

How can you find Tallahassee?

- Head SW
- Stop when humidity(\%) $=T\left({ }^{\circ} F\right)=94$ in May
- Try to avoid jokes about elections and bushes

Hybrid Baryons in the Flux-Tube Model

Work done with Philip Page (LANL)

- Meson exotics exist, baryon exotics?
- Bag model hybrids
- Conventional excited baryons
- Spin, orbital, radial excitations
- Baryon confining potential-lattice results
- Flux-tube model, dynamical glue
- Analytic results for discretized strings
- Numerical results, adiabatic potentials
- Comparison to lattice potentials
- Quantum numbers, masses of light hybrids

The Cork Model

Up
 Charm
 Top

Down

Strange

Bottom

Baryon exotics?

- Conventional mesons:
- Consider NR bound states of quark and antiquark:
- J=L+S, P=(-1) ${ }^{\text {L+1 }}$
- $C=(-1)^{L+(S+1)+1}=(-1)^{L+S}$, for self-conjugate mesons
- Certain quantum numbers excluded \rightarrow exotics!
- Baryon exotics... don't exist!
- No C-parity
- All half-integral J with both parities possible with 999
- J=L+S, L=I ${ }_{\rho}+\boldsymbol{I}_{\lambda}, S=1 / 2$ or $3 / 2$
- $\mathrm{P}=(-1)^{\mathrm{lp}+\mid \lambda}$
- Baryons with excited glue-should exist!
- Model-dependent concept, context is potential model, adiabatic picture

First theoretical results on hybrid baryons

- Bag model hybrids, with constituent gluon (qqq) ${ }_{8} \mathrm{~g}$
- TED BARNES \& F.E. Close (1983); Golowich, Haqq \& Karl (1983); Carlson \& Hansson (1983); Duck and Umland (1983)
- transverse electric (lowest energy) gluon eigenmode of vector field in spherical cavity
- $L^{\pi}=1^{+}$gluon, quarks in S-wave spatial ground state
- Mixed exchange symmetry color wvfns of (qqq) 8
- $\mathrm{S}_{\mathrm{qqq}}=1 / 2$ gives flavor $\left(\mathrm{J}^{\mathrm{P}}\right)=\mathrm{N} 1 / 2^{+}, \mathrm{N} 3 / 2^{+}, \Delta 1 / 2^{+}, \Delta 3 / 2^{+}$
- $\mathrm{S}_{\mathrm{qqq}}=3 / 2$ gives $\mathrm{N} 1 / 2^{+}, \mathrm{N} 3 / 2^{+}, \mathrm{N} 5 / 2^{+}$
- Bag qqq Hamiltonian + gluon K.E. + color-Coulomb energy + interactions:
- $O\left(\alpha_{s}\right)$ one-gluon exchange, gluon Compton effect

First theoretical results on hybrid baryons...

- Bag model hybrids:
- Lightest N1/2+ state between $P_{11}(1440)$ (Roper) and P_{11} (1710)
- N1/2+ and N3/2+ are 250 MeV heavier, all $\Delta^{+} \mathrm{s}$ heavier still
- Problems with phenomenology...where is extra P_{11} state?
- QCD sum rules
- Kisslinger and Li (1995)
- Also predict lightest hybrid ~1500 MeV

Conventional excited baryons

- proton wavefunction $\Psi=C_{A} \sum \psi \chi \phi$ \star symmetric spatial wavefunction $\psi, L_{q}^{P}=0^{+}$夫 $\chi: S=\frac{1}{2} ; \quad \phi: \quad I=\frac{1}{2}$
- $L_{q}^{P}=0^{+} \otimes S=\frac{1}{2} \rightarrow J^{P}=\frac{1}{2}^{+}$
- sum makes Ψ totally antisymmetric and state of good J
- spin excitation: spin-3/2 baryon

夫 $\chi: S=\frac{3}{2} ; \quad \phi: \quad I=\frac{3}{2}$

- $L_{q}^{P}=0^{+} \otimes S=\frac{3}{2} \rightarrow J^{P}=\frac{3}{2}^{+}$

\rightarrow one $0 \hbar \omega$ state: Δ^{++}seen in $\pi^{+} p$, and Δ^{0} in $\pi^{-} p$

