

Klaus Peters Ruhr-Universität Bochum

GLUONIC 2003 Jefferson Lab Newport News, May 15, 2003

Exotic Hadrons @

Proton DArmstadt AN tiproton

Where is Darmstadt ?

The GSI Future Facility

History

4

since 1996	Discussion about GSI future International workshops, reviews, accelerator R&D
May 1999	Letter of Intend for an antiproton facility (40 authors) Studies for detector concept
Jan. 2001	Detector simulation with GEANT4
Nov. 2001	Conceptual Design Report of an "International Accelerator Facility for Beams of Ions and Antiprotons"
Nov. 2001	Review by an international review committee of the "Deutscher Wissenschaftsrat"
April 2002	International p-Workshop at GSI
July 2002	Positive Votum by the "Deutscher Wissenschaftsrat"
Feb. 5, 2003	Positive Decision by the "bmb+f"

Press Release 16/2003, http://www.bmbf.de

05.02.2003

Bulmahn gives green light for large-scale research equipment "We are securing an international top position for German basic research"

...Basic research in the natural sciences has a long tradition in Germany. Its success is inextricably linked with the use of large-scale equipment at national and international research centres. "With the new concept, basic research in Germany will start from an excellent position when entering a new decade of successful work", Minister Bulmahn said.

Together with European partners, the Gesellschaft für Schwerionenforschung (GSI) in Darmstadt is to develop further its equipment in a phased approach and become a leading european physics centre. At least 25% of the costs amounting to €675 million are to be shouldered by foreign partners.

Overview

Motivation Goals Experimental techniques Conclusions

Hadrons are very complicated

S-Wave+Gluon $(qq)_8g$ with $()_8$ =coloured ${}^{1}S_0 \uparrow \downarrow {}^{3}S_1 \uparrow \uparrow$ combined with a 1⁺ or 1⁻ gluon

Gluon	1- (TM)	1+(TE)
¹ S _{0,} 0 ⁻⁺	1++	1
³ S _{1,} 1	0+-	0-+
	1+-	1-+
	2+-	2-+

Meson – Hybrid Mixing

Gluonic excitations of the quark-antiquark-potential may lead to bound states

LQCD:

- Π-potential
- m_H ~ 4.2-4.5 GeV

Light charmed hybrids could be as narrow as \rightarrow O(5-50 MeV)

LQCD ccg 1⁻⁺ vs. cc 1⁻⁻ (J/ψ)

1-+	m(ccg)	Model	Group	Reference
4390 ± 80	±200	isotropic	MILC97	PRD56(1997)7039
4317 ±150		isotropic	MILC99	NPB93Supp(1999)264
4287		isotropic	JKM99	PRL82(1999)4400
4369 ± 37	±99	anisotropic	ZSU02	hep-lat 0206012
Δ(1-+,1)	m(ccg)- m(cc)			
1340 ± 80	±200	isotropic	MILC97	PRD56(1997)7039
1220 ± 150		isotropic	MILC99	NPB93Supp(1999)264
1323 ± 130		anisotropic	CP-PACS99	PRL82(1999)4396
1190		isotropic	ЈКМ99	PRL82(1999)4400
1302 ± 37	±99	anisotropic	ZSU02	hep-lat 0206012

Charmed Hybrid Level Scheme

 1 (0,1,2)⁻⁺ < 1⁺⁺ (0,1,2)⁺⁻ JKM00, NPB83Suppl83(2000)304 and Manke, PRD57(1998)3829 		
L-Splitting		
 		
S-Splittings		
 Page thesis,1995 and PRD35(1987)1668 		
4.14 (0 ⁻⁺) to 4.52 GeV/c ² (2 ⁻⁺)		
consistent w/LQCD		
 JKM, NPB86suppl(2000)397, PLB478(2000) 151 		

Charmonium Physics

Open questions ...

- η_c (2¹S₀) not established
- h_{1c} (¹P₁) unconfirmed
- Peculiar decays of $\psi(4040)$
- Terra incognita for any 2P and D-States
- ... Exclusive Channels
 - Helicity violation
 - G-Parity violation
 - Higher Fock state contributions

Charmonium Physics

pp reactions:

 All states directly formed (very good mass resolution)

Resonance Scan

March 3, 2003

Charmonium Physics

Expect 1-2 fb⁻¹ (like CLEO-C) • pp (>5.5 GeV/c) $\rightarrow J/\psi$ 10⁷/d • pp (>5.5 GeV/c) $\rightarrow \chi_{c2} (\rightarrow J/\psi \gamma)$ 10⁵/d • pp (>5.5 GeV/c) $\rightarrow \eta_c'(\rightarrow \phi \phi)$ 10⁴/d|_{rec}?

