

An Experimental Overview of Gluonic Mesons

Curtis A. Meyer Carnegie Mellon University May 14, 2003

Talk Outline

What are gluonic excitations? Hybrids and Glueballs

Overview of evidence for exotic quantum number states.

Non-exotic quantum number states.

Overview of Glueballs.

Normal Mesons

 ${}^{3}S_{1} = 1^{--}$

G=C (-1) I

Non-quark-antiquark 0-- 0+- 1-+ 2+- 3-+ ...

orbital

 $L=2 \begin{array}{ccc} \rho_{3}, \omega_{3}, \phi_{3}, K_{3} & 3^{--} \\ \rho_{2}, \omega_{2}, \phi_{2}, K_{2} & 2^{--} \\ \rho_{1}, \omega_{1}, \phi_{1}, K_{1} & 1^{--} \\ \pi_{2}, \eta_{2}, \eta'_{2}, K_{2} & 2^{-+} \end{array}$

 $L=1 \begin{array}{c} a_{2}, f_{2}, f_{2}', K_{2} & 2^{++} \\ a_{1}, f_{1}, f_{1}', K_{1} & 1^{++} \\ a_{0}, f_{0}, f_{0}', K_{0} & 0^{++} \\ b_{1}, h_{1}, h_{1}', K_{1} & 1^{+-} \end{array}$

L=0 ρ,ω,φ,Κ* 1-π,η,η',Κ 0-+

4 May 14, 2003

Curtis A. Meyer

Lattice QCD Flux Tubes Realized

Color Field: Because of self interaction, confining flux tubes form between static color charges

Confinement arises from flux tubes and their excitation leads to a new spectrum of mesons

Hybrid Mesons built on guark-model mesons

ground-state flux-tube m=0

normal mesons $CP = \{(-1)^{L+S}\}\{(-1)^{L+1}\}$ $= \{(-1)^{S+1}\}$

> Flux-tube Model m=0 CP=(-1) ^{s+1} m=1 CP=(-1) ^s

excited flux-tube m=1 1-+ or 1+- ρ, ω, ϕ S=1,L=0,m=1 S=0,L=0,m=1 J=1 CP=+ J=1 CP=-JPC=0-+,0+-JPC=1++ .1--1-+.1+-(not exotic) exotic

Hybrid Predictions

Flux-tube model: 8 degenerate nonets

$$\underbrace{1^{++},1^{--}}_{S=0} \underbrace{0^{-+},0^{+-},1^{-+},1^{+-},2^{-+},2^{+-}}_{S=1} \sim 1.9 \text{ GeV/c}^2$$

Lattice calculations $---1^{-+}$ nonet is the lightest

UKQCD (97) 1.87 ± 0.20 MILC (97) 1.97 ± 0.30 MILC (99) 2.11 ± 0.10 Lacock(99) 1.90 ± 0.20 Mei(02) 2.01 ± 0.10

~2.0 GeV/c²
$$1^{-+}$$
 } Splitting ≈ 0.20 ≈ 0.50
 2^{+-}

 In the charmonium sector:

 1-+
 4.39 ±0.08
 Splitting = 0.20

 0+ 4.61 ±0.11
 Splitting = 0.20

Decays of Hybrids

The angular momentum in the flux tube stays in one of the daughter mesons (L=1) and (L=0) meson.

Exotic Quantum Number Hybrids

$\pi_1 \rightarrow \pi b_1$, πf_1 , $\pi \rho$, ηa_1	1:.25:.25:.20
η 1→π(1300) π , α ₁ π	1:1

 $b_2 \rightarrow a_1 \pi$, $h_1 \pi$, $\omega \pi$, $a_2 \pi$ $h_2 \rightarrow b_1 \pi$, $\rho \pi$, $\omega \eta$

 $b_0 \to \pi (1300) \pi$, $h_1 \pi$ $h_0 \rightarrow b_1 \pi$, $h_1 \eta$

1:1:0.5:0.25 1:1:0.1

1:0.201:0.02 Mass and model dependent predictions

Glueball Mass Spectrum

What role do gluons play in the meson spectrum?

Lattice calculations predict a spectrum of glueballs. The lightest 3 have J^{PC} Quantum numbers of 0^{++} , 2^{++} and 0^{-+} .

