CEBAF Program Advisory Committee Nine Proposal Cover Sheet

This proposal must be received by close of business on Thursday, December 1, 1994 at:

CEBAF
User Liaison Office, Mail Stop 12 B
12000 Jefferson Avenue
Newport News, VA 23606

Proposal Title
Search for Narrow Excited States of the Proton

Contact Person
Name: David Garelick
Institution: Northeastern University
Address: Physics Department
 111 Dana Research Center
Address: Boston, MA, 02115, USA
Phone: 617-373-2936 FAX: 617-373-2943
E-Mail → Internet: garelick@neu.edu

Experimental Hall: C* Days Requested for Approval: 2
Hall B proposals only, list any experiments and days for concurrent running:

* Hall A would be OK, too.

CEBAF Use Only
Receipt Date: 12/15/94 PR 94-113
By: 90
LAB RESOURCES REQUIREMENTS LIST

CEBAF Proposal No.: __________________________ Date: __________________________

(For CEBAF User Liaison Office use only)

List below significant resources — both equipment and human — that you are requesting from CEBAF in support of mounting and executing the proposed experiment. Do not include items that will be routinely supplied to all running experiments, such as the base equipment for the hall and technical support for routine operation, installation, and maintenance.

Major Installations (either your equip. or new equip. requested from CEBAF)

Major Equipment

- Magnets
- Power Supplies
- Targets
- Detectors
- Electronics
- Computer Hardware
- Other

Data Acquisition/Reduction

- Computing Resources
- New Software
- Other
HAZARD IDENTIFICATION CHECKLIST

CEBAF Proposal No.:

(For CEBAF User Liaison Office use only)

Check all items for which there is an anticipated need.

Cryogenics
- Beamline magnets
- Analysis magnets
- Target
 - Type:
 - Flow rate:
 - Capacity:

Electrical Equipment
- Cryo/electrical devices
- Capacitor banks
- High voltage
- Exposed equipment

Radioactive/Hazardous Materials
List any radioactive or hazardous/toxic materials planned for use:

<table>
<thead>
<tr>
<th>Material</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beryllium (Be)</td>
<td></td>
</tr>
<tr>
<td>Lithium (Li)</td>
<td></td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td></td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td></td>
</tr>
<tr>
<td>Tungsten (W)</td>
<td></td>
</tr>
<tr>
<td>Uranium (U)</td>
<td></td>
</tr>
<tr>
<td>Other (list below)</td>
<td></td>
</tr>
</tbody>
</table>

Pressure Vessels
- Inside diameter
- Operating pressure
- Window material
- Window thickness

Flammable Gas or Liquids
- Type:
- Flow rate:
- Capacity:

Other Target Materials
- Beryllium (Be)
- Lithium (Li)
- Mercury (Hg)
- Lead (Pb)
- Tungsten (W)
- Uranium (U)
- Other (list below)

Vacuum Vessels
- Inside diameter
- Operating pressure
- Window material
- Window thickness

Drift Chambers
- Type:
- Flow rate:
- Capacity:

Radioactive Sources
- Permanent installation
- Temporary use
- Type:
- Strength:

Hazardous Materials
- Cyanide plating materials
- Scintillation oil (from)
- PCBs
- Methane
- TMAE
- TEA
- Photographic developers
- Other (list below)

General

Experiment Class:

- Base Equipment
- Temp. Mod. to Base Equip.
- Permanent Mod. to Base Equipment
- Major New Apparatus

Other:

Hall A or Hall C spectrometer system with 10 cm ID q. H2 target
BEAM REQUIREMENTS LIST

CEBAF Proposal No.:

(For CEBAF User Liaison Office use only)

Date:

List all combinations of anticipated targets and beam conditions required to execute the experiment. (This list will form the primary basis for the Radiation Safety Assessment Document (RSAD) calculations that must be performed for each experiment.)

