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Abstract

The Generalized Polarizabilities are fundamental properties of the proton, that characterize the
system’s response to an external quasi-static electromagnetic (EM) field, and have the potential
to shed light to key aspects of the structure and dynamics of the proton. They offer a powerful
way to study the interplay of the quark and pion-cloud degrees of freedom by revealing how the
charge and magnetization distributions inside the system are distorted by the EM field, and they
can map out the resulting deformation of the densities in the proton. They provide insight to
the underlying dynamical mechanisms e.g. allowing to decode the competing paramagnetic and
diamagnetic contributions in the system, and they offer access to important properties such as the
proton electric and the magnetic polarizability radius. The GPs have so far been accessed through
measurements of the virtual Compton scattering, utilizing an unpolarized electron beam that is
scattered from a liquid-hydrogen target. These experiments have accomplished significant advances
in recent years, providing high precision benchmark data and valuable guidance to the theoretical
calculations, while this activity is expected to continue in the near future. Of special interest are
theoretical challenges, in particular with regard to the measurements of the electric polarizability.
In this Letter of Intent we propose to follow an alternative experimental path to measure the proton
GPs. This will involve measurements with a positron beam, in tandem with measurements with an
electron beam, as well as the use of beam polarization. Such an experiment will allow not only to
improve upon the precision of the generalized polarizability measurements, but most importantly will
provide a much needed critical cross check to the world data, that will be founded on an independent
experimental method.
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I. INTRODUCTION AND MOTIVATION

The Generalized Polarizabilities are fundamental properties of the proton, that characterize the
system’s response to an external quasi-static electromagnetic (EM) field. When accessed in real
Compton scattering, by measuring the energy and angular distributions of the outgoing photon one
can extract the static polarizabilities that quantify the net polarizability effect on the proton [6].
Extending these measurements to the virtual Compton scattering (VCS), the virtuality of the photon
allows us to measure the electric and the magnetic generalized polarizabilities, αE(Q

2) and βM(Q2)
respectively. Their Fourier transform will map out the spatial distribution density of the polarization
induced by an EM field and provide a powerful path to study the quark substructure of the nucleon,
offering unique insight to the underlying nucleon dynamics. The polarizabilities are sensitive to
all the excited spectrum of the nucleon. In describing the GPs through the resulting effect of an
electromagnetic perturbation applied to the nucleon components, an electric field moves positive
and negative charges inside the proton in opposite directions. The induced electric dipole moment
is proportional to the electric field, and the proportionality coefficient is the electric polarizability
which measures the rigidity of the proton. The magnetic field acts differently on the quarks and
the pion cloud giving rise to two competing contributions, a paramagnetic and a diamagnetic, to
the magnetic polarizability. In theoretical calculations, the electric GP αE is expected to fall-off
monotonically with Q2. The magnetic GP βM is predicted to have a smaller magnitude relative
to αE, due to the competing paramagnetic and diamagnetic contributions, which largely cancel.
Furthermore, it is predicted to go through a maximum before decreasing, as a result of the dominance
of diamagnetism due to the pion cloud at small Q2 and the dominance of paramagnetism due to a
quark core at short distances.
In VCS, the measured cross section receives contributions from a number of processes, as shown

in Figure 1. Due to electron scattering, one has the Bethe-Heitler process (BH) where the final
photon is emitted by the incoming or outgoing electron. The photon electroproduction amplitude
is the coherent sum of the Bethe-Heitler, Born and non-Born contributions as shown in Figure 1.
The (BH) and (Born) parts, produced due to bremsstrahlung of the electron or proton, respectively,
are well known and are entirely calculable with the nucleon EM form factors as inputs, while the
non-Born amplitude contains the dynamical internal structure information in terms of GPs. In order
to extract the signal of interest from the experimental measurements, one can follow two alternative
paths.
The LET (Low energy theorem) [3] provides a path to access these observables analytically.