Morningstar et al.

Radiative J/ ψ Decays $0^{-+} \eta(1440)$ $0^{++} f_0(1710)$ Large signals

Proton-Antiproton Annihilation $0^{++} f_0(1370), f_0(1500)$

Central Production (double-pomeron exchange) 0⁺⁺ f₀(1370), f₀(1500), f₀(1710)

Glueballs should decay in a flavor-blind fashion.

 $\pi\pi: K\overline{K}: \eta\eta: \eta'\eta': \eta\eta' = 3:4:1:1:0$

Exotic Quantum Numbers 1^{-+} in $\eta\pi$

Crystal Barrel

gluonic

Same strength as the a₂.

 $\pi_1(1400) \quad \begin{array}{l} \text{Mass} = 1400 + 20 + 20 \text{ MeV/c}^2 \\ \text{Width} = 310 + 50^{+50} \text{ MeV/c}^2 \end{array}$

Without $\pi_1 \chi^2/\text{ndf} = 3$, with = 1.29

June strength as the a2.

Produced from states with **one unit** of angular momentum.

Significance of signal.

Exotic Quantum Numbers 1⁻⁺ in η'π

The $\pi_1(1600)$ is the Dominant signal in $\eta'\pi$. Mass = 1.597 ± 0.010 GeV Width = 0.340 ± 0.040 GeV $\pi_1(1600) \rightarrow \eta'\pi$

Other reports here: $\pi_1(1600) \rightarrow b_1\pi$ $\pi_1(1600) \rightarrow f_1\pi$

ρπ,
$$b_1\pi$$
, $f_1\pi$, η'π

E852 Results

 $\pi^{-}p \rightarrow \eta'\pi^{-}p$ at 18 GeV/c

Exotic Signals

 π_1 (1400) Width ~ 0.3 GeV, Decays: only $\eta\pi$ weak signal in πp production (scattering??) strong signal in antiproton-deuterium. π_1 (1600) Width ~ 0.16 to 0.3 GeV, Decays $\rho \pi_1 \eta' \pi_2 (b_1 \pi)$ Only seen in πp production, (E852 + VES) In a nonet, there should only be one π_1 state. $\pi_1 I^{G}(J^{PC})=1^{-}(1^{-+})$ $K_1 I^{G}(J^{PC}) = \frac{1}{2} (1^{-})$ η'₁ I^G(J^{PC})=O⁺(1⁻⁺) $\eta_1 I^{G}(J^{PC})=0^{+}(1^{-+})$

Both of these are lighter than expectations, and The $\eta[\eta']\pi$ decay modes are not what are expected.

Assume that $\pi_1(1600)$ sets the mass scale

$$L=2 \begin{array}{ccc} \rho_{3}, \omega_{3}, \phi_{3}, K_{3} & 3 \end{array} \\ \rho_{2}, \omega_{2}, \phi_{2}, K_{2} & 2 \end{array} \\ \rho_{1}, \omega_{1}, \phi_{1}, K_{1} & 1 \end{array} \\ \pi_{2}, \eta_{2}, \eta_{2}', K_{2} & 2 \end{array}$$

$$L=0 \begin{array}{ccc} a_{2},f_{2},f_{2}',K_{2} & 2^{++} \\ a_{1},f_{1},f_{1}',K_{1} & 1^{++} \\ a_{0},f_{0},f_{0}',K_{0} & 0^{++} \\ b_{1},h_{1},h_{1}',K_{1} & 1^{+-} \end{array}$$

$$L=0 \begin{array}{ccc} \rho,\omega,\phi,K^{*} & 1^{--} \\ \pi,\eta,\eta',K & 0^{-+} \end{array}$$

a₁,f₁,f'₁,K₁

Assume that $\pi_1(1600)$ sets the mass scale

$$L=2\begin{array}{ccc} \rho_{3}, \omega_{3}, \phi_{3}, K_{3} & 3^{--} \\ \rho_{2}, \omega_{2}, \phi_{2}, K_{2} & 2^{--} \\ \rho_{1}, \omega_{1}, \phi_{1}, K_{1} & 1^{--} \\ \pi_{2}, \eta_{2}, \eta'_{2}, K_{2} & 2^{-+} \end{array}$$

