CLEO-c and CESR-c: A New Frontier of QCD And Electroweak Physics

- The CLEO-c collaboration
- QCD Physics goals
- Detector Capabilities
- Electroweak Physics goals
- Accelerator modifications
- CLEO-c Symposium



- chgd ptcl trkg, photons, Particle ID
- DAQ, Trigger
- superb offline software infrastructure

# The CLEO Collaboration

- Current Membership:
  - ~17 Institutions
  - ~140 physicists
  - •~1/2 DOE, 1/2 NSF
- Publication history 1980-
  - ~350 papers
  - diverse physics see below
- Soon to be CLEO-c
  - Approved by NSF in March
  - CLEO-c Symposium June 19th R
  - more details later



Caltech CMU Cornell Florida Illinois Kansas Minnesota NWU Oklahoma Purdue Rochester RPI SMU UCSB Syracuse Vanderbilt Wayne State

# Recent history of CLEO

1980 -- 2000 CLEO was major source of B physics. (+ ARGUS, CUSB, KEDR, LEP, CDF, DO, ...)

- Vcb, Vub
- Penguins: b->s γ
- Rare B decays ( $K\pi$ ,  $\pi\pi$ ,  $\eta'K$ ,  $\eta'Xs$ ....)
- 1990- 2001 accumulated 24 fb-1 data at Upsilon(45) and just below.

#### 1999 Babar and Belle burst forth

- 10 fb-1 in the first year.
- Now ~ 100 fb<sup>-1</sup> each

#### July 2000 -- turning point for CLEO

- CLEO III upgrade complete
- CESR upgrade complete
- ... but the future looked very uncertain

# Rewriting the future...

Task force charged to consider future options, optimize return on existing resources:

- New detector
- Flexible accelerator
- Seasoned collaboration

#### Conclusion: return to <u>charm</u> region:

- Rich in physics incomplete "leftovers"
- Direct connection to heavy flavor physics
- New opportunities QCD, meson spec.
- New theoretical reach LQCD
- modern detector and high luminosity

# The CLEO-c Program

CLNS 01/1742

- Prologue: Upsilons ~1-2 fb<sup>-1</sup> ea.
- Ο Υ(15) , Υ(25), Υ(35)...

2

0

0

3

2

0

0

4

2

0

0

5

- **O** Spectroscopy, transition rates,  $\Gamma_{ee}$
- 2 10-20 times existing world's data

Act I: ψ(3770) -- 3 fb<sup>-1</sup> 30M events, 6M *tagged* D decays (310 times MARK III)

Act II:  $\int s \sim 4100 - 3 \text{ fb}^{-1}$ 1.5M D<sub>s</sub>D<sub>s</sub>, 0.3M *tagged* D<sub>s</sub> decays (480 times MARK III, 130 times BES II )

Act III: ψ(3100) -- 1 fb<sup>-1</sup> 1 Billion J/ψ decays (170 times MARK III 20 times BES II)

# CLEO's 2002 datasets

#### Narrow Upsilon Resonances...

Y(35) - 1.7 fb<sup>-1</sup> total. 4.7M resonance evts Y(25) - 1.9 fb<sup>-1</sup> total. 8.5 M resonance evts Y(15) - 1.5 fb<sup>-1</sup> total. 28M resonance evts datasets include

> on resonance (~90%) below resonance (~5%) scan across resonance (~5%)

Other...

 $\Upsilon(5S) - 0.5 \text{ fb}^{-1} \text{ total.}$   $\sqrt{s} = 11.2 \text{ GeV} -- 0.7 \text{ fb}^{-1} \text{ scan}$   $\sqrt{s} = 8.4 \text{ GeV} -- 4.5 \text{ pb}^{-1} -- \text{R meas}$   $\sqrt{s} = 7.4 \text{ GeV} -- 8.9 \text{ pb}^{-1} -- \text{R meas}$  $\sqrt{s} = 7.0 \text{ GeV} -- 2.8 \text{ pb}^{-1} -- \text{R meas}$ 

Brief engineering runs in charm region:  $\psi' \sim 5pb^{-1}$  11.6M events  $\psi'' \sim 7pb^{-1}$  12.7M events

### Current Work

- Bottomonium spectroscopy
  - $1^{3}D_{J}$  state 40 evts ICHEP 2002
  - $n^1S_0(\eta_b, \eta_b')$  no signal APS
  - $1^{1}P_{1}$  (h<sub>b</sub>) ongoing
- Upsilon resonance widths
  - $\Gamma_{ee}$  measurements ongoing  $\rightarrow$ 2-3%
- Hadronic transitions
  - $\Upsilon(3S) \rightarrow \Upsilon(1S) \pi\pi$  mass distrib
- Radiative decays of  $\Upsilon(1S)$ 
  - exclusive, inclusive...
- probably others...

