwave pumping.

The polarized target assembly contains several target cells of 3.0 cm length that can be selected

individually by remote control to be located in the uniform field region of a superconducting

Helmholtz pair. The permeable target cells are immersed in a vessel filled with liquid Helium

and maintained at 1 K by use of a high power evaporation refrigerator.

The target material is exposed to microwaves to drive the hyperfine transition which aligns

the nucleon spins. The heating of the target by the beam causes a drop of a few percent in the

polarization, and the polarization slowly decreases with time due to radiation damage. Most of

the radiation damage can be repaired by periodically annealing the target, until the accumulated

dose reached is greater than about 0.5× 1017 e−/cm2, at which time the target material needs to be

replaced.

2.2.1 Polarization Analysis

The three Zeeman sublevels of the deuteron system (m = −1, 0, 1) are shifted unevenly due to

the quadrupole interaction [3]. This shift depends on the angle between the magnetic field and

the electrical field gradient, and gives rise to two separate transition energies. Hence, the unique

double peaked response displayed in Fig. 13.

The energies [24] of these three magnetic sublevels are:

E = −hνDm+ hνQ
[

(3 cos2(θ)− 1
] [

3m2 − I(I + 1)
]

(27)

where νD is the deuteron Larmor frequency and νQ is a function of the deuteron quadrupole mo-

ment eQ. The quadrupole interaction shifts these levels depending on the angle θ between the

magnetic field and the electrical field gradient, as shown in Fig. 14.
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Figure 12: Cross section view of the JLab/UVa polarized target. Figure courtesy of C. Keith.
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Figure 13: Top: NMR signal for ND3 with a vector polarization of approximately 50% from the

GEN experiment. Bottom: Relationship between vector and tensor polarization in equilibrium,

and neglecting the small quadrupole interaction.
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Figure 14: Energy levels in ND3. The level spacing is shifted by the quadrupole interaction, which

depends on the angle θ between the magnetic field and the electric field gradient.

When the system is at thermal equilibrium with the solid lattice, the deuteron polarization is

known from:

Pz =
4 + tanh µB

2kT

3 + tanh2 µB

2kT

(28)

where µ is the magnetic moment, and k is Boltzmann’s constant. The vector polarization can

be determined by comparing the enhanced signal with that of the TE signal (which has known

polarization). This polarimetry method is typically reliable to about 5% relative.

Similarly, the tensor polarization is given by:

Pzz =
4 + tanh2 µB

2kT

3 + tanh2 µB

2kT

(29)

From Eqs. 28 and 29, we find:

Pzz = 2−
√

4− 3P 2
z

In addition to the TE method, polarizations can be determined by analyzing NMR lineshapes

as described in [25] with a typical 7% relative uncertainty. At high polarizations, the intensities

of the two transitions differ, and the NMR signal shows an asymmetry R in the value of the two

peaks, as shown in Fig. 13. The vector polarization is then given by:

Pz =
R2 − 1

R2 +R + 1
(30)

and the tensor polarization is given by:

Pzz =
R2 − 2R + 1

R2 +R + 1
(31)

The DNP technique produces deuteron vector polarizations of up to 60% in ND3 and 64% in

LiD [26], which corresponds to tensor polarizations of approximately 30%. The target polarization

decays while in beam, so that the average polarization is less than this.
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2.2.2 Depolarizing the Target

To move from polarized to unpolarized measurements, the target polarization will be annihilated

using destructive NMR loop field changes and destructive DNP microwave pumping. It is also

possible to remove LHe in the nose of the target to remove the polarization by heating. During

unpolarized data taking the incident electron beam heating is enough to remove the thermal equi-

librium polarization.

NMR measurements will be used to confirm destruction of the polarization. The target material

will be held at a constant temperature, and the target field will be held at a constant magnitude for

both polarized and unpolarized data collection. in order to minimize the systematic differences

in the two states. To minimize systematic effects over time, the polarization condition will be

switched twice in a 24 hour period.