<table>
<thead>
<tr>
<th>Condition #</th>
<th>Beam Energy (MeV)</th>
<th>Beam Current (µA)</th>
<th>Polarization and Other Special Requirements (e.g., time structure)</th>
<th>Target Material (use multiple rows for complex targets — e.g., w/windows)</th>
<th>Target Material Thickness (mg/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>< 60 µA</td>
<td></td>
<td>10 cm lqd. H₂</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4000</td>
<td>< 60 µA</td>
<td></td>
<td>10 cm lqd. H₂</td>
<td></td>
</tr>
</tbody>
</table>

For beam energies, E_{beam}, available are: $E_{\text{beam}} = N \times E_{\text{linac}}$ where $N = 1, 2, 3, 4,$ or 5. For 1995, $E_{\text{linac}} = 800$ MeV, i.e., available E_{beam} are 800, 1600, 2400, 3200, and 4000 MeV. Starting in 1996, in an evolutionary way (and not necessarily in the order given) the following additional values of E_{linac} will become available: $E_{\text{linac}} = 400, 500, 600, 700, 900, 1000, 1100,$ and 1200 MeV. The sequence and timing of the available resultant energies, E_{beam}, will be determined by physics priorities and technical capabilities.
RESEARCH PROPOSAL TO CEBAF

Search for Narrow Excited States of the Proton

D. Garelick*, N. Khalil, P. Nistor
Northeastern University
Boston, Massachusetts 02115

W. Oliver
Tufts University
Medford, Massachusetts 02155

and others

Abstract

We propose a measurement of the reaction $e + p \rightarrow e' + X$ to search for narrow excited states of the proton, p^*, in the mass region:

$$M_p < M_X < M_p + 1250 \text{ MeV}$$

The sensitivity of the proposed measurements is more than a factor of 50 better than in previous experiments. We will use the Hall C HMS spectrometer to measure the scattered electron, e', at a 12.5° angle. Beam energies of .3 GeV and 4 GeV and a maximum beam current of 60 μA are proposed, for a total of 50 hours. The experiment will use a 10 cm long liquid hydrogen target. The use of this thin walled target, together with the expected spectrometer resolutions and beam resolutions will provide excellent missing mass resolution. With very high sensitivity, at the lower beam energy, .3 GeV, the mass region $M_p < M_X < M_p + 140 \text{ MeV}$ will be covered. At the higher beam energy, 4. GeV, the mass region $M_p < M_X < M_p + 1250 \text{ MeV}$ will be scanned with very good sensitivity.
An indication of the proposed experiment's sensitivity is that any narrow state, p^*, will be detected if its cross section relative to elastic scattering is greater than 2×10^{-5} in the region $M_p < M_x < M_p + 140$ MeV. There is a suggestion, by R. P. Feynman, concerning the possible existence of a colored proton, p_c, at a mass of about 990 MeV. In terms of coupling constants, this p_c is expected to be detected if the color carrying part of the photon has a strength α_c, relative to the electromagnetic coupling constant α_{EM}, of $\frac{\alpha_c}{\alpha_{EM}} \geq 2 \times 10^{-5}$.

Requests: The Hall C HMS spectrometer operated for high resolution for electron measurements. Beams of a maximum current of 60 μA at .3 GeV and 4 GeV, each for 24 hours. 10 cm liquid hydrogen target. (This experiment might be run simultaneously with the proposed experiment: Search for Direct Conversion of Electrons into Muons)

* Spokesperson (Garelick@NEU.EDU, 617 373 2936)
Motivation

The primary motivation for this proposal is the principle that experiments should be done whenever a dramatic improvement in sensitivity is possible over previous studies in a region of "physics phase space" of special interest. The conjecture, presented below, is discussed to point out such a region of special interest and the proposed experiment has a sensitivity of better than a factor of 50 over previous experiments.

The quark model, with color, has been very successful in explaining many features of hadron spectroscopy. In its basic form, the baryons, are made up of three quarks bound together by the exchange of gluons. Each of the quarks inside the physical baryon has a different color and the total color is zero. In this model, a physical proton is considered to be made up of two u quarks and a d quark. The simplest analysis of the proton and neutron magnetic moments implies that the masses of the u and d quarks are:

\[M_q = M_u = M_d = 336 \text{ MeV} \]

It follows that the binding energy, \(E \), of the three quarks in the physical proton is:

\[E = 3M_q - M_p = 3(336) - 938 \equiv 70 \text{ MeV} \]

or each quark-quark bond, \(B \), can be considered to give rise to a binding energy \(E_B \) of:

\[E_B \equiv E/3 \equiv 23 \text{ MeV}. \]

Using this model, let us consider the properties of a physical hadron (colored proton), \(p^* \), made up to two u quarks and a d quark, where two of the quarks have the same color. These quarks inside the \(p^* \) will have two attractive bonds and one repulsive bond. If one assumes, in analogy to electrostatics, that the interaction energy of two like colored quarks is the opposite of the interaction energy for two unlike colored quarks in the same state, one estimates:

\[M_{p^*} \equiv 3(336) - 23 \equiv 985 \text{ MeV}. \]
R. P. Feynman's1) calculation used group theory to calculate the p* mass with the result: \(M_{p^*} \cong 990 \text{ MeV} \). Other calculations3) based on \(M_q \cong M_u \cong M_d \cong 363 \text{ MeV} \) give \(M_{p^*} \cong 1039 \text{ MeV} \).

