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Measurements of elastic electron scattering data within the past decade have highlighted two-
photon exchange contributions as a necessary ingredient in theoretical calculations to precisely
evaluate hydrogen elastic scattering cross sections. This correction can modify the cross section at
the few percent level. In contrast, dispersive effects can cause significantly larger changes from the
Born approximation. A recent analysis of the 12C elastic cross section around the first diffraction
minimum [1], where the Born term contributions to the cross section are small to maximize the
sensitivity to dispersive effects, was performed using the JLab LEDEX data from the high resolution
Jefferson Lab Hall A spectrometers at beam energies of 362 MeV and 685 MeV. The results are in
very good agreement with previous world data, although with less precision. The average deviation
from a static nuclear charge distribution expected from linear and quadratic fits indicate a 30.6%
contribution of dispersive effects to the cross section at 1 GeV. The magnitude of these effects
near the first diffraction minimum of 12C has been confirmed to be large with a strong energy
dependence and could account for a large fraction of the magnitude for the observed quenching of
the longitudinal nuclear response. These effects could also be important for nuclear radii extracted
from parity-violating asymmetries measured near a diffraction minimum. The authors concluded it
was important that a systematic study of the dispersion corrections inside and outside diffraction
minima for a large range of (light through heavy) nuclei be performed using both unpolarized and
polarized beams/targets to help provide a more complete understanding of elastic (and inelastic)
electron/positron-nucleus scattering.

This Letter Of Intent (LOI) is submitted to present the case to measure the magnitude
of the dispersive effects through electron and positron inclusive A(e, e′) elastic scattering
around the first diffraction minimum of several nuclei (12C, 27Al, 29Cu, 48Ca, 56Fe, and
208Pb) at five incident beam energies (0.55, 1.1, 2.2, 3.3 and 4.4 GeV) in either the
experimental Hall A or C at Jefferson Lab. These measurements will consist of
the first ever comprehensive study of the energy dependence of these effects.
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A. Physics motivation

1. Introduction
During the 80s and 90s, higher order corrections to the first Born approximation were extensively
studied through dedicated elastic and quasi-elastic scattering experiments using unpolarized elec-
tron and positron beams (see [2, 3, 4, 5, 6, 7] and references therein), following the seminal paper
from [8]. These effects scale as SHOB = VC/Ee where SHOB is the scaling factor to account for
higher order corrections to the Born approximation, VC is the Coulomb potential of the target
nucleus and Ee is the incident energy of the lepton probe [7]. Incidentally, they are expected to
be small in the medium to intermediate energy regime, and have been neglected in the analysis of
GeV energy data: VC reaches a maximum of about 26 MeV for 208Pb with a corresponding value
of SHOB = 0.52% for a 5 GeV beam.

In the 1st order approximation, the scattering cross section is evaluated using plane wave func-
tions for the incoming and outgoing electrons. This approach is also known as the Plane Wave
Born approximation (PWBA) or simply the Born Approximation (Fig. 1). Coulomb corrections
originate from the Coulomb field of the target nucleus that causes an acceleration (deceleration)
of the incoming (outgoing) electrons and a Coulomb distortion of the plane waves: these effects
are treated within a Distorted Wave Born Approximation (DWBA) analysis for inelastic scattering
or elastic/quasi-elastic scattering on heavy nuclei [7]. Two other corrections are required to prop-
erly evaluate the scattering cross section: radiative corrections due to energy loss processes and
dispersive effects due to virtual excitations of the nucleus at the moment of the interaction (Fig. 1).

Within the last decade, a renewed interest arose from a discrepancy between unpolarized and
polarized elastic scattering data on the measurement of the proton form factor ratio µGp

E/G
p
M

which can be attributed to the contribution of two-photon exchanges [9, 10, 11, 12, 13, 14, 15, 16].
These effects have been investigated with a series of dedicated experiments [17, 18, 19, 20] (also
see reviews [21, 22, 23] and references therein), including their impact on the measurement of form
factors for nucleons and light (A ≤ 3) nuclei. They include both Coulomb corrections [7, 24],
excited intermediate states and treatment of the off-shell nucleons through dispersion relations as
a function of the 4-momentum transfer.