#### Three Targets

 Progress in flavor physics is limited by understanding of QCD.

CLEO-c: precise measurements of form factors, decay constants.

• The difficult parts of QCD are its nonperturbative sectors.

CLEO-c: precise measurements of quarkonia spectroscopy and decay. Gluonic spectroscopy??!

 Physics beyond the Standard Model may appear in unexpected places.

CLEO-c: D-mixing, charm CPV, rare decays of charm and tau.

# Lattice QCD

Emergence of LQCD as a precision tool is very motivating. Measurements made on one system translate into another.

See, e.g., Davies et al, hep-lat/0304004, "High-Precision Lattice QCD Confronts Experiment"



# **Gluonic Matter**

- •Gluons carry color charge: should bind!
- But finding a "glueball" is a famously difficult experimental task....
- •Why should we tread where angels fear to?
  - 🖌 huge data set
  - 🗸 modern detector
  - ✓ 95% solid angle coverage
  - clean starting point:
- $\bullet$  Radiative  $\psi$  decays as a glue factory:



- well-defined initial state
- clean photon tag
- glue pair in color isosinglet
- CLEO-c: ~ 10<sup>9</sup> J/ $\psi \Rightarrow$  ~60M J/ $\psi \rightarrow \gamma X$ 
  - Partial Wave analysis
  - Absolute BF's: ππ,KK,pp,ηη,...

Inclusive Spectrum  $J/\psi \rightarrow \gamma X$ 



10<sup>-4</sup> sensitivity for narrow resonance Eg: ~25% efficient for  $f_J$ (2220)

Suppress hadronic bkg:  $J/\psi \rightarrow \pi^0 X$ 

### Some history of the $f_J(2220)$

#### Original reports from MARK-III, BES





MARKIII (1986)

BES (1996)

#### Not supported by other searches...





f<sub>.T</sub>(2220) in CLEO-c?



CLEO-c has corroborating checks:

Update! Two Photon Data:  $\gamma\gamma \rightarrow f_J(2220)$ : Update! CLEO II:  $\Gamma_{\gamma\gamma} \times B(f_{--})$ CLEO II:  $\Gamma_{yy} \times B(f_J \rightarrow K_S K_S) < 1.1) \text{ eV}$ 

Upsilonium Data:  $\Upsilon(1S)$ : Tens of events



# Other attractions of charm threshold - *Charmed Mesons*

Run: 109794 Event: 1/



- Large  $\sigma$ , low multiplicity
- Pure initial state: no fragmentation
- Double tag measurements: no background
- Clean neutrino reconstruction
- Coherent initial state

#### Charm decays & QCD

Davies et al, hep-lat/0304004: Charm decays are "gold-plated" modes for LQCD



FIG. 3: Gold-plated LQCD processes that bear on CKM matrix elements.  $\epsilon_K$  is another gold-plated quantity.

# Tagging Technology

- Pure  $D\overline{D}$  or  $D_s\overline{D}_s$  production
  - ✓ Many high branching ratios (~1-10%)
  - ✓ High reconstruction eff
  - ✓ Two chances

6M D tags 300K D<sub>s</sub> tags

 $\rightarrow$  high net efficiency ~20% !

 $D \rightarrow K\pi$  tag. S/B ~ 5000





Beam constrained mass

#### Tagged BR Measurements

#### ~ Zero background in hadronic modes



Set absolute scale for all heavy quark meas.

| Decay Mode                  | PDG2000                           | CLEOc    |
|-----------------------------|-----------------------------------|----------|
|                             | <b>(</b> δ <b>B</b> / <b>B</b> %) | (δB/B %) |
| $D^0 \rightarrow K\pi$      | 2.4                               | 0.5      |
| $D^+ \rightarrow K \pi \pi$ | 7.2                               | 1.5      |
| $D_s \rightarrow \phi \pi$  | 25                                | 1.9      |





