In the debris of hadron interactions lies the beauty of QCD

Book of QCD

ዏ፝፼ጞ፼፟

Workshop on Gluonic Excitations JLab, May 2003

vacuum

		$m_q(1 \text{ GeV}) \text{ (MeV)}$	$m_q(2 \text{ GeV}) \text{ (MeV)}$
Chetyrkin et al. 99	Pseudoscalar	5.7 ± 1.2	4.0 ± 0.8
Prades 98	Sum Rule	6.4 ± 1.3	4.5 ± 0.9
Maltman & Kambor 01		5.6 ± 0.8	3.9 ± 0.6
Cherry & Pennington 01	Scalar Sum Rules	4.5 ± 0.6	3.2 ± 0.4
JLQCD 99	Quenched	6.0 ± 0.4	4.2 ± 0.3
QCDSF 99	Lattice QCD	6.3 ± 0.3	4.4 ± 0.2
APE 99	Ū	6.8 ± 0.7	4.8 ± 0.5
CP-PACS 00		6.2 ± 0.2	4.4 ± 0.1
SESAM 98	Unquenched	3.9 ± 0.2	2.7 ± 0.1
CP-PACS 00	Lattice QCD	4.9 ± 0.3	3.5 ± 0.2
QCDSF - UKQCD 01	°,	5.0 ± 0.3	3.5 ± 0.2
SESAM 01		6.4 ± 2.4	4.5 ± 1.7

 $m_q = \frac{1}{2}(m_u + m_d)$

3 - 5 MeV

$\langle \; q \; \overline{q} \; \rangle$

		$\langle \bar{q}q \rangle (1 \text{GeV})$	$\langle \bar{q}q \rangle (2 \text{GeV})$
Narison 89	Pseudoscalar Sum Rules	$-(224 \pm 8 \text{ MeV})$	$-(203 \pm 7 \text{ MeV})$
Dosch & Narison 98	D-decay Sum Rules	$-(193 - 262 \text{ MeV})^3$	$-(212 - 289 \text{ MeV})^3$
	.2		
Giusti et al 99	Quenched	$-(222 \pm 11 \text{ MeV})^3$	$-(245 \pm 12 \text{ MeV})^3$
Hernández <i>et al</i> 01	Lattice OCD	$-(252 \pm 11 \text{ MeV})^3$	$-(278 \pm 12 \text{ MeV})^3$
MILC 01		$-(263 \pm 5 \text{ MeV})^3$	$-(290 \pm 6 \text{ MeV})^3$
		(""")	

-(270 MeV) ³

m_s

		$m_s(1 \text{ GeV}) \text{ (MeV)}$	$m_s(2 \text{ GeV}) \text{ (MeV)}$	
Jamin & Munz 95	Scalar	189 ± 32	133 ± 23	
Chetyrkin <i>et al</i> 97	Sum Rules	206 ± 19	145 ± 13	
Colangelo <i>et al</i> 97		125 - 160	88 - 113	
Maltman 99		159 ± 11	112 ± 8	
Jamin $et al 01$		141 ± 23	99 ± 16	
	Pseudoscalar			
Dominguez et al 98	Sum Rules	155 ± 25	109 ± 18	
Pich & Prades 99	au-decay	164 ± 33	115 ± 23	
Kambor & Maltman 00	Sum Rules	159 ± 23	112 ± 16	
Chen et al 01		160^{+28}_{-35}	113^{+20}_{-25}	
ILOCD 99	Quenched	151 ± 10	106 ± 7	
ALPHA - UKOCD 99	Lattice OCD	138 ± 6	07 + 4	
OCDSE 99	Dannice QUID	140 ± 6	105 ± 4	
$\Delta PE 00$		158 ± 13	100 + 4 111 + 0	
CP-PACS 00		156+4	110^{+3}	
BBC 00		150-6 153 ± 44	108 ± 31	
10170/00				
MILC 99	Unquenched	$160 \pm 16 \ (m_K) 178 \pm 13 \ (m_{\phi})$	$113 + 11 \ (m_K) 125 + 9 \ (m_\phi)$	
APE 00	Lattice QCD	$159 \pm 21 \ (m_K) 153 \pm 37 \ (m_{\phi})$	$112 + 15 \ (m_K) 108 + 26 \ (m_{\phi})$	
CP-PACS 00		$125^{+6}_{-9}(m_K) = 128^{+7}_{-15}(m_{\phi})$	$88^{+4}_{-6} (m_K) \qquad 90^{+5}_{-11} (m_{\phi})$	
JLQCD 00		$128 + 6 \ (m_K) = 151 + 10 \ (m_{\phi})$	91 + 4 (m_K) 106 + 7 (m_{ϕ})	
QCDSF + UKQCD 00		$128 \pm 7 (m_K)$	$90 + 5 (m_K)$	
SESAM 01		$131 \pm 118~(m_{K,\phi})$	92 + 83 $(m_{K,\phi})$	

90 - 130 MeV

Ground State – Vacuum

GMOR $m_{\pi} {}^{2}F_{\pi} {}^{2} = -(m_{u} + m_{d}) \langle q\bar{q} \rangle +$ - (270 MeV)³

Bound State Equations

calculating the masses of u/d quarks

Flavour structure of QCD

quark model = hadron world?

unquenching unimportant

unquenching important

Which f_0 is in which nonet?

Image: wide wide wide wide wide wide wide wide	a ₀ f ₀
η΄ ~~~ γ — η	$\begin{array}{ c c c c }\hline \mbox{Composition} & \mbox{BR}(\phi \rightarrow \gamma f_0(980)) \\ \hline \mbox{$qq\overline{qq}$} & O(10^{-4}) \\ \mbox{$s\overline{s}$} & O(10^{-5}) \\ \hline \mbox{$K\overline{K}$} & < O(10^{-5}) \\ \hline \mbox{$K\overline{K}$} & < O(10^{-5}) \\ \hline \mbox{$N\overline{K}$} & \\ \hline \mbox{$M\overline{K}$} & \\ \hline \mbox{$M\overline{M}$} & \\ \hline$

$$Y (\pi\pi)$$

KLOE: $\varphi \rightarrow \gamma(\pi^{\circ}\pi^{\circ})$

$$\frac{d\Gamma}{dM} = \rho(s) |\mathcal{F}(s)|^2$$

FOCUS Fermilab E687 upgrade

Isobar approach

resonances	fit fraction (%)	phase ϕ_j	amplitude a_j
NR	9.8 ± 4.3	0 (fixed)	1 (fixed)
$\rho^{0}(770)$	32.8 ± 3.8	62.9 ± 16.8	1.830 ± 0.408
$f_2(1275)$	12.3 ± 2.1	-213.3 ± 17.7	1.120 ± 0.306
$f_0(980)$	6.7 ± 1.5	-145.9 ± 17.7	0.827 ± 0.239
$S_0(1475)$	1.8 ± 1.2	242.3 ± 25.8	0.425 ± 0.208
$f_0(400)$	18.9 ± 5.3	-96.9 ± 30.7	1.389 ± 0.468

States in the spectrum - poles of the S-matrix universal with definite quantum numbers

Comprehensive Analyses