2.2.3 The Dilution Factor

To derive the expression for the dilution factor, we first start with the ratio of polarized to unpolar-

ized counts. In each case, the number of counts that are actually measured, neglecting the small

contributions of the thin aluminium cup window materials, NMR coils, etc., are

N1 = Q1ε1A1l1[(σN + 3σ1)pf + σHe(1− pf )], (32)

and

N = QεAl[(σN + 3σ)pf + σHe(1− pf )]. (33)

where Q represents accumulated charge, ε is the dectector efficiency, A the cup acceptance, and l
the cup length.

For this calculation we assume similar charge accumulation such that Q ≃ Q1, and that the

efficiencies stay constant, in which case all factors drop out of the ratio leading to

N1

N
=

(σN + 3σ1)pf + σHe(1− pf )

(σN + 3σ)pf + σHe(1− pf )

=
(σN + 3σ(1 + AzzPzz/2))pf + σHe(1− pf )

(σN + 3σ)pf + σHe(1− pf )

=
[(σN + 3σ)pf + σHe(1− pf )] + 3σpfAzzPzz/2

(σN + 3σ)pf + σHe(1− pf )

= 1 +
3σpfAzzPzz/2

(σN + 3σ)pf + σHe(1− pf )

= 1 +
1

2
fAzzPzz, (34)

where σ1 = σ(1 +AzzPzz/2) has ben substituted, per Eq. 12, with PB = 0. It can be seen that the

above result corresponds to Eq. 15.

2.2.4 Prospects for Improving the Tensor Polarization

We’ve assumed a tensor polarization of 25% in this proposal. This is just the tensor polarization

that occurs in a standard Pz= 56% vector polarized ND3 target according to Eq. 30. This enables a
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Figure 15: Left: Model prediction [25] of the NMR response for an ND3 sample. The two discrete

transitions (red and green) blend into the characteristic double peaked structure. Right : Demon-

stration of RF hole burning in ND3. Solid line: ND3 sample with about 30% vector polarization.

Dashed line: the same sample after application of a saturating RF field, which raised the tensor

polarization to Pzz ≈ 30%. Notice the strong suppression of the left peak. Reproduced from [27].

significant measurement of b1(x), as shown in Fig. 6 and Fig. 7. Any improvement to the expected

polarization, although not strictly necessary, would allow the addition of kinematic points, and/or

improved statistical accuracy.

With this in mind, we note that there is a concerted effort at the University of New Hampshire

and the University of Virginia to directly enhance tensor polarization by disturbing the thermal

equilibrium of the sample using a frequency modulated RF source to stimulate transitions from the

m=0 level. This technique is known as semi-selective RF saturation. This changes the population

of the m=0 level, thus changing the tensor asymmetry. This method of ‘hole burning’ the NMR

line with a saturating RF field was demonstrated by deBoer [28], and Meyer [24, 3] in 1985, with

more recent successes demonstrated at both UNH and UVa.

In light of this, we are optimistic that we will eventually be capable of producing tensor polar-

izations of 35% and higher, although we have not assumed it in this Letter of Intent.

3 Summary

We request 14 days of production beam at 6.6 GeV and 8.8 GeV, in order to measure the tensor

asymmetry Azz and the spin structure function b1 using a tensor polarized (Pzz=25%) deuteron

target together with the Hall A SoLID detector. Half of the total PAC days will be spent at each

incident energy. The 6.6 GeV data will be taken simultaneously with a quasi-elastic measurement

of Azz, which is being submitted as a separate Letter of Intent (LOI). The UVa solid polarized ND3

target will be used, along with the Hall A SoLID detector, and an unpolarized 100 nA beam. An

additional 3.0 days will be needed for overhead. We are submitting this as an LOI because we have
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not yet run a full simulation of the SoLID detector. Instead we have approximated rates based on

the average acceptance and detector characteristics. Weve assumed a tensor polarization of 25% in

this proposal, although there is an active program to increase this number significantly.

We can determine b1 with sufficient precision to discriminate between conventional nuclear

models, and the more exotic behavior which is hinted at by the HERMES data. This experiment

will provide access to the tensor quark polarization and allow a test of the Close-Kumano sum rule,

which vanishes in the absence of tensor polarization in the quark sea. Until now, tensor structure

has been largely unexplored, so the study of these quantities holds the potential of initiating a new

field of spin physics at Jefferson Lab.
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