Coulomb corrections have historically been labeled as static corrections to the Born approx-
imation as depicted in Fig. 1. While these effects contribute to a few percents [7, 21, 22, 24],
dynamic corrections known as dispersive effects are emphasized in the diffraction minima, where
the first-order (Born approximation) cross section has a zero, and can contribute up to 18% in the
first diffraction minimum of 12C at 690 MeV [5, 6].
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Figure 1: High-order corrections to the one-photon exchange Born approximation in
electron/positron-nucleus scattering.

The electromagnetic nuclear elastic cross section for electrons can be expressed as:

dσ

dΩ
=

( dσ

dΩ

)
Mott

| F (q2) |2 (1)

where
(

dσ
dΩ

)
Mott

is the Mott cross section corresponding to the scattering on a point-like nuclear

target, F (q2) represents the form factor and q2 = −Q2 is the 4-momentum transfer.
Theoretical calculations for dispersive effects in elastic electron scattering for p-shell, spin-0

targets such as 12C were performed in the mid-70s by Friar and Rosen [25]. They used a harmonic
oscillator model and only the longitudinal (Coulomb) component to calculate the scattering am-
plitude within the PBWA approximation; the transverse component was neglected. The matrix
element in the center-of-mass frame – considering only the contribution from the dominant two
photon exchange diagrams – can be written as:

Mdisp =
∑
n̸=0

∫
d3p⃗

q⃗21 q⃗
2
2

⟨0|ρ(q⃗2)|n⟩ ⟨n|ρ(q⃗1)|0⟩
p2 − p2n − iε

a(pn) (2)

with: 
a(pn) = Eepn[1 + cos θ] + p⃗ · (p⃗e + p⃗e′)

pn = Ee − ωn − p2−E2
e

2Mp

p = pe − pe′

(3)

where: pe = (Ee, p⃗e) and pe′ = (Ee′ , p⃗e′) the 4-momentum of the incoming and outgoing electrons,
respectively, and q⃗1,2 the 3-momenta of the two photons exchanged. θ is the angle between the
incoming and outgoing electrons. ρ(q⃗1) and ρ(q⃗2) are the charge operators associated with the
two virtual photons, respectively, and using the notation of [25] with êi(q⃗) the charge distribution
(operator in the isospin space) of the ith nucleon, gives: ρ(q⃗) =

∑A
i=1 êi(q⃗)e

iq⃗·x⃗′
i

ê(q⃗) =
∫
ê(x⃗)eiq⃗·x⃗d3x⃗

(4)
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In their calculation, Friar and Rosen [25] also considered that all nuclear excitation states |n⟩
have the same mean excitation energy ω, allowing to apply the closure relation:

∑
|n⟩ ⟨n| = 1.

Including the elastic scattering and dispersion corrections leads to:

Melast+disp = (αZ)F (q2) + (αZ)2G(q2) (5)

with G(q2) arising from two-photon exchange diagrams (including cross-diagram, seagull . . . ).
Hence:

|Melast+disp|2 = (αZ)2
[
F (q2)

]2
+ 2(αZ)3

[
F (q2)Re{G(q2)}

]
+ (αZ)4

[
|Re{G(q2)}|2 + |Im{G(q2)}|2

] (6)

Therefore, the scattering amplitude is governed by F (q2) and the real part of G(q2) outside the
minima of diffraction (where F (q2) ̸= 0). The imaginary part of G(q2) is most important in the
minima of diffraction where the term F (q2) goes to zero.

Experimentally, in order to extract the magnitude of the dispersive effects, the momentum
transfer q is modified to account for the Coulomb effects into an effective momentum transfer qeff
(we refer the reader to [7, 24, 26] for the validity of this so-called Effective Momentum Approxi-
mation). The latter is obtained by modifying the incident (Ee) and scattered (Ee′) energies of the
incoming and outgoing electrons [7]:

q = 4EeEe′ sin
2(θ/2) → qeff = 4Ee,effEe′,eff sin

2(θ/2) (7)

with Ee,eff = Ee

(
1 − |VC |

Ee

)
and Ee′,eff = Ee′

(
1 − |VC |

Ee

)
. |VC | is the (magnitude of the) Coulomb

potential of the target nucleus. The corresponding experimentally measured cross section can then
be compared to the theoretical cross section calculated using a static charge density [5].