L=0
$$\begin{array}{c} a_2, f_2, f'_2, K_2 & 2^{++} \\ a_1, f_1, f'_1, K_1 & 1^{++} \\ a_0, f_0, f'_0, K_0 & 0^{++} \\ b_1, h_1, h'_1, K_1 & 1^{+-} \end{array}$$

L=0 $\begin{array}{c} \rho, \omega, \phi, K^* & 1^{--} \\ \pi n n' K & 0^{-+} \end{array}$

1st radial excitation

10,11,11

Assume that $\pi_1(1600)$ sets the mass scale

$$L=2 \begin{array}{c} \rho_{3}, \omega_{3}, \phi_{3}, K_{3} & 3^{--} \\ \rho_{2}, \omega_{2}, \phi_{2}, K_{2} & 2^{--} \\ \rho_{1}, \omega_{1}, \phi_{1}, K_{1} & 1^{--} \\ \pi_{2}, \eta_{2}, \eta'_{2}, K_{2} & 2^{-+} \end{array}$$

L=1
$$a_2, f_2, f'_2, K_2$$
 2⁺⁺
 a_1, f_1, f'_1, K_1 1⁺⁺
 a_0, f_0, f'_0, K_0 0⁺⁺
 b_1, h_1, h'_1, K_1 1⁺⁻
L=0 ρ, ω, ϕ, K^* 1⁻⁻
 π n n' K 0⁻⁺

191

1st/2nd radial excitation

Assume that $\pi_1(1600)$ sets the mass scale

$$L=2 \begin{array}{ccc} \rho_{3}, \omega_{3}, \phi_{3}, K_{3} & 3 \\ \rho_{2}, \omega_{2}, \phi_{2}, K_{2} & 2 \\ \rho_{1}, \omega_{1}, \phi_{1}, K_{1} & 1 \\ \pi_{2}, \eta_{2}, \eta_{2}', K_{2} & 2 \end{array}$$

$$L=1 \begin{array}{ccc} a_{2},f_{2},f_{2}',K_{2} & 2^{++} \\ a_{1},f_{1},f_{1}',K_{1} & 1^{++} \\ a_{0},f_{0},f_{0}',K_{0} & 0^{++} \\ b_{1},h_{1},h_{1}',K_{1} & 1^{+-} \end{array}$$

$$L=0 \begin{array}{ccc} \rho,\omega,\phi,K^{*} & 1^{--} \\ \pi,\eta,\eta',K & 0^{-+} \end{array}$$

2nd radial excitation

Assume that $\pi_1(1600)$ sets the mass scale

$$L=2 \begin{array}{ccc} \rho_{3}, \omega_{3}, \phi_{3}, K_{3} & 3^{--} \\ \rho_{2}, \omega_{2}, \phi_{2}, K_{2} & 2^{--} \\ \rho_{1}, \omega_{1}, \phi_{1}, K_{1} & 1^{--} \\ \pi_{2}, \eta_{2}, \eta'_{2}, K_{2} & 2^{-+} \end{array}$$

$$L=0 \begin{array}{ccc} a_{2},f_{2},f_{2},K_{2} & 2^{++} \\ a_{1},f_{1},f_{1}',K_{1} & 1^{++} \\ a_{0},f_{0},f_{0}',K_{0} & 0^{++} \\ b_{1},h_{1},h_{1}',K_{1} & 1^{+-} \end{array}$$

$$L=0 \begin{array}{ccc} \rho,\omega,\phi,K^{\star} & 1^{--} \\ \pi,\eta,\eta',K & 0^{-+} \end{array}$$

1st radial excitation

Assume that $\pi_1(1600)$ sets the mass scale

Non-exotic hybrid QN's

$$L=2 \begin{array}{c} \rho_{3}, \omega_{3}, \phi_{3}, K_{3} & 3 \end{array} \\ \rho_{2}, \omega_{2}, \phi_{2}, K_{2} & 2 \end{array} \\ \rho_{1}, \omega_{1}, \phi_{1}, K_{1} & 1 \end{array} \\ \pi_{2}, \eta_{2}, \eta_{2}', K_{2}^{2} \end{array}$$