...Conventional excited baryons

- orbital excitations: can orbitally excite either of two relative coordinates
- $L^{P}=1^{-} \otimes\left\{S=\frac{1}{2}\right.$ or $\left.S=\frac{3}{2}\right\} \rightarrow J^{P}=\left\{\frac{1}{2}^{-}, \frac{3}{2}^{-}, \frac{5}{2}^{-}\right\}$ \rightarrow seven $1 \hbar \omega$ states: $2 N \frac{1}{2}^{-} ; \Delta \frac{1}{2}^{-} ; 2 N \frac{3}{2}^{-} ; \Delta \frac{3}{2}^{-} ; N \frac{5}{2}^{-}$ \rightarrow all seen in $\pi N \rightarrow \pi N$
- sixteen $2 \hbar \omega$ states with $L^{P}=1^{+}$and $L^{P}=2^{+}$:
\rightarrow some seen in $\pi N \rightarrow \pi N$
- radial excitations: radially excite either of two relative coordinates
- $L^{P}=0^{+} \otimes\left\{S=\frac{1}{2}\right.$ or $\left.S=\frac{3}{2}\right\} \rightarrow J^{P}=\left\{\frac{1}{2}^{+}, \frac{3}{2}^{+}\right\}$
\rightarrow five $2 \hbar \omega$ states: $2 N \frac{1}{2}^{+}, N \frac{3}{2}^{+}, \Delta \frac{1}{2}^{+}, \Delta \frac{3}{2}+$

\rightarrow some seen in $\pi N \rightarrow \pi N$

How should we treat confinement?

- Quenched lattice measurement of QQQ potential
- Takahashi, Matsufuru, Nemoto and Suganuma, PRL86 (2001) 18.
- Measure potential with 3Q-Wilson loop (static quarks) for $0<t<T$

- Also fit QZ̄ potential to compare σ and Coulomb terms

... How should we treat confinement?

- Fit 16 QQQ configurations to $V_{3 Q}=-A_{3 Q} \sum_{i<j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sigma_{3 Q} L_{\text {min }}+C_{3 Q}$
- $L_{\text {min }}=$ min. length Y-shaped string
- 3Q, QQ string tensions similar
- Coulomb terms in OGE ratio $\frac{1}{2}$

TABLE I. The coefficients in Eq. (6) for the $3 Q$ potential and those in Eq. (5) for the $Q-\bar{Q}$ potential in the lattice unit.

	σ	A	C
$3 Q$	$0.1524(28)$	$0.1331(66)$	$0.9182(213)$
$Q-\bar{Q}$	$0.1629(47)$	$0.2793(116)$	$0.6203(161)$

- $\quad \sigma$ is in lattice units a^{-2}
- Meson string tension 0.89 $\mathrm{GeV} / \mathrm{fm}(\mathrm{a}=0.19 \mathrm{fm})$

... How are the quarks confined?

- Also tried fit to function

$$
V_{3 Q}=-A_{\Delta} \sum_{i<j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}+\sigma_{\Delta} \sum_{i<j}\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|+C_{\Delta}
$$

- Fit worse: χ^{2} per d.f. $3.8 \Rightarrow 10.1$
- Result is a reduced string tension $\sigma_{\Delta}=0.53 \sigma$
- Simply a geometrical factor
- Perimeter P satisfies $1 / 2<L_{\text {min }} / P<1 /(3)^{1 / 2}=0.58$
- Accidentally close to $\left\langle\Lambda_{i}{ }^{-} \Lambda_{\mathrm{j}}\right\rangle_{\text {baryons }} /\left\langle\Lambda_{\mathrm{i}}{ }^{*} \cdot \Lambda_{\mathrm{j}}\right\rangle_{\text {mesons }}=1 / 2$ \Rightarrow but confinement is not (colored) vector exchange! \Rightarrow string-like potential + color Coulomb good for QQQ baryons
\Rightarrow Model with flux-tube for qqq baryons