2. The JLab LEDEX experiment
The Low Energy Deuteron EXperiment (LEDEX) [27] was performed in two phases: first in late
2006 with a beam energy of 685 MeV and then in early 2007 with a beam energy of 362 MeV.
They both used a 99.95 % pure 12C target with a density of 2.26 g/cm3 and a thickness of 0.083±
0.001 g/cm2. The combined momentum transfer range was 0.4− 3.0 fm−1.

The kinematics of the LEDEX experiment inside the first diffraction minimum of 12C correspond
to 4-momentum transfers q of 1.85 fm−1 and 1.82 fm−1 (qeff of 1.82 fm−1 and 1.81 fm−1) for
(362 MeV, 61◦) and (685 MeV, 30.5◦), respectively [28]. The measured elastic cross sections are
found to be: (3.26±0.28)×10−8 fm2/sr for 362 MeV and (2.35±0.11)×10−7 fm2/sr for 685 MeV.
They were compared to static cross sections calculated from a Fourier-Bessel (FB) parameterization
extracted from the LEDEX data that is found to be almost identical to the one from Offermann et
al. [5] and the agreement is within 0.1%.

The results of this analysis are compared to the world data on the left panel of Fig. 2. Note
that σFB

stat is replaced by σstat to keep the text coherent throughout this document. From a first
order (solid line) and a second order (dashed line) polynomial fits,extrapolations indicate deviations
at 1 GeV of 28.9% and 32.2%, respectively (average of 30.6%). One pseudo-data point from the
average of the fit functions is also shown at 1 GeV with a 3% error bar (which is a reasonable
systematic error for an elastic peak cross section measurement at Jefferson lab for this energy).
The theoretical prediction from Friar and Rosen [25] on the size of dispersive effects in the first
diffraction minimum of 12C is shown in the right panel of Fig. 2 for 374.5 MeV and 747.2 MeV
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where the inclusion of dispersive corrections σstat+disp is compared to the cross section σstat obtained
from a static charge distribution: the expected (constant) 2% predicted discrepancy is clearly not
reproducing the magnitude and energy dependence behavior seen in the data.
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Figure 2: Left panel – World data on the energy dependence of dispersive effects in the first
diffraction minimum of 12C. In the y-axis, σFB

stat was replaced by σstat to keep coherency in the text.
The first minimum at qeff = 1.84 fm−1 moves slightly with beam energy as noted in [29] (this
dependency is out of the scope of this paper). Right panel – Calculations of Friar and Rosen [25]
for dispersion corrections to elastic electron scattering from 12C at 374.5 and 747.2 MeV in the first
diffraction minimum qeff = 1.84 fm−1.

3. Dispersive corrections and the nuclear matter
A very simplistic approach was used by the authors of [1] to estimate the effects of dispersive
corrections on the nuclear charge density [30, 31] and the Coulomb Sum Rule [32].

Coulomb corrections stem from multi-photons exchange between the incoming lepton probe and
the target nucleus, with 2γ being the dominant contribution from higher powers of the Zα terms
(with the electromagnetic coupling constant α = 1/137). To accurately estimate these effects, one
should take into account the continuous change of the incident beam energy while the particle
is approaching the nucleus. In practice, one assumes a constant Coulomb field to estimate these
effects and applies an effective global shift of the incident and outgoing beam energies as described in
Section A.1. Note that one should use the averaged Coulomb potential |VC | =

∫
ρ(r)|VC |(r)d3r/Z|e|

instead of the potential at the origin of the nucleus |VC(0)| [7].
The dispersive cross section σdisp = σstat+disp (for simplicity) can be expressed as a function of

the cross section σstat:
σdisp = σstat[1 + δdisp(Ee)] (8)

with δdisp(Ee) the higher order correction to the Born Approximation. Our convention throughout
the text is to label any quantity with the subscript disp, such as the cross section σdisp, that
has been directly obtained from experimental measurements and is affected by the contribution
from dispersive effects. Analogously, the subscript stat, such as σstat, is attached to any quantity
that could be obtained by removing the contribution from dispersive effects, thus correcting the
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experimental observation. In that sense σstat will be the expected cross section from the Born
Approximation. Equation (8) states that the observed experimental cross sections σdisp could be
modeled by a small multiplicative perturbation added to the static σstat cross section.