Comparison to E835

- Maximum energy 15 GeV/c instead of 9 GeV/c
- Luminosity 10x higher
- Detector with magnetic field
- $\Delta p/p$ 10 x better
- Dedicated machine with stable conditions

Fluxtube

~ Simplified Lattice Approach

Meson

Flux (excited Gluon) carries angular momentum

Fluxtube-Model predicts DD**(+c.c.) decays

- if $m_H < 4290 \text{ MeV}/c^2$ below $DD_0(+c.c.)$
- \rightarrow $\Gamma_{\rm H}$ < 50 MeV/ c^2

Some exotics can decay neither to DD nor to DD*(+c.c.)

- e.g.: J^{PC}(H)=0+-
 - fluxtube forbidden: $J/\psi f_2$, $J/\psi(\pi\pi)_S$, $\eta_c h_1$
 - fluxtube allowed: $\chi_{c0}\omega, \chi_{c0}\phi, \chi_{c2}\omega, \chi_{c2}\phi, h_{1c}\eta$
- Small number of final states with small phase space
 - favours a narrow resonance
- if $DD^{**}(+c.c.)$ possible \rightarrow still very small phase space

But! be prepared for surprises measure DD nor to $DD^{*}(+c.c.)$ waves as well

Charmed Hybrids – Decays of 1⁻⁺

a very likely decay mode will (could?) be $\chi_c(\pi\pi)_s$

- C. Michael, hep-lat 0207017
- preferably using $\pi^0\pi^0$ to avoid $\rho(770)$ contamination
- use charged mode $\pi^+\pi^-$ for comparison

detect the χ_c in the radiative decay to J/ ψ

- detect the soft photon
- and the lepton pair

Proton-Antiproton @ Rest/Flight

March 3, 2003

Proton-Antiproton @ Rest/Flight

Gluon rich process creates gluonic excitation in a direct way

- cc requires the quarks to annihilate (no rearrangement)
- yield comparable to charmonium production
- \bullet even at low momenta large exotic content has been proven Momentum range for a survey $p_p \to {\sim}15~GeV$ But also Glueball Formation

Light gg/ggg-systems are complicated to identify

Exotic heavy glueballs

- m(0+-) = 4140(50)(200) MeV
- m(2⁺⁻) = 4740(70)(230) MeV

Width unknown, but!

- nature invests more likely in mass than in momentum
- newest proof: double cc yield in e⁺e⁻

Flavour-blindness

- predicts decays into charmed final states too
- Same run period as hybrids
 - In addition: scan m>2 GeV/c²

Morningstar und Peardon, PRD60 (1999) 034509 Morningstar und Peardon, PRD56 (1997) 4043 Proton-Antiproton contains already a 4-Quark-System

Idea: Dilepton-Tag from Drell-Yan-Production

Advantages

- Trigger
- less J^{PC}-Ambiguities
- 1200 E./day @ 12 GeV
- 300 E./day @ 5-8 GeV antiproton-Beam (for L=10³²cm⁻²s⁻¹)

Bannikov, Gornuschkin, Kopeliovich, Krumshtein and Sapozhnikov, JINR E1-92-344 (1992)

Exotics in Proton-Antiproton

Exotics are heavily produced in pp reactions

High production yields for exotic mesons (or with a large fraction of it)

- $f_0(1500)\pi \rightarrow \sim 25$ % in $3\pi^0$
- $f_0(1500)\pi \rightarrow \sim 25$ % in $2\eta\pi^0$
- $\pi_1(1400)\pi \rightarrow >10$ % in $\pi^{\pm}\pi^0\eta$

Interference with other well known (conventional) states is mandatory for the phase analysis

Accessible Hadrons

Other exotics with identical decay channels \rightarrow same region

Lessons from LEAR

Full solid angle

- no missing particles (photons!)
- no "dead" regions

Merged π^0 are easy to handle

• "moderate" angular resolution sufficient

Low thresholds

 E_{min}~20 MeV in electromagnetic detector

K-Trigger/K-Id

- K_s-Trigger
- Kaon ID @ high Energies

Signatures, Potential Problems

"Leading charmonia"

J/ψ, ψ', η^(`)_c, χ_{ci}, [DD] a.o.m.?