Obviously, the p* mass is not predicted exactly, even though the above model suggests that: \(m_p \leq m_{p^*} \leq m_p + 140 \text{ MeV} \). Generally the width of the p* state will probably be very narrow, \(\Gamma \leq 1 \text{ MeV} \), since it is expected to decay into a gamma and a proton. However, if the p* is high enough in mass to decay into a proton and a colored \(\pi \), it probably would not be narrow. Since very little is known about colored \(\pi \)s, we will not speculate further, other than to say the entire p* mass region accessible at CEBAF should be searched with high sensitivity. Fortunately, such a search will take relatively little beam time, about 2 days.

In summary: the main importance of the above arguments is that they provide a plausibility argument for the existence of a narrow excited proton. At a minimum, the proposed experiment will search the CEBAF mass region for new excited states of the proton with greatly improved sensitivity over prior experiments.

The Experiment for \(m_p \leq m_{p^*} \leq m_p + 140 \text{ MeV} \)

The physical background, in this mass region, is the radiative tail of elastic ep scattering. The calculations, below, are estimates of the sensitivity of the proposed experiment, which is determined by the size of the radiative tail and the missing mass resolution \(\delta M_x \). The calculations, presented, are for \(M_{p^*} \cong 985 \text{ MeV} \) and the results for other masses are given at the end of the proposal. As we shall show, our methods are in excellent agreement with actual data provided to us by K. Dow4).

We plan to use the Hall C HMS spectrometer to detect the scattered electrons at 12.5\textdegree. We will use the Hall A liquid hydrogen target, 10 cm length, "beer can" geometry with the beam traveling along the can's axis, .008 in Al walls. The Al windows each of have \(2.3 \times 10^{-3} \) radiation lengths, r.l. For an incident beam energy \(E_b = 300 \text{ MeV} \) and a scattering angle of 12.5\textdegree, the elastic scattered energy is \(E_{el} \cong 298 \text{ MeV} \). As discussed below, the level of the radiative tail is set by the total number...
of radiation lengths, X_o, seen by the scattered electron\(^5\) and by the elastic scattering cross section. X_o has three pieces:

$$X_o = X_{o.t.w.} + X_{o.l.h.} + X_{o.i.b.}$$

where $X_{o.t.w.} =$ the number of radiation lengths in the target windows = \(4.6 \times 10^{-3}\)

$X_{o.l.h.} =$ the number of radiation lengths in the liquid hydrogen = \(11.6 \times 10^{-3}\).

$X_{o.i.b.} =$ the number of equivalent radiation lengths\(^5\) when the electron scatters elastically in the field of the proton = \(3.0 \times 10^{-2}\).

Thus, the total equivalent radiation length is: $X_o \equiv 4.6 \times 10^{-2}$.

The counting rates and estimates of the sensitivity of the experiment are calculated following the methods of L. W. Mo and Y. S. Tsi\(a\)\(^5\) and are as follows:

Let N_R be the number of electrons per second, in a bin of width Γ_E in the radiative tail. Here Γ_E is the full width half maximum of the measurement uncertainty in the missing mass, M_X. To a good approximation\(^6\):

$$N_R \equiv \frac{\Gamma_E X_o}{2*(E_{el} - E_{e'})^2} \left[(E_{el}/E_{e'})^2 + 1 \right] N_{el}$$

where: $N_{el} = (#e's/sec)\times(#p's/cm^2)\times\frac{d\sigma}{d\Omega_{ep\rightarrow ep}} \times \Delta\Omega$. Here $\frac{d\sigma}{d\Omega_{ep\rightarrow ep}}$ is the elastic scattering cross section and $\Delta\Omega$ is the HMS solid angle. $N_e =$ is the number of elastic scatterings detected by the HMS under the same running conditions. (See Ref. 6 for the above relationship expressed in terms of the cross sections.)

$E_{el} = 298$ MeV is the scattered energy at the elastic peak and $E_{e'} = 250$ MeV is the scattered electron energy at $M_X = 985$ MeV.