According to the LET, or LEX (Low-energy EXpansion), the amplitude T epγ is expanded in powers
of q′cm. As a result, the (unpolarised) ep → epγ cross section at small q′cm can be written as:

d5σ = d5σBH+Born + q′cm · ϕ ·Ψ0 + O(q′2cm) (1)

where ϕ is a phase-space factor. The notation d5σ stands for d5σ/dk′
elabdΩ

′
elabdΩcm where k′

elab is the
scattered electron momentum in the lab frame, dΩ′

elab the solid angle of the scattered electron in
the lab frame and dΩγcm the solid angle of the outgoing photon (or proton) in the p-γ∗ CM frame.
The Ψ0 term comes from the interference between the Non-Born and the BH+Born amplitudes at
lowest order in q′cm; it gives the leading polarizability effect in the cross section. The LET approach
is valid only below the pion production threshold, i.e. as long as the Non-Born amplitude remains
real. The Ψ0 term contains three structure functions PLL, PTT and PLT :
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FIG. 1: Diagrams of photon electroproduction, illustrating the mechanisms contributing to ep→epγ. The small circles represent
the interaction vertex of a virtual photon with a proton considered as a point-like particle, while the ellipse denotes the non-
Born VCS amplitude.

Ψ0 = v1 · (PLL − 1

ϵ
PTT ) + v2 · PLT (2)

where ϵ is the usual virtual photon polarisation parameter and v1, v2 are kinematical coefficients
depending on (qcm, ϵ, θcm, φ). θcm and φ are the polar and azimuthal angles of the Compton
scattering process in the CM frame of the initial proton and virtual photon. For the structure
functions one has:

PLL = 4M
αem

·Gp
E(Q

2) · αE(Q
2)

PTT = [PTT spin]

PLT = − 2M
αem

√
q2cm
Q2 ·Gp

E(Q
2) · βM(Q2) + [PLT spin]

(3)

where αem is the fine structure constant and the terms in brackets involves the spin dependent part
of the structure functions. The PLL is proportional to the electric GP, and the scalar part of PLT is
proportional to the magnetic GP. Using this LET approach one cannot extract all six dipole GPs
separately from an unpolarised experiment since only three independent structure functions appear
and can be extracted assuming the validity of the truncation to O(q′2cm). Furthermore in order to
isolate the scalar part in these structure functions a model input is also required.
The sensitivity of the VCS cross sections to the GPs grows with the photon energy and it is thus

advantageous to go to higher photon energies. Above the pion threshold the VCS amplitude becomes
complex. While TBH and TBorn remain real, the amplitude TNon−Born acquires an imaginary part,
due to the coupling to the πN channel. The relatively small effect of GPs below the pion threshold,
which is contained in dσNon−Born, becomes more important in the region above the pion threshold
and up to the ∆(1232) resonance, where the LET does not hold. In this case a Dispersion Relation
(DR) formalism is prerequisite to extract the polarizabilities in the energy region above pion
threshold where the observables are generally more sensitive to GPs. The DR formalism developed
by B.Pasquini et al. [8, 9] for RCS and VCS allows the extraction of structure functions and
GPs from photon electroproduction experiments. The calculation provides a rigorous treatment of
the higher-order terms in the VCS amplitude, up to the Nππ threshold, by including resonances
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in the πN channel. The Compton tensor is parameterised through twelve invariant amplitudes
Fi(i = 1, 12). The GPs are expressed in terms of the non-Born part FNB

i of these amplitudes at the
point t = −Q2, ν = (s − u)/4M = 0, where s, t, u are the Mandelstam variables of the Compton
scattering. All of the FNB

i amplitudes, with the exception of two, fulfill unsubtracted dispersion
relations. These s-channel dispersive integrals are calculated through unitarity. They are limited to
the πN intermediate states, which are considered to be the dominant contribution for describing
VCS up to the ∆(1232) resonance region. The calculation uses pion photo- and electroproduction
multipoles [10] in which both resonant and non-resonant production mechanisms are included.
The amplitudes F1 and F5 have an unconstrained part beyond the πN dispersive integral. Such
a remainder is also considered for F2. For F5 this asymptotic contribution is dominated by the
t-channel π0 exchange, and with this input all four spin GPs are fixed. For F1 and F2, an important
feature is that in the limit (t = −Q2, ν = 0) their non-Born part is proportional to the GPs βM and
(αE + βM), respectively. The remainder of FNB