# What do we learn from these?

- Semileptonic decays:  $|V_{CKM}|^2 |f(q^2)|^2$ 
  - Form factor shapes and normalizations
  - 'Calibrate' theory
  - Extract  $|V_{cd}|$ ,  $|V_{cs}|$
  - Theory  $\rightarrow$  Extract  $|V_{ub}|$  from B
- Leptonic decays:  $|V_{CKM}|^2 |f_D|^2$ 
  - Decay constants
  - 'Calibrate' theory
  - Extract  $|V_{cd}|$ ,  $|V_{cs}|$
  - Theory  $\rightarrow$  Extract  $|V_{td}|$ ,  $|V_{ts}|$  from B

#### Hadronic decays:

- Set scale of heavy quark decays
- Enables precision tests in B decays
- Strong phases: Extract  $\gamma$  from B  $\rightarrow$  DK

# Additional topics

- •ψ'(3684)
  - hadronic decay patterns ( $\rho\pi$  puzzle..)
  - radiative decays
  - charmonium spectroscopy
- $\tau^+\tau^-$  at threshold (0.25 fb<sup>-1</sup>)
  - measure  $m_{\tau}$  to ± 0.1 MeV
  - heavy lepton, exotics searches
- $\Lambda_c \Lambda_c$  at threshold (1 fb<sup>-1</sup>)
  - calibrate absolute BR( $\Lambda_c \rightarrow pK\pi$ )
- $R=\sigma(e^+e^- \rightarrow hadrons)/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$ 
  - spot checks

# The CESR-c Accelerator

 Modify for low-energy operation: add wigglers for transverse cooling



| √s       | <i>L</i> (10 <sup>32</sup> cm <sup>-2</sup> s <sup>-1</sup> ) |
|----------|---------------------------------------------------------------|
| 4.1 GeV  | 3.6                                                           |
| 3.77 GeV | 3.0                                                           |
| 3.1 GeV  | 2.0                                                           |

 $\Delta E_{\text{beam}}$  ~ 1.2 MeV at J/ $\psi$ 

# Low Energy Ops explored with 1(+) wiggler, 1T field



$$\psi' \rightarrow \psi \pi \pi$$



#### CLEO operated with 1T solenoidal field

# CESR-c full complement of Wigglers coming soon Current shutdown March-June for wiggler installation: installing 6. (Also: quad repairs, RF cavity replacement, CLEO ZD dipoles installation, ...) Next summer, Wiggler 7 more. magnets quadrupoles 1 . . sextupoles

# The CLEO-c Program: Summary

#### The Physics

- Nonperturbative QCD
  - gluonic matter
  - meson spectroscopy
- Precision flavor physics
  - Leptonic BR
  - Semileptonic BR and Form Factors
- Probe for New Physics
- High performance detector designed for hard tasks
- Flexible, high-luminosity
   accelerator: adding wigglers for lowenergy operation

• Extant collaboration - but smaller than ever: ready to grow...

# CLEO-c Symposium

#### Thursday, June 19th At Cornell

http://www.lns.cornell.edu/
public/CLEO/CLEO\_c/symposium2003/

#### CLEO-c will benefit from CLEO III "over"-design

|                                         | CLEO III was designed for: | CLEO-c will<br>encounter: | Implication                                             |
|-----------------------------------------|----------------------------|---------------------------|---------------------------------------------------------|
| Track<br>multiplicity                   | 10/evt                     | 5/evt                     | Clean                                                   |
| Shower<br>Multiplicity                  | 10/evt                     | 5/evt                     | Clean                                                   |
| Maximum<br>momentum<br>from (B,D) decay | 2.8 GeV                    | 1.2 GeV                   | B field<br>Det. Rad. Len.<br>Muon ID<br>Decay in flight |
| Charm<br>decay lengths                  | 100-200µ                   | 20-40µ                    | no vtxing                                               |
| Data Rates                              | 1000 Hz                    | <250Hz                    | can do                                                  |



#### Drift Chamber Hit Resolution



#### Inner Tracking (2< r < 12cm)



Particle Identification: dE/dx



Resolution 5.7% (min-l hadrons)

dE/dx useful below RICH threshold & outside RICH solid angle



#### **RICH** particle separation versus momentum



#### **RICH Performance: Efficiency and Fake Rate**



### CsI Calorimeter



Interaction Point

#### **Calorimeter Performance**