Γ_E has four parts: $\Gamma_E = \Gamma_\Theta + \Gamma_{el} + \Gamma_{eb} + \Gamma_I$, where \oplus implies that the terms are added in quadrature. Here: $\Gamma_\Theta =$ the gaussian resolution, full
width, contribution to the uncertainty of the \(M_X \) measurement due to the scattering angle measurement uncertainty. \(\Gamma_{El} \) = the resolution contribution from the measurement of the energy loss, \(E_{El} \); the difference between the scattered electron's energy, \(E_{e'} \), and incident beam energy, \(E_b \). We plan to achieve \(\Gamma_{El} = 0.001 E_{e'} \). \(\Gamma_{Eb} \) = is the contribution from the beam energy spread where we plan to achieve \(\Gamma_{Eb} = 0.0001 \) or better. \(\Gamma_I \) = the resolution from the variation in energy loss by ionization due to different path lengths in the target.

For the kinematics given above:

\[
\Gamma_E = \Gamma_\theta \oplus \Gamma_{El} \oplus \Gamma_{Eb} \oplus \Gamma_I
\]

\[
\Gamma_E = 0.205 \oplus 0.246 \oplus 0.000 \oplus 0.000
\]

\[
\Gamma_E = 0.32 \text{ MeV}
\]

(More complete details of these calculations are given following the References in the back of this proposal titled: "Calculation of the mass resolution." Also, similar calculations for carrying out the experiment using the a HRS spectrometer in Hall A gives: \(\Gamma_E = 0.21 \text{ MeV} \). Thus, the sensitivity of the HRS would be a factor of 1.5 better than for the HMS in Hall C, as indicated below.)

Thus, \(N_R \approx 4.1 \times 10^{-4} \times N_{el} \)

and \(N_{el} = (\#e'/\text{sec}) \times (\#p'/\text{cm}^2) \times \frac{d\sigma}{d\Omega_{ep \rightarrow ep}} \times \Delta\Omega \).

The 10 cm diameter liquid hydrogen target, a beam current of 0.6\(\mu \)A, an HMS angular acceptance \(\Delta\Omega = 10 \text{ msr} \) and \(\frac{d\sigma}{d\Omega_{ep \rightarrow ep}} = 3.9 \times 10^{-28} \text{ cm}^2/\text{sr} \), gives:

\(N_{el} = (0.4 \times 10^{13})(0.4 \times 10^{24})(4 \times 10^{-28})(10^{-2}) = 0.6 \times 10^{7} /\text{sec} \).

Thus, \(N_R = (4 \times 10^{-4}) \times (0.6 \times 10^{7}) \approx 2.4 \times 10^{3} \text{ counts/(second} \; \Gamma_E) \)

December 13, 1994 \hspace{1cm} 8:12 AM \hspace{1cm} Page 6 \hspace{1cm} CEBAF/p
If we require that the p\(^*\) signal appear at least 5% above the radiative tail and be at least a 5 standard deviation effect, it follows that:

$$\frac{N_{p^*}}{N_R} \geq 5 \times 10^{-2} \text{ and } N_R \geq 10^4.$$

To accumulate 10\(^4\) counts per \(\Gamma_E\) bin, for the setting indicated above, requires less than 1 minute, even at a beam current of .6 \(\mu A\). For these parameters, the total scattered electron event rate at the focal plane will be approximately 2\(\times10^4\) per second. This will probably saturate the data handling capabilities of the HMS. For a scan of 25 magnet settings of 20 minutes each, this implies a total beam time of 8 hours. Taking various inefficiencies into account, we conservatively ask for 24 hours.

It also follows that:

$$N_{p^*} \geq (5 \times 10^{-2}) (4 \times 10^{-4}) N_{el} = 2 \times 10^{-5} N_{el}$$

if this p\(^*\) is to be detected in this experiment. This defines the sensitivity of the experiment for \(M_{p^*} = 985\) MeV.

We get the cross section limit of

$$\frac{d\sigma}{d\Omega_{p^*e^+}} \geq 2 \times 10^{-5}.$$

If the p\(^*\) form factor is the same as the proton, it follows that:

$$\frac{d\sigma}{d\Omega_{p^*e^+}} \cong \frac{\alpha_e}{\alpha_{EM}}.$$

Thus, our experiment typically requires \(\left(\frac{\alpha_e}{\alpha_{EM}}\right) \geq 2 \times 10^{-5}\) for the detection of a p\(^*\) in the mass region to be measured.