1,2 is estimated by an energy-independent function,
noted ∆β and ∆(α + β) respectively. This term parameterises the asymptotic contribution and/or
dispersive contributions beyond πN . For the electric and the magnetic GP one gets a similar
expression of the following form:

αE(Q
2) = απN(Q2) + ∆α

∆α =
[αexp − απN ]Q2=0

(1 +Q2/Λ2
α)

2 .
(4)

The two scalar GPs are not fixed by the model, and their unconstrained part is parametrised by
a dipole form as shown in eq.(4). This dipole form is arbitrary while the mass parameters Λα (and
the Λβ that is equivalently defined for the magnetic polarizability) only play the role of intermediate
quantities in order to extract VCS observables. In the DR calculation Λα and Λβ are treated as free
parameters, which can vary with Q2, and their value can be adjusted by a fit to the experimental
cross section, separately at each Q2.
From the theory standpoint, the GPs have been calculated following a variety of approaches, as

shown in Fig. 2. In heavy baryon chiral perturbation theory (HBChPT) the polarizabilities are pure
one-loop effects to leading order in the chiral expansion [19], emphasizing the role of the pion cloud;
the scalar GPs have been calculated to order p3 [20–22], while the spin GPs have been calculated
to order p4 [23, 24]. The first nucleon resonance ∆(1232) is taken into account either by local
counterterms (ChPT, [19]) or as an explicit degree of freedom (small scale expansion SSE of [22]).
In non-relativistic quark constituent models (NRCQM) [3, 25–27] the GPs involve the summed
contribution of all nucleon resonances but do not embody a direct pionic effect. The calculation
of the linear-σ model (LSM) [28, 29] involves all fundamental symmetries but does not include the
∆ resonance, while the effective lagrangian model (ELM) [30] includes resonances and the pion
cloud in a more phenomenological way. A calculation of the electric GP was made in the Skyrme
model [31]. Recent calculations of the generalized polarizabilities have been performed in baryon
chiral perturbation theory [45].
A first group of VCS experiments, at MAMI [11, 12], JLab [13, 14] and Bates [15, 16] that were

conducted two decades ago, shaped a first understanding of the proton electric and magnetic GPs.
Here, some first experimental evidence that contradict the naive Ansatz of a single-dipole fall-off
for αE(Q

2) were reported, pointing out to an enhancement at low Q2 evidenced by the MAMI
measurements [11, 12]. Two independent experiments [11, 12] were able to confirm this unexpected
structure for αE. The data-analysis of these measurements [11, 12] was later revisited [49, 50], to
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FIG. 2: Left panel: The world data for αE . The results from the recent JLab VCS-I experiment [2] are shown as filled red circles.
Right panel: Same as in the left panel, but with the (un-published) re-analysis of the MAMI data at Q2 = 0.33 GeV 2 [49, 50].
The theoretical predictions of [25–31, 45] are also shown.

FIG. 3: The magnetic generalized polarizability. The references are the same as in Fig. 2.

account for further refinements in the analysis procedure. The results of this work (as presented in
various conferences [49, 50], but currently unpublished) reduces slightly the extracted value for αE,
as shown in Fig. 2 (right panel). A recent generation of experiments (MAMI [42–44] and JLab [2])
improved upon and extended further the measurements of the proton GPs. The world data for
the proton GPs are shown in Fig. 2 and in Fig. 3. The experimental data suggest that a non-
trivial structure in αE is likely to exist (currently deviating at the 3σ level from the theoretically
predicted monotonic Q2 dependence). This presents a striking challenge to the current theoretical
understanding. The signature of this effect has been explored [2] with phenomenological fits as well
as with methods that do not assume any direct underlying functional form [46] (e.g. as shown in
Fig. 4(b)). More measurements are needed so as to exclude with higher confidence the possibility
that this observation is coincidental. In such a case, the shape and the dynamical signature of
this structure needs to be clearly mapped with additional, high precision measurements, so that it
can serve as an input for the theory in order to explain the effect. Towards that end, it becomes
important to access the proton GPs through an alternative experimental method, so that one can
offer an independent confirmation of the observed structure. The scientific merit of conducting
measurements of a physics signal by following alternative experimental methods has been illustrated
in many occasions in the past. Rather recently, this has been underlined twice in the case of the
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a b c