L=2 orbital excitation plus radial π₂,η₂,η'₂,K₂

L=1
$$a_2, f_2, f'_2, K_2$$
 2⁺⁺
 a_1, f_1, f'_1, K_1 1⁺⁺
 a_0, f_0, f'_0, K_0 0⁺⁺
 b_1, h_1, h'_1, K_1 1⁺⁻
L=0 ρ, ω, ϕ, K^* 1⁻⁻
 π n n' K 0⁻⁺

· · · · · · · · ·

Assume that $\pi_1(1600)$ sets the mass scale

$$L=2 \begin{array}{c} \rho_{3}, \omega_{3}, \phi_{3}, K_{3} & 3 \end{array} \\ \rho_{2}, \omega_{2}, \phi_{2}, K_{2} & 2 \end{array} \\ \rho_{1}, \omega_{1}, \phi_{1}, K_{1} & 1 \end{array} \\ \pi_{2}, \eta_{2}, \eta_{2}', K_{2} & 2 \end{array}$$

 $\pi_2, \eta_2, \eta'_2, K_2$

ρ,ω,φ**,Κ***

π,η,η**',Κ**

$$L=1 \begin{array}{cccc} a_{2},f_{2},f_{2},K_{2} & 2^{++} & a_{1},f_{1},f_{1},K_{1} & 1^{++} & a_{1},f_{1},f_{1},K_{1} \\ a_{0},f_{0},f_{0},K_{0} & 0^{++} & b_{1},h_{1},h_{1}',K_{1} & 1^{+-} & b_{1},h_{1},h_{1}',K_{1} \\ b_{1},h_{1},h_{1}',K_{1} & 1^{+-} & b_{1},h_{1},h_{1}',K_{1} \\ L=0 \begin{array}{c} \rho,\omega,\phi,K^{\star} & 1^{--} \\ \pi,\eta,\eta',K & 0^{-+} \end{array}$$

The 1⁺⁺ Mesons

1^{++} : 1^{s+} Radial Excitation of $a_1(1260)/f_1(1285)$

 $a_1(1640) \begin{cases} m=1.64\pm0.05 \ GeV/c^2 \\ \Gamma=0.30 \ \pm0.1 \ GeV/c^2 \end{cases}$

Decays to 3π via $f_2\pi$ and $(\pi\pi)_S\pi$

Consistent with a normal meson

The 1⁻⁻ Mesons

1⁻⁻: 1st Radial Excitation of ρ/ω . 2nd Radial Excitation of ρ/ω . L=2 D-wave (ρ_1, ρ_2, ρ_3) ρ₃(1690) ω(1420) φ(1680) ρ**(1450)** ω₃(1670) L=2 Scale ρ(1700) ω(1650) **φ**₃(1850) ρ**(1900)** ρ**(2150)**

Decay modes are significant here, but data is hard to interpret.

$\pi(1800) \begin{cases} The O^{-+} Mesons \\ m=1.801\pm0.013 \ GeV/c^2 \\ \Gamma=0.210 \pm 0.015 \ GeV/c^2 \end{cases}$ Decays: f₀(980)π, f₀(1370)π, ρπ, ηηπ, a₀(980)η, f₀(1500)π Speculation that this may be a hybrid η**(1760)** Produced in J/ψ , decays to 4π $\eta(2225)$ m=2.230±0.050 GeV/c² Γ =0.150 ±large GeV/c² Glueball quantum Produced in J/ψ , decays to $\phi\phi$ numbers

The 1⁺⁻ Mesons

1^{+-} : 1^{s+} Radial Excitation of the $b_1(1235)/h_1(1170)$

 $\begin{array}{c} \text{m=1.594}\pm 0.05 \ \text{GeV/c}^2 \\ \Gamma = 0.384 \ \pm 0.15 \ \text{GeV/c}^2 \end{array}$

Produced in πp interactions Decays to $\omega \eta$

Consistent with a normal meson ?