The sensitivity calculations, above, apply to the special kinematics case of where the beam energy is \(E_B = 300\) MeV, the scattering angle is 12.5\(^0\) and \(M_{p^*} = 985\) MeV. The results of the calculations for the full mass region to be covered at \(E_B = 300\) MeV are given in Figs.1 through 3. It is assumed that the momentum acceptance of the HMS is 10%. Our plan is to change the magnet current in 5% steps (50% overlap) accumulating at least 10\(^4\)
events per \(\Gamma_E \) for each magnet setting. Thus, each mass bin of width \(\Gamma_E \) will contain at least \(10^4 \) events for each of two magnet settings and there will be good overlap between the adjacent magnet settings.

A Check On Our Calculations

The measurements of K. Dow\(^4\) at a beam energy of 289 MeV and an angle of 54° at Bates are shown in Fig. 3 along with our calculations. There are no free parameters in these calculations. The excellent agreement between Dow's measurements and the calculations indicates that our method for calculating the radiative tail is reliable. Furthermore, the elastic peak in Dow's data has \(\Gamma_E = 0.90 \) MeV, in agreement with our calculations.

Limits Set By Previous Experiments

The best previous experiments known to us are the works of K. Dow\(^4\) and A. Esaulov, et al.\(^7\) neither of which was designed to search for narrow states. However, both experiments did measure some of the mass region of interest. We estimate that the sensitivity of our proposed experiment is better than a factor of 50 more than that of K. Dow and more than a factor of 150 better than that of A. Esaulov, et al.

Additional Remarks

1) It is of interest to compare the above sensitivity limit to the limit implied by the agreement between the measured \(Z^0 \)'s width and its width predicted from the Standard Model. The \(Z^0 \) width has been measured to \(\pm 1.0 \times 10^{-2} \) GeV.\(^8\) If the \(Z^0 \), the heavy photon, has a colored piece, this will broaden the \(Z^0 \) beyond the Standard Model value. Thus, from the \(Z^0 \) decay width (LEP Experiments) one gets: \[\frac{\delta \Gamma}{\Gamma} \approx \frac{1.0 \times 10^{-2}}{2.487} = 0.4 \times 10^{-2} \geq \frac{\alpha_c}{\alpha_{EM}}. \]

Our experiment is sensitive to: \(\frac{\alpha_c}{\alpha_{EM}} \geq 2 \times 10^{-5} \) or nearly a factor of 200 more sensitive to a colored photon than the limits suggested by the \(Z^0 \) width.
The Experiment for \((M_p + 140 \text{ MeV}) < M_{p^*} \leq (M_p + 1250 \text{ MeV}) \)

As discussed before, the mass of the \(p^* \) cannot be predicted exactly. Therefore, we wish to scan the full mass region accessible at CEBAF. In this higher mass region the "background" is not the radiative tail but rather the scattering of electrons from the lowest lying \(N^* \) states. For this scattering the ratio of the cross section for the \(N^* \) scattering, in an interval \(\Gamma_E \), in MeV, to the elastic \(ep \) scattering is approximately\(^9,3\)

\[
R(N^*/ep) = \frac{\Gamma_E}{270}
\]

The sensitivity of our experiment versus \(M_x \), derived from the above using the method developed for the lower mass radiative tail background, is presented in Fig. 4.
References

1) R. P. Feynman, Les Houches, Session XXIX, (1976)

3) D. J. Griffiths, Introduction to Elementary Particles, John Wiley & Sons, Inc. (1987)

4) Measurements made by K. Dow at Bates as part of her Ph. D. thesis research (unpublished.) We thank K. Dow for making the results of these measurements available to us.

5) L. W. Mo and Y. S. Tsia, Rev. Mod. Phys. 41 (1969) 205

6) This formula $N_R \equiv \frac{\Gamma E X_0}{2(E_{el} - E_e)} \left[\left(\frac{E_{el}}{E_e} \right)^2 + 1 \right] N_{el}$ can be arrived at in the following way. First, one uses the approximation of L. W. Mo and Y. S. Tsia5) in which the interaction, bremsstrahlung, is approximated in two parts. One part in which the incident electron sees one half of the total radiation lengths, $X_0/2$, before it scatters and one part in which the electron scatters and then sees one half of the total radiation lengths. The first term of the above expression is the standard bremsstrahlung expression. The first term inside the brackets corresponds to beam bremsstrahlung followed by elastic scattering. This term is bigger than one since the degraded beam electron has a larger elastic cross section than does the electron at beam energy. The second term inside the brackets is just the bremsstrahlung after the beam electron has scattered elastically.