4. Effects on nuclear radii
In the Plane Wave Born Approximation, the nuclear charge density distribution ρch(r) is the Fourier
transform of the nuclear form factor and for spherically symmetric charge distributions the relation
is [33]:

ρch(r) =
1

2π2

∫
Fch(q)

sin(qr)

qr
q2dq (9)

ρch(r) can thus be extracted from the experimentally measured Fch(q
2) and it is usually nor-

malized to either 1 or the total charge of the nucleus. We adopt the first convention in this work:

4π

∫
ρch(r)r

2dr = 1 (10)

A model independent analysis can be done to extract the nuclear charge density distributions
using either a sum of Gaussian (SOG) [34] or sum of Bessel (FB) [35] functions. We will only focus
on the latter and refer the readers to reference [33] for more details on the former.

One can use the zero’th spherical Bessel function j0(r) = sin(qr)/qr to expand the charge
density as:

ρFBch (r) =


∑

ν aνj0
(
νπr
Rcut

)
for r ≤ Rcut

0 for r > Rcut

(11)

with Rcut the cut-off radius chosen such as the charge distribution is zero beyond that value (Rcut =
8 fm for 12C [5]) and the coefficients aν related to the form factor as aν = q2νFch(qν)/2πRcut, where
qν = νπ/Rcut is obtained from the ν-th zero of the Bessel function j0.

In this study we will ignore the contribution of the neutrons to the electric charge distribution
of the nucleus1. Therefore, ρch(r) could be considered as resulting from folding the distribution
ρnuc(r) of the nucleons, protons in our approximation, inside the nucleus with the finite extension
of the protons ρp(r) [35]. The Fourier transform of ρch(r) is then given by the product of the
transform of ρnuc(r) and ρp(r):

Fch(q) = Fnuc(q)Fp(q) (12)

The relationship between the corresponding radii is:

R2
ch = R2

nuc +R2
p (13)

with Rp = 0.8414(19) fm the proton radius [36]. The rms ⟨r2ch⟩1/2 can then be obtained from the
nuclear charge density distribution (ρch) which extends up to Rcut. Its general expression is:

⟨r2ch⟩ =
∫ Rcut

0
ρch(r)r

2d3r = 4π

∫ Rcut

0
ρch(r)r

4dr (14)

Using the Bessel expansion of ρch from Eq. (11) leads to:

⟨r2ch⟩ = 4π

∫ Rcut

0

∑
ν

aνj0

(
νπr

Rcut

)
r4dr (15)

1Even though the neutron has a total electric charge of zero, its charge density ρn(r) is not zero. Nevertheless, its
contribution to the total charge density of the nucleus is small.
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Evaluating the integral of the Bessel function gives:∫ Rcut

0
j0

(
νπr

Rcut

)
r4dr =

(−1)νR5
cut(6− ν2π2)

ν4π4
(16)

Substituting into Eq. (14):

⟨r2ch⟩ = 4π
∑
ν

aν
(−1)νR5

cut(6− ν2π2)

ν4π4
(17)

Therefore, all the coefficients aν of the Fourier Bessel expansion play a role in estimating the
radius of the charge density distribution, decreasing in importance as 1/ν2. If the measured cross
sections used to extract the value of the form factor Fch(q) are indeed modified by the dispersive
corrections, then the change would propagate through the fitted coefficients aν to the estimate of
the charge radius Rch ≡ ⟨r2ch⟩1/2. The total change in Rch can be written as [1]:

δRch =

N∑
i

∂Rch

∂yi
δyi =

N∑
i

( M∑
ν

∂Rch

∂aν

∂aν
∂yi

)
δyi, (18)

where δyi is the change in the ith value of the form factor yi = F (qi), in this case due to the
dispersive effects. Estimating the exact values of δyi is a complicated task beyond our scope since
the change in the cross section as shown in Eq. (8) depends on the energy, but the momentum
transfer q is a function of both the energy and the angle θ. Therefore, for the same fixed value of
q we could have different pairs of (E, θ) which will be impacted differently.