DiLeptons

- e⁺e⁻ (Ecal,Trk)
- μ⁺μ⁻ (Trk,Hcal)

 $\phi(\phi)$ -Tag

• oo and recoil oo (Trk,Cherenkov)

 K_{S} (+K[±])-Tag

η_c and h_c (Vtx,Trk,Cherenkov)
 Photon-Pairs

- γγ from cc (Ecal,no-Trk)
- $\gamma\gamma$ from π^0 and η (Ecal)

Many information needed on "trigger" level !

p in Flight – no longer a challenge!

Crystal Barrel proved

 annihilation in flight can be analyzed unambiguously

Formation:

- two body decays, where at least one particle carries spin!
- ~10k events L up to 6

Production:

- small recoil momenta reduce the available phase space and the contributing waves dramatically
- alternative: integration of the production process

Peters, NPA 692(2001)295

Hypernuclear physics

- 3rd dimension of nuclear chart
- Focus Double Hypernuclei

WACS (previously noted as "Inverted DVCS")

- Measure dynamics of quarks and gluons in a hadron
- Handbag diagram

Proton Formfactors at large Q²

• s up to 25 GeV²/ c^4

D_(S)-Physics

BR and decay dalitzplots w/ high statistics

CP-Violation in the D-Sector

 \bullet also possible $pp \rightarrow p\Sigma_c{}^+D^0$

The Antiproton Facility

March 3, 2003

The Antiproton Facility

30

Proposed Detector (Overview)

High Rates

• Total $\sigma \sim 55 \text{ mb}$ 10⁷ interactions/s Vertexing • (σ_p,K_S,Λ,...) Charged particle ID • (e[±],μ[±],π[±],p,...) Magnetic tracking Elm. Calorimetry (γ,π⁰,η) Forward capabilities (leading particles)

Sophisticated Trigger(s)

Vertexing: Micro Vertex Detector

Readout: ASICs (ATLAS/CMS) $0.37\% X_0$ or pixel one side – readout other side (TESLA)

Number of double layers	15
Skew angle of dbl layers 1 and 15	0°
Skew angle of dbl layers 2-14	2°-3°
Straw tube wall thickness Wire thickness Gas Length Diameter of tubes in double layers 1-5, 6-10, and 11-15 Number of straw tubes	26 mm 20 mm 90%He 10%C ₄ H ₁₀ 150 cm 4 mm 6 mm 8 mm 8734
Transverse resolution $s_{x,y}$	150 mm
Longitudinal resolution s_z	1 mm

Tracking: Forward MDC

6 layers of sense wires in 3 double layers (y,u,v) not stretched radially (mass) realized at HADES

- high counting rates
- position resolution 70µm

PID: DIRC (Cherenkov)

less space than aero gel \rightarrow costs of calorimeter no problems with field

BaBar@SLAC

PID: Forward RICH

Aerogel n=1.02

proximity focusing $\leftarrow \rightarrow$ mirrors

Detector material	PbWO ₄ (or BGO)
Photo sensors	Avalanche Photo Diodes
Crystal size	$\approx 35 \text{ x } 35 \text{ x } 150 \text{ mm}^3$ (i.e 1.5 x 1.5 $R_M^2 \text{ x } 17 \text{ X}_0$)
Energy resolution	1.54 % / √E[GeV] + 0.3 % (PWO)
Time resolution	$\sigma \approx 130 \text{ ps}$
Total number of crystals	7150

40 Institutes (32 Locations) from 9 Countries: Austria - Germany – Italy – Netherlands – Poland – Russia – Sweden – U.K. – U.S.

U Bochum U Bonn U & INFN Brescia U Catania U Cracow GSI Darmstadt TU Dresden JINR Dubna I + II U Erlangen **NWU Evanston** U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genova U Glasgow U Gießen

KVI Groningen IKP Jülich I + II U Katowice LANL Los Alamos U Mainz TU München U Münster **BINP Novosibirsk** U Pavia U of Silesia U Torino Politechnico di Torino U & INFN Trieste **U** Tübingen U & TSL Uppsala **ÖAdW** Vienna SINS Warsaw

high resolution spectroscopy with p-beams in formation experiments: • $\Delta E \approx \Delta E_{beam}$

high yields in pp of gluonic excitations glueballs, hybrids

event tagging by pair wise associated production,

● (particle, anti-particle) e.g. pp→ΞΞbar

large \sqrt{s} at low momentum transfer

- important for in-medium "implantation" of hadrons:
- study of in-medium effects

Summary & Outlook

Investigation of charmed exotics is one key tool for the investigation of gluonic degrees of freedom inside hadrons

HESR @ GSI will survey the whole ccX mass region in formation and production processes ...

... to measure the whole spectrum of heavy exotics