Flux-tube model

- Based on strong-coupling lattice QCD
-Color fields confined to narrow tubes, energy \propto length
-Junction, to maintain global color gauge invariance
-Plaquette operator from lattice action:
-Moves tubes transverse to their original orientations
-Moves junction

Model confining interaction

- Flux tubes, combined with adiabatic approx.
- confining interaction: minimum length string
$-\mathrm{V}_{\mathrm{B}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)=\sigma\left(\mathrm{l}_{1}+\mathrm{I}_{2}+\mathrm{l}_{3}\right)=\sigma \mathrm{L}_{\text {min }}$
- note σ is meson string tension
- linear at large q-junction separations
- Conventional baryon states:
- Solve for $q 9 q$ energies in this confining potential
- With additional interactions between quarks...

Hybrid baryons

- Fix quark positions \mathbf{r}_{i}, allow flux tubes to move
- Junction moves relative to its equilibrium position
- Strings move transverse to their equilibrium directions
- Ground state of string defines adiabatic potential
- $V_{B}\left(\mathbf{r}_{1}, r_{2}, r_{3}\right)=\sigma\left(l_{1}+l_{2}+I_{3}\right)=\sigma L_{\text {min }}$ plus zero point motion
- First excited state defines new adiabatic potential

$$
-\mathrm{V}_{\mathrm{H}}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)
$$

- Hybrids: solve for 999 motion in this modified potential
- With Philip Page: PRD69 (1999) 111501, PRC66 (2002) 065204

Discretized strings

- Simplest model; one bead m_{i} per string + junction bead, m_{j}
- Take $\mathrm{m}_{\mathrm{i}}=\sigma \mathrm{I}_{\mathrm{i}}$
- Allow m_{j} to differ from m_{i}
- 9 degrees of freedom:
- string-bead transverse motions ξ_{i}, z_{i}
- junction position r relative to equilibrium position

String excitation energies

- Correct for CM motion due to bead and junction motion
- Simplest correction to adiabatic approx
- Effective masses $m_{i}{ }^{\text {eff }} \& m_{j}$ eff depend on quark masses: in limit of infinite number of beads:

$$
\mathrm{m}_{\mathrm{J}}^{\text {eff }}=\mathrm{b} \sum_{\mathrm{i}} \mathrm{l}_{\mathrm{i}}\left(1 / 3-\mathrm{b} \sum_{\mathrm{i}} \mathrm{l}_{\mathrm{i}} /\left[4 \sum_{\mathrm{i}}\left(\mathrm{~b} \mathrm{l}_{\mathrm{i}}+\mathrm{M}_{\mathrm{i}}\right)\right]\right)
$$

String excitation energies

- Diagonalize 9x9 Hamiltonian in small oscillations approximation
- String Hamiltonian:
$V=V_{\text {junction }}(\vec{r})+V_{\text {bead }}\left(\xi_{i}, z_{i}\right) \rightarrow$ beads and junction decoupled $T=T_{\text {junction }}(\dot{\vec{r}})+T_{\text {bead }}\left(\dot{\xi}_{i}, \dot{z}_{i}\right)+T_{\text {bead-bead }}+T_{\text {bead-junction }}$ \rightarrow couples beads to each other and junction

Approximate excited string energies

- Good approximation to first excited mode energy if ignore junction-bead coupling
- Non-Interacting below (compared to exact)
- First excited state is always in-plane motion
- With $\mathrm{m}_{\mathrm{J}}=\mathrm{m}_{\mathrm{q}}=0.33 \mathrm{GeV}$, string energies, in GeV:

$l_{i}(\mathrm{fm})$	$E_{1}(\mathrm{NI})$	E_{1}	$E_{2}(\mathrm{NI})$	E_{2}	$E_{3}(\mathrm{NI})$	E_{3}
$0.5,0.5,0.5$	0.614	0.607	0.614	0.607	0.868	0.828
$0.5,0.5,0.1$	0.623	0.616	1.069	0.985	1.069	1.005
$0.5,1.0,0.1$	0.520	0.483	0.544	0.534	0.544	0.590