In order to simplify our discussion, we assume that we can separate the total effect of the
dispersive effects on the form factor values as:

Fdisp(q) = F (q)stat[1 +
1

2
δ(Ee)S(q)], (19)

with δdisp = δ(Ee)S(q) from Eq. (8) where δ(Ee) controls the overall strength of the perturbation
and S(q) controls the impact this change would have on different q values. The factor of 1/2 comes
from assuming that δ(Ee) is small and propagating the change from Eqs. (1) and (8): F ∝

√
σ

which implies δF/F ∝ (1/2) δσ/σ.
Since the variable q depends on both Ee and θ, a separation such as Eq. (19) might not be

completely accurate. As it can be seen in the calculations of Friar and Rosen (Fig. 2, right panel),
a change in Ee clearly affects the overal shape of the dispersion corrections as a function of q.
Nevertheless, Eq. (19) is simple enough to allow providing an estimate for the impact of such a
change in inferred nuclear properties of the nucleus. In particular, we can write the change in the
charge radius as:

Rdisp
ch = Rstat

ch [1 + βδ(Ee)] . (20)

where β is a proportionality coefficient fixed once S(q) is specified (e.g., for a given fixed strength
δ(Ee), the change in the radius will depend on the shape of S(q), which is encoded in β).

Figure 3 shows the results for three different test perturbations S(q) plus an empirical one, when
using the data without dispersive corrections from Offermann [5] (Table X) for the central values
of the form factor [1]. For the three test cases these values were modified assuming a constant high
value of δ(Ee) = 30%. The forms for S(q) were divided into two categories: δ4 and δ5 represent
up-shift of 1 (e.g., 15% when multiplied by 1/2 δ(Ee)) on the value of F (qν) for ν = 4 and ν = 5,
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Figure 3: 12C form factor expanded in the Bessel functions formalism using Offermann [5] coeffi-
cients without dispersive corrections. The circles in the q axis shows the special values of momentum
transfer for the first 9 (red) from experimental data and the second 9 (black) from the extrapolation
suggested in [35]. The dashed blue lines encloses the region of the data excluded from the analysis
in [5]. The inset plot shows the three test forms for S(q) in addition to the empirical perturbation
obtained directly from the data by third degree spline interpolation. The curves in the inset plot
are the ones needed to obtain the corrected F stat

ch from the observed F disp
ch values.

respectively, while Gaussian represents a Gaussian up-shift of amplitude 1 at its peak (e.g., once
again 15% when multiplied by 1/2 δ(Ee)), centered at the diffraction minimum q = 1.84 fm−1 and
with a standard deviation of 0.25 fm−1. An overall up-shift in the form factor was chosen based
on the calculations shown on Fig. 2 (right panel), which predict an up-shift in the observed cross
sections due to the dispersive effects, which means σdisp ≥ σstat.

The empirical perturbation was obtained as δemp(qν) = [F ∗
disp(qν)− F ∗

stat(qν)]/F
∗
stat(qν) , where

F ∗
disp(qν) (F

∗
stat(qν)) represents the form factor values obtained from the second (third) column in

Table X of [5]. Since no amplitude δ(Ee) was involved in the empirical perturbation, the value of
β cannot be defined and we have:

Fdisp(qν) = F (qν)stat[1 + δemp(qν)]. (21)

Therefore, while the fits parameters from Fig. 2 (left panel) imply corrections expected to be
around 30% on the cross section at 1 GeV for 12C, the effect on the nuclear charge radius from
our test calculations is around a percent. A detailed analysis of the impact of dispersive effects
on nuclear radii was performed by Offermann et al. [5]: the result is a net relatively small effect
of 0.28%, implying a renormalization of the charge distribution to offset the change in the cross
section.

When using the empirical perturbation for the δyi in Eq. (18) we obtain an effect of 0.25%
in the radius, very close to the actual 0.26% (reported as 0.28% when using rounded values for
the radii) in [5]. It seems that the strength (30%) of the other three perturbations is too big to
reproduce the small change in the radius, which might indicate that the effects on the available
data of the dispersive corrections are roughly at least a factor of five smaller outside the vicinity of
the difraction minimum.

physics motivation 7



The Coulomb field extracted from ⟨r2⟩1/2 should then also be modified from

| VC | = | V stat
C | =

KZ

⟨r2⟩1/2
;K = 1/4πε0 (22)

to
| V disp

C | = | V stat
C | /[1 + βδ(Ee)] (23)

As mentioned previously, Coulomb corrections are expected to be comparatively small for GeV
energies: SHOB = 2.6% for a 1 GeV incident electron beam on a 208Pb target. In the remainder
of this section, we will assume that the energy dependent correction is solely rising from dispersive
corrections and is embedded in the term δdisp(Ee).