FIG. 4: a) The proton electric polarizability radius rαE ≡
√

⟨r2αE
⟩ is shown in red. The measurements of the proton charge

radius are shown for comparison in blue color. b) The Q2-dependence of the electric GP as derived from the experimental
measurements using the GPR technique [46], a data-driven method that assumes no direct underlying functional form. c)
Induced polarization in the proton when submitted to an EM field as a function of the transverse position with photon
polarization along the x axis for by = 0. The x-y defines the transverse plane, with the z axis being the direction of the fast
moving protons.

proton, namely in the measurement of the elastic form factors (Rosenbluth vs recoil polarization) as
well as in the measurement of the proton charge radius (scattering vs spectroscopy).
Extending the experimental reach of the GP measurements will benefit greatly also on the side of

the magnetic polarizability. Here the signal is small, the measurements become more challenging and
the relative uncertainties larger, as shown in Fig. 3. Discrepancies between recent experiments [47,
48], highlight further the need to improve our measurements, particularly at low momentum transfers.
This is critical towards decoding the processes manifesting in the interplay between diamagnetism
and paramagnetism in the proton. A precise mapping of the αE(Q

2) and βM(Q2) will further
allow to accurately determine the electric and the magnetic polarizability radius of the proton, that
is determined from the slope of the electric and the magnetic GPs at Q2 = 0, respectively (e.g.
see Fig. 4(a)). The GPs can also be used to describe the spatial deformation of the charge and
magnetization densities in the proton [33, 34]. An extraction of the induced polarization in the
proton from a fit to the world data [2] is shown in Fig. 4(c). Upcoming experiments can allow to
improve this even further, offering a very precise spatial representation of the induced polarization
in the proton.

II. PROPOSED VCS ASYMMETRY MEASUREMENTS

The experimental measurements of the proton generalized polarizabilities have so far practically
employed unpolarized electron beams. The only exception involves an exploratory measurement of
beam spin asymmetries that was conducted in the past [51] at MAMI, but the sensitivity of this
experiment to the polarizabilities was extremely limited. Nevertheless, the use of polarized and
positron beams provides an alternative and powerful avenue to access the proton GPs. The lepton
beam charge (e) and polarization (λ) dependence of the lp → lpγ differential cross section is given
by

dσe
λ = dσBH + dσVCS + λ dσ̃VCS + e (dσINT + λ dσ̃INT),

(5)

where dσ (dσ̃) are the polarization independent (dependent) contributions which are even (odd)
functions of the azimuthal angle ϕ. The dσINT involves the real part of the VCS amplitude that
contains the GP effects, while dσ̃INT is proportional to the imaginary part of the VCS amplitude
which does not depend on the GPs. Combining lepton beams of opposite charge and different
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polarization enables the complete separation of the four unknown INT and VCS contributions.
More specifically, using unpolarized electron and positron beams, one can construct the unpolarized
beam-charge asymmetry (BCA) AC

UU as

AC
UU =

(dσ+
+ + dσ+

−)− (dσ−
+ + dσ−

−)

dσ+
+ + dσ+

− + dσ−
+ + dσ−

−

=
dσINT

dσBH + dσVCS

. (6)

With polarized lepton beams, on the other hand, one can construct the lepton beam-spin asymmetry
(BSA)

Ae
LU =

dσe
+ − dσe

−

dσe
+ + dσe

−

=
dσ̃VCS + edσ̃INT

dσBH + dσVCS + e dσINT

. (7)