The 2⁻⁺ Mesons

 π_2 (1670) m=1.67±0.02 GeV/c² $\Gamma = 0.259 + 0.001 GeV/c^2$ **Decays:** $f_2\pi$, $\rho\pi$, $(\pi\pi)_5\pi$, $f_0(1370)\pi$, KK^{*} ($f_2\pi$ is 56%) $m=1.617\pm0.005 \ GeV/c^2$ η₂(1645) $\Gamma = 0.181 + 0.011 \ GeV/c^2$ **Decays:** $a_2\pi$, KK π , $a_0\pi$ ($a_2\pi$ is largest) $m=1.842\pm0.008 \ GeV/c^2$ η₂(1870) Hybrid $\Gamma = 0.225 \pm 0.014 \text{ GeV/}c^2$ Candidate? Decays: $a_2\pi$, $f_2\eta$, $a_0\pi$ ($a_2\pi$ is largest) $m=2.090\pm0.030 GeV/c^{2}$ π₂(2100) $\Gamma = 0.625 \pm 0.100 \text{ GeV}/c^2$

Decays: f₂π, ρπ, (ππ)₅π

Exotics and QCD

In order to establish the existence of gluonic excitations, We need to establish the nonet nature of the 1⁻⁺ state.

We need to establish at other exotic QN nonets - the O⁺⁻ and 2^{+-,}

In the scalar glueball sector, the decay patterns have provided the most sensitive information. I expect the same will be true in the hybrid sector as well.

DECAY PATTERS ARE CRUCIAL

ลโนอาท์เ

Results on Scalars

Discovery of the $f_0(1500)$ Solidified the $f_0(1370)$

Discovery of the $a_0(1450)$

Crystal Barrel

 $f_0(1500) \Rightarrow \pi\pi, \eta\eta, \eta\eta', KK, 4\pi$ $f_0(1370) \Rightarrow 4\pi$ Establishes the scalar nonet

The f₀(1500)

Is it possible to describe the $f_0(1500)$ as a member of a meson nonet?

 $f_0(1370) \left(\cos\theta \sin\theta \right) 1$ $\left| f_0(1500) \right\rangle = \left| -\sin\theta\cos\theta \right| 8/$ Use SU(3) and OZI suppression to compute relative decays to pairs of pseudoscalar mesons Get an angle of about 143° 90% light-quark 10% strange-guark

Both the f₀(1370) and f₀(1500) are $u\overline{u} \& d\overline{d}$

WA102 Results

CERN experiment colliding p on a hydrogen target.

Central Production Experiment

Recent comprehensive data set and a coupled channel analysis.

 $\frac{f_0(1370) \to \pi\pi}{f_0(1370) \to K\overline{K}} = 2.17 \pm 0.90$ $\frac{f_0(1370) \to \eta\eta}{f_0(1370) \to K\overline{K}} = 0.35 \pm 0.21$ $\frac{f_0(1500) \to \pi\pi}{f_0(1500) \to \eta\eta} = 5.5 \pm 0.84$ $\frac{f_0(1500) \to K\overline{K}}{f_0(1500) \to \pi\pi} = 0.32 \pm 0.07$ $\frac{f_0(1500) \to \eta \eta'}{f_0(1500) \to \eta \eta} = 0.52 \pm 0.16$ $\frac{f_0(1710) \to \pi\pi}{f_0(1710) \to K\overline{K}} = 0.20 \pm 0.03$ $\frac{f_0(1710) \to \eta\eta}{f_0(1710) \to K\overline{K}} = 0.48 \pm 0.14$ $\frac{f_0(1710) \to \eta \eta'}{f_0(1710) \to \eta \eta} < 0.05(90\% c)$

Meson Glueball Mixing

Physical Masses f₀(1370),f₀(1500),f₀(1710) Bare Masses: m_1, m_2, m_G

 $\sqrt{2}$

(6) (5) (N) $f_0(1370) -0.69\pm0.07 \ 0.15\pm0.01 \ 0.70\pm0.07$ $f_0(1500) -0.65\pm0.04 \ 0.33\pm0.04 \ -0.70\pm0.07$ octet piece $f_0(1710) \ 0.39\pm0.03 \ 0.91\pm0.02 \ 0.15\pm0.02$ $m_1=1377\pm20 \ m_2=1674\pm10 \ m_G=1443\pm24$

Lattice of about 1600

Glueball Expectations

Antiproton-proton: Couples to $(u\overline{u} + d\overline{d})$ Observe: $f_0(1370), f_0(1500)$

Central Production: Couples to G and $(u\overline{u} + d\overline{d})$ in phase. Observe: $f_0(1370), f_0(1500)$, weaker $f_0(1710)$.