In order to estimate the corrections for 208Pb, we scale the carbon value using Coulomb fields
from [7]:

• The scaling is first calculated from the super ratio:

Rscale =
VC,208Pb = 18.5 MeV

VC,12C = 5.0 MeV

Z12C = 6

Z208Pb = 82
= 26.34% (24)

Thus giving a value for the dispersive corrections of 26.34% × 30% ≃ 8% that is compatible
with the ∼ 6% effect observed by Breton et al. [4].

• The effect on the lead radius can then be obtained by applying the above scaling to the value
from Offermann et al. [5]

0.28%Rscale = 0.07%. (25)

The reported experimental value of the charge radius of lead is [37] Rch = 5.5012(13) fm which
would imply an upward shift to 5.5053(13) fm when taking the 0.07% scaling into account.

The situation is far more complex for parity-violating experiments [30, 31, 38] from which the
measured asymmetry is used to extract a neutron skin. These experiments typically occurred near
diffractive minima to maximize their sensitivity to the physics [39], where also dispersive corrections
contribute the most. Our estimation suggests the importance of this correction for high precision
determinations of the radius and/or the neutron skin of heavy nuclei.

It is clear one should take dispersive effects into account; however, to our
knowledge, there is no known measurements of dispersive effects using po-
larized beams and/or target. Therefore, measurements of the energy de-
pendence for dispersive effects using polarized elastic scattering on various
nuclear targets (A > 1) should be performed to provide an accurate infor-
mation about the size of these effects in and outside minima of diffraction.

5. Possible effects on the Coulomb Sum Rule
The Coulomb Sum Rule (CSR) [40] is defined as the integral of the longitudinal response function
RL(ω, |q|) extracted from quasi-elastic electron scattering:

SL(|q|) =
∫ |q|

ω>0

RL(ω, |q|)
ZG2

Ep
(Q2) +NG2

En
(Q2)

dω (26)

where −Q2 = ω2 − q⃗2 with ω the energy transfer and q⃗ the three-momentum transfer. GEp,n(Q
2)

is the proton (neutron) form factor which reduces to the Sachs electric form factor if the nucleon
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is not modified by the nuclear medium [41]. ω > 0 ensures that the integration is performed above
the elastic peak. In essence, CSR states that by integrating the longitudinal strength over the
full range of energy loss ω at large enough momentum transfer q, one should get the total charge
(number of protons) of a nucleus.

The quenching of CSR has been found to be as much as 30% [32] for medium and heavy nuclei.
Using a quantum field-theoretic quark-level approach which preserves the symmetries of quantum
chromodynamics, as well as exhibiting dynamical chiral symmetry breaking and quark confinement,
the most recent calculation by Cloet et al. [42] confirmed the dramatic quenching of the Coulomb
Sum Rule for momentum transfers |q|≳2.5 fm−1 that lies in changes to the proton Dirac form factor
induced by the nuclear medium.

As previously noted, the nuclear charge distribution ρch(r) may be considered as a result from
folding the distribution ρnuc(r) of the nucleons in the nucleus with the finite extension of the
nucleons ρp(r) [35] as represented in Fig. 4.

Figure 4: Relationship between the charge, nucleons (protons) and the single proton form factors
along with their respective densities for 12C. The protons density ρnucl specifies the spatial distribu-
tion of the 6 protons inside the 12C nucleus, treating them as point particles (blue circles over the
black background in the middle column). The charge form factor Fch, which relates to the charge
distribution in the nucleus (left column), is the result of folding the protons form factor Fnucl with
the single proton form factor Fp, which relates to the charge distribution inside the proton (right
column, the color circles represents the three quarks).