The theoretical groundwork and a first theoretical exploration for the potential of this type of
measurements has been conducted in [52]. These studies have illustrated that the un-polarized BCA
asymmetries and the polarized BSA asymmetries exhibit remarkable sensitivity to both scalar GPs.
A combination of both types of assymmetries, such as

ÃVCS ≡ A+
LU

(
1 + AC

UU

)
+ A−

LU

(
1− AC

UU

)
=

2dσ̃VCS

dσBH + dσVCS

, (8)

and

ÃINT ≡ A+
LU

(
1 + AC

UU

)
− A−

LU

(
1− AC

UU

)
=

2dσ̃INT

dσBH + dσVCS

(9)

is powerful towards separating the contribution from the dσ̃VCS and dσ̃INT terms, offering both
sensitivity to the GPs as well as a cross-check of the unitarity input in the dispersive formalism, as
discussed in [52].
In this Letter of Intent, we capitalize on the work that was performed in [52] and we use it as

guidance to conduct a first study on the potential of these measurements using the experimental
apparatus that is currently available at Jefferson Lab. Such measurements can be best accommo-
dated in Hall C, using the SHMS and the HMS experimental setup. We first discuss the prospects
in conducting measurements of the unpolarized beam-charge asymmetry with electron and positron
beams. Our studies have targeted one momentum transfer setting at Q2 = 0.35 GeV 2 and involve a
beam energy of E◦ = 2.2 GeV . With the SHMS and the HMS measuring e(+,−) and p respectively,
we have focused within a range of center of mass energies that exhibits good sensitivity to the po-
larizabilities, spanning W = 1150 MeV to W = 1190 MeV . Here, it becomes beneficial to measure
out of plane kinematics and the experimental setup offers access at ϕ = 30o. We have considered
a kinematic range of measurements in θγ∗γ that spans a range as e.g. shown in Fig. 5 for one bin
in W . We have considered a scenario of measurements that allows enough statistics so as to bring
the statistical uncertainty for each of the (+,-) measurements to the 1%. Here, the uncertainty of
the results is already limited by systematic uncertainties. The projected αE measurement for this
set of kinematics is shown at the right panel of Fig. 5. An equally competitive extraction to the
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BCA Projected measurement

FIG. 5: Beam charge asymmetry measurements with a positron and an electron beam. Left panel: measurements at a fixed
bin at W = 1170 MeV and ϕ = 30o. The black curve corresponds to mass scale parameters Λα=Λβ=0.7. The two red (blue)
curves explore the sensitivity to the electric (magnetic) GP by varying the Λα (Λβ) from 0.5 to 0.9. Right panel: the projected
measurement for the αE from the BCA measurements is shown in red, along with the world data.

magnetic GP is also projected by these measurements. The group of kinematics with an electron
beam requires 1 week of beamtime, with a beam current of I ∼ 50 µA, depending on the kinematics.
The kinematic group counterpart with the positron beam will require more beamtime, since the
beam current will be smaller in this case. The exact beamtime will depend on the final performance
of the delivered positron beam. The unpolarized positron beam is expected at the level of ∼ µA
level. With an optimistic scenario that one can achieve 5 µA, about 10 weeks of beamtime would be
required in such a case for a measurement as shown in Fig. 5. A note can be made here, that since
these projections involve measurements that are systematics limited, one could also cut-down the
beam-on-target time to some extent, aiming to balance a more economic beamtime request while not
inflating significantly the projected uncertainty in the extraction of the polarizability. In this LoI,
we have studied and we have presented one potential scenario for such measurements. The studies
illustrate the superb potential in accessing the physics of interest through measurements that will
employ an unpolarized positron beam. With the endorsement of the PAC, we can plan to extend
these studies further towards a complete and comprehensive study of all potential kinematics, that
will allow to improve further the precision in the extraction of the polarizability, and will render the
beamtime request more efficient.
In the next part, we consider the prospect of using a polarized beam for these measurements. Here,