Radiative J/ ψ : Couples to G, |1>, suppressed |8> Observe strong f₀(1710) from constructive |1>+G Observe f₀(1500) from G Observe weak f₀(1370) from destructive |1>+G

Two photon: Couples to the quark content of states, not to the glueball. Not clear to me that $\gamma\gamma \rightarrow f_0$ has been seen.

Higher mass glueballs?

Part of the CLEO-c program will be to search for glueballs in radiative J/ψ decays.

Lattice predicts that the 2⁺⁺ and the 0⁻⁺ are the next two, with masses just above $2GeV/c^{2}$.

Radial Excitations of the 2⁺⁺ ground state L=3 2⁺⁺ States + Radial excitations f2(1950), f2(2010), f2(2300), f2(2340)...

2'nd Radial Excitations of the η and η' , perhaps a bit cleaner environment! (I would Not count on it though....)

I expect this to be very challenging.

The Future

The CLAS experiment at Jefferson Lab is opening a small window to meson spectroscopy in photoproduction.

CLEO-c will reopen the J/ψ studies with 100 times Existing statistics. One goal is to find and study the Pseudoscalar (0⁻⁺) and tensor glueball (2⁺⁺)

The GlueX experiment will be able to do for hybrids what Crystal Barrel and WA102 (together) did for glueballs. What are the properties of static glue in hadrons and how is this connected to confinement.

The antiproton facility at GSI (HESR) will look for hybrids in the charmonium system. (Just approved by the German government.)

QCD Potential

6

4

2

0

 $^{-2}$

2

3

 r/r_0

 $r_0(V(r)-V(2r_0))$

Gluonic Excitations provide an experimental measurement of the excited QCD potential.

Observations of exotic quantum number nonets are the best experimental signal of gluonic excitations.

5

4

 $u \overline{u}$

dd Focus on "light-quark mesons"

S \overline{S} Glueballs Hybrids 4-quark Allowed systems: gg, ggg, qqg, qqqq

Nonet Mixing

The I=0 members of a nonet can mix:

$$|1\rangle = \frac{1}{\sqrt{3}} (u\overline{u} + d\overline{d} + s\overline{s})$$

$$|8\rangle = \frac{1}{\sqrt{6}} (u\overline{u} + d\overline{d} - 2s\overline{s})$$

$$SU(3) \begin{vmatrix} f \\ f' \end{vmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta\cos\theta \end{vmatrix} \begin{vmatrix} 1 \\ 8 \end{pmatrix}$$

$$physical states$$

$$\cos \theta = \sqrt{\frac{2}{3}} \qquad \left| \begin{array}{c} f \\ f' \end{array} \right| = \left| \frac{1}{\sqrt{2}} \left(u\overline{u} + d\overline{d} \right) \right| \\ \sin \theta = \sqrt{\frac{1}{3}} \qquad \left| \begin{array}{c} f \\ f' \end{array} \right| = \left| \begin{array}{c} \frac{1}{\sqrt{2}} \left(u\overline{u} + d\overline{d} \right) \right| \\ s\overline{s} \end{array} \right|$$

Model for Mixing

G → qq flavor blind? r uu, dd, ss Solve for mixing scheme F.Close: hep-ph/0103173

Scalar Mesons

What about 2^{++} and 0^{-+} ?

J/Ψ Decays?

Awaiting CLEO-c

Overpopulation Strange Decay Patterns Seen in glue-rich reactions Not in glue-poor

Glueball and Mesons are mixed. Scheme is model dependent.

f₀(1370) (until) Glueball S

> $f_0(1500)$ (uurda) is Glueball

Crystal Barrel proton-antiproton annihilation

Three States $f_0(1370)$ $f_0(1500)$ $f_0(1710)$

45

Central Production WA102

Decays of Glueballs?

Glueballs should decay in a flavor-blind fashion.

$$\pi\pi: K\overline{K}: \eta\eta: \eta'\eta': \eta\eta' = 3:4:1:1:0$$

ηη'=0 is true for any SU(3) singlet and for any pseudoscalar mixing angle. Only an SU(3) "8" can couple to ηη'.

Flavor-blind decays have always been cited as glueball signals.

Curtis A. Meyer