The above formula, in terms of the cross sections, is:

$$\frac{\Gamma E d\sigma}{d\Omega dM_X} = \frac{\Gamma E X_0}{2(E_{el} - E_e)} \left[\left(\frac{E_{el}}{E_e} \right)^2 + 1 \right] \frac{d\sigma}{d\Omega_{el}}$$

December 13, 1994 8:12 AM Page 10 CEBAF/p*
Calculation of the mass resolution.

Now calculate the mass resolution:
First, the energy loss determination:
\[\Gamma E_{l_j} := \frac{1}{M_j} \cdot (M_p + E_b \cdot (1 - \cos(\theta))) \cdot 0.001 \cdot E_j \]

Second, the variation in energy loss due to differing path lengths in the target:
\[\Gamma \Pi_j := \frac{1}{M_j} \cdot (M_p + E_b \cdot (1 - \cos(\theta))) \cdot 0.00 \]

Third, the effect of the spread in the beam energy:
\[\Gamma E_{b_j} := \left(\frac{1}{M_j} \right) \cdot (E_b + E_j) \cdot (1 - \cos(\theta)) \cdot (0.0001 \cdot E_b) \]

Fourth, the scattering of incident beam, \(b \):
The quantities indicated by deltas are rms.
\[X_{in} := 0.0081 \quad X_{out} := 0.0081 \]
\[\delta \theta_b := \frac{13.6}{E_b} \cdot \sqrt{X_{in} \cdot (1 + 0.038 \cdot \ln(X_{in}))} \]

Fifth, the scattering of outgoing electron of energy \(E_j \):
\[\delta \theta E_j := \frac{13.6}{E_j} \cdot \sqrt{X_{out} \cdot (1 + 0.038 \cdot \ln(X_{out}))} \]

Combine the two angles:
\[\delta \theta_{total_j} := \sqrt{\delta \theta^2 + (\delta \theta E_j)^2} \]
\[\delta \theta_{rad_j} := 1000 \cdot \delta \theta_{total_j} \]
\[\Gamma E_{\theta_j} := \frac{1}{M_j} \cdot E_b \cdot E_j \cdot \sin(\theta) \cdot \delta \theta_{total_j} \cdot 2.36 \]
\[\Gamma_{total_j} := \sqrt{(\Gamma E_{\theta_j})^2 + (\Gamma E_{l_j})^2 + (\Gamma E_{b_j})^2 + (\Gamma \Pi_j)^2} \]
Fig. 1. Mass resolution versus mass at 300 MeV, 12.5°. The units are MeV.

\[\Gamma_{\text{total}} := \sqrt{(\Gamma_0)^2 + (\Gamma_{E_1})^2 + (\Gamma_{E_2})^2 + (\Gamma_I)^2} \]
Fig. 2. Cross section sensitivity, relative to elastic scattering, versus mass in MeV at 300 MeV 12.5°.

\[X_{\text{tot}} := X_{\text{in}} + X_{\text{out}} + 1.5 \cdot \frac{1}{137 \cdot 3.14} \left(\ln \left(\frac{Q_{\text{SQ}}}{260} \right) - 1 \right) \]

\[X_{\text{tot}} = 0.0465 \]

\[\Gamma_j := \Gamma_{\text{total}_j} \quad X_0 := X_{\text{tot}} \quad X_{\text{field}} := X_{\text{tot}} - X_{\text{in}} - X_{\text{out}} \quad X_{\text{field}} = 0.0303 \]

\[R_j := \Gamma_j \cdot \frac{X_0}{2} \left(\frac{1}{E_f - E_j} \right) \left(\frac{E_f}{E_j} \right)^2 + 1 \]

Note, \(R_j \) is the probability, per elastically scattered electron, of degraded electron ending up in the bin \(R_j \).

\[S_j := 0.05 \cdot R_j \]

\[p^* \quad 300/12.5 \text{ deg} \quad dPb/Pb = 0.0001 \quad dEe'/Ee' = 0.001 \]
Fig. 3. A comparison of the radiative tail calculations to the measurements of K. Dow. The units of the cross section are nb/(MeV sr). There are no free parameters in the calculation. The mass units are MeV. (289 MeV, 54°.)
Fig. 4. Cross section sensitivity, relative to elastic scattering, versus mass in MeV at 4000 MeV, 12.5°.

\[
\Gamma_j := \Gamma_{\text{total}}_j \\
RR_j := \frac{\Gamma_j}{270} \\
SS_j := 0.05 \cdot RR_j
\]