Quasi-elastic electron scattering corresponds to a process in which electrons elastically scattered
off nucleons. The nuclear response is affected by the fact that nucleons are not free and carry a
momentum distribution, the existence of nucleon-nucleon interactions and interactions between the
incoming and outgoing probe and recoils. Therefore, noting that RL probes ρnuc = ρprotons while
elastic scattering experiments probe ρch(r), any measured shift of Fch(q) results from a change
in Fnuc or Fp, or both. Even when considering the contribution from two-photon exchanges that
are responsible for the measured deviation between unpolarized and polarized electron scattering
in the extraction of the µGp

E/G
p
M ratio and also believed to be at the origin of the proton form

factor puzzle [15] (see the Introduction section), the discrepancy observed cannot explain the 30%
quenching of RL [21, 22, 23]. In the following, we assume that the contribution from dispersive
effects found in ρch(r) translates entirely in a change in ρprotons and hence in the CSR.
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From our naive model (with nuc = p or n):

Gdisp
Enuc

(Q2) =
Gstat

Enuc
(Q2)

1 + βδ(Ee)
(27)

Hence:
Sdisp
L (|q|) = Sstat

L (|q|) × [1 + βδ(Ee)] (28)

Using Fig. 2 for a 600 MeV incident beam on 12C, one would expect a 15% correction in the
minimum of diffraction, which is a factor of 7.5 from the 2% prediction from Friar and Rosen [25].
Above the minimum, their prediction indicates an almost linear increase of the dispersion correc-
tions up to about 3.3 fm−1 where it reaches a maximum of about 3%. Assuming the same scaling,
that is a 0.03× 7.5 ≃ 22% predicted effect in the kinematic regime of the CSR data for 12C [43].

Dispersion corrections could have a significant contribution on the Coulomb
Sum Rule quenching if the experimentally measured longitudinal response
function RL(ω, |q|) is corrected for these effects.

6. Summary
Using a general theoretical framework that allows to propagate the dispersive correction effects,
treated as a perturbation, to the coefficients of a Bessel function fit of the form factor, the authors
in [1] benchmarked their calculation using the experimental data on 12C from Offermann et al. [5].
They then investigated the impact of these corrections on the nuclear charge density radius and
obtained comparable results with the ones reported by the authors. Using scaling arguments,
the contribution was found to be around 0.07% for the recent measurement of the nucleon radii
from Pb [30, 31, 38], although it will take a detailed investigation and theory to understand how
this affects the parity-violating asymmetry. A subsequent study on the observed quenching of the
Coulomb Sum Rule [42] indicates that the expected contribution seems to be larger.

The authors in [1] concluded that it was important that a systematic study of
the dispersion corrections inside and outside diffraction minima for a large
range of (light through heavy) nuclei be performed using both unpolarized
and polarized beams/targets to help provide a more complete understanding
of elastic (and inelastic) electron/positron-nucleus scattering.

B. Letter of Intent

We are submitting this Letter Of Intent to present the case to measure the energy dependence
of the dispersive effects through electron and positron inclusive A(e, e′) elastic scattering around
the first diffraction minimum of several nuclei (12C, 13Al, 29Cu, 48Ca, 56Fe, and 208Pb) with five
incident beam energies of 0.55, 1.1, 2.2, 3.3 and 4.4 GeV. These measurements will consist of
the first ever comprehensive study of the energy dependence of these effects.

The experiment could be performed in either the experimental Hall A (using one of the two
HRS spectrometers) or Hall C (using the HMS or SHMS spectrometer) at Jefferson Lab in normal
configuration with their standard detector systems. Note that few experiments are requesting non-
standard CEBAF energies such as 0.7, 1.4, and 2.1 GeV for the PRad-II Collaboration [44] and
XXX for the Super-Rosenbluth experiment [45]. The latter has flexibility in terms of the exact
beam energies with the goal of having good baseline measurements for Einc < 1 GeV and good
coverage of the Einc > 1 GeV where the difference between the projections is large. Similarly, the
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Figure 5: The projected A(e, e′) mea-
surements for 0.55, 1.1, 2.2 3.3 and
4.4 GeV incident electron/positron
beam energies.

choice of our beam energies can be modified as one of the primary focus is to perform an energy scan
from the sub-GeV regime. While working on our full proposal, we plan to consider the possibility
for both our proposed experiment and the Super-Rosenbluth experiment [45] to run together to
optimize and reduce the total number of linac settings while still covering the needed beam energies
for both measurements. We plan to perform further investigations via Monte Carlo simulation to
assess the feasibility of such experiment in Hall A or Hall C.
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