the goal is to measure the beam spin asymmetries (BSA), and these measurements can be conducted
independently with either an electron or with a positron beam, without the need to combine the
electron and the positron measurements towards the extraction of one measured quantity. Such
measurements with a polarized electron beam can become readily available at Jefferson Lab. We
present one such scenario of measurements in Fig. 6. We again consider a Q2 = 0.35 GeV 2 and a
beam energy of E◦ = 2.2 GeV . Here, the sensitivity to the polarizabilities is enhanced at higher
center of mass energy, and we consider the range of W = 1210 MeV to W = 1250 MeV , while
the access to out of plane kinematics proves again beneficial. The projected results from such a
group of measurements with a I = 70 µA electron beam at 85% polarization is shown in Fig. 6,
that will require ∼ 2 weeks of beamtime. Here, the beam-spin-asymmetry allows to suppress most
of the systematic uncertainties and the statistics become the limitting factor. One can thus run
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BSA(-) Projected measurement

FIG. 6: Beam spin asymmetry measurements with an electron beam. Left panel: measurements at a fixed bin atW = 1230MeV
and ϕ = 30o. The black curve corresponds to mass scale parameters Λα=Λβ=0.7. The two red (blue) curves explore the
sensitivity to the electric (magnetic) GP by varying the Λα (Λβ) from 0.5 to 0.9. Right panel: the projected measurement for
the αE from the BSA measurements is shown in red, along with the world data.

additional beamtime so as to further reduce the uncertainties shown in Fig. 6. For comparison, we
show the measurements from [51] in Fig. 7, where it is evident that the sensitivity to the GPs where
is more limited than in the setup of our measurements. We have also considered the measurement of
BSA with a positron beam. For a group of similar measurements (namely, at the same kinematics
and of the same precision, as in the case of the electron beam measurements) the sensitivity in
the extraction of the polarizabilities is equaly competitive (and slightly better) compared to the
measurements with an electron beam. Nevertheless, the issue here involves the beamtime that
is needed for such measurements, since the beam current for a polarized positron beam will be
significantly suppressed. For example, if one considers an average beam current of I ∼ 50 nA and a
beam polarization of 60%, one is facing the need of a beamtime that is 3 orders of magnitude higher
compared to the measurements with an electron beam. We consider that this path is not viable,
based on the expected performance of a future positron beam at JLab.

III. SUMMARY

We have explored the prospect of studying the proton generalized polarizabilities by following an
alternative path compared to what has been employed so far. The use of a positron beam, as well
as that of a polarized electron beam, presents a powerful avenue in measuring these fundamental
properties of the proton. These measurements will allow to improve further on the measurement of
the GPs, will offer the complete separation of the real and imaginary part of the VCS amplitude,
as well as a cross-check of the unitarity input in the dispersive formalism. Most importantly, an
alternative experimental method will provide a unique cross check to the world-data that have
so far been exclusively based on measurements with unpolarized electrons. The scientific merit of
conducting measurements of a physics signal by applying alternative experimental methods has been
underlined in many occasions in the past. It involves a scientific practice of the highest importance,
with the ability to shed light to valuable reaction mechanisms and to enable necessary corrections
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FIG. 7: Figure from reference [51]. The beam SSA in photon electroproduction at Q2 = 0.35 GeV 2 is compared to the
calculation of the DR model for several values of the free parameters Λα and Λβ . The inner error bar is statistical, the outer
one is the quadratic sum of statistical and systematic errors.

and improvements to the scientific findings. With this Letter of Intent, we request guidance from
the JLab PAC, so that we can pursue this research program with a full proposal. If we receive the
endorsement of the PAC, we will be able to proceed with extensive studies in order to identify the
kinematics that will offer the optimal balance between the precision in the extraction of the GPs
and the requested beamtime, along with comprehensive studies of the background processes and of
the systematic uncertainties associated with these measurements. We also note that measurements
of the beam spin asymmetries with an electron beam can become readily available at JLab. Such
measurments can also be conducted in tandem with future unpolarized VCS experiments (e.g. the
proposed VCS-II experiment in Hall C), if the provided beam will be polarized; a fraction of the
experimental beamtime can be shared between the two experiments in such a case, thus amplifying
the scientific benefit of the awarded beamtime.
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