Adiabatic potentials

- Results of analytic work:
- First excited state: look only at junction motion
- Individual strings follow junction, add to m_{j} eff
- Evaluate m_{j} eff in limit of large number of beads
- Generate $V_{H}=E_{1}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)$ for qqq in hybrid
- Numerical work: V_{B} and V_{H} found by variational calculation
- Small oscillations approximation singular when any $l_{i} \rightarrow 0$
- Contains term like $\left|I_{i}\right|$
- Shortest string has I=0 when:

- Analytic and numerical results agree when I_{i} all large

...Adiabatic potentials

- one mode always $\hat{\boldsymbol{\eta}}_{z}=\hat{z}: T_{\text {junction }}(\dot{\vec{r}})+V_{\text {junction }}(\vec{r})$ even under $z \rightarrow-z$
- trial wavefunctions: ground state, $1^{\text {st }}$ excited state anistropic oscillators $\Psi_{B}(\vec{r})=\left(\frac{\alpha_{+} \alpha_{-} \alpha_{z}}{\sqrt{\pi}}\right)^{\frac{3}{2}} \exp \left\{-\left[\left(\alpha_{+} \hat{\eta}_{+} \cdot \vec{r}\right)^{2}+\left(\alpha_{-} \hat{\eta}_{-} \cdot \vec{r}\right)^{2}+\left(\alpha_{z} z\right)^{2}\right] / 2\right\}$ $\Psi_{H}(\vec{r})=\sqrt{2} \alpha_{-} \hat{\eta}_{-} \cdot \vec{r} \Psi_{B}(\vec{r})$
- four variational parameters:

$$
\star \theta, \alpha_{-}, \alpha_{+}, \alpha_{z}
$$

- for every $\rho, \lambda, \cos \left(\theta_{\rho \lambda}\right)$:
\star independently minimize ground and excited state string energies

$$
\rightarrow \text { show plots for } \vec{\rho} \| \vec{\lambda}, \vec{\rho} \perp \vec{\lambda}
$$

...Adiabatic potentials

- Baryon potential without the confining term, $V_{B}-b \Sigma_{i} l_{i}$, for $\cos \left(\theta_{\rho \lambda}\right)=0$; zero-point energy

...Adiabatic potentials

- $\mathrm{V}_{\mathrm{H} 1}-\mathrm{V}_{\mathrm{B}}$ for $\cos \left(\theta_{\rho \lambda}\right)=0$

...Adiabatic potentials
- $\mathrm{V}_{\mathrm{H} 1}-\mathrm{V}_{\mathrm{B}}$ for $\rho=6.2 \mathrm{GeV}^{-1}$

Lattice QQQ baryon and hybrid potentials

Table 1: The ground-state 3 Q potential $V_{3 Q}^{\text {g.s. }}$ and the 1 st excited-state $3 Q$ potential $V_{3 Q}^{\text {e.s. }}$ in the lattice unit. The label (l, m, n) denotes the $3 Q$ system where the three quarks are put on $(l a, 0,0),(0, m a, 0)$ and $(0,0, n a)$ in \mathbf{R}^{3}.

Takahashi
 \& Suganuma hep-lat/ 0210024

(l, m, n)	$V_{3 Q}^{\text {e.s. }}$	$V_{3 Q}^{\text {g.s. }}$	$V_{3 Q}^{\text {e.s. }}-V_{3 Q}^{\text {g.s. }}$
$(0,1,1)$	$1.9816(95)$	$0.7711(3)$	1.2104
$(0,1,2)$	$1.9943(72)$	$0.9682(4)$	1.0261
$(0,1,3)$	$2.0252(92)$	$1.1134(7)$	0.9118
$(0,2,2)$	$2.0980(80)$	$1.1377(6)$	0.9603
$(0,2,3)$	$2.1551(87)$	$1.2686(9)$	0.8866
$(0,3,3)$	$2.2125(114)$	$1.3914(13)$	0.8211
$(1,1,1)$	$2.0488(90)$	$0.9176(4)$	1.1312
$(1,1,2)$	$2.0727(75)$	$1.0686(5)$	1.0041
$(1,1,3)$	$2.1023(73)$	$1.2004(7)$	0.9019
$(1,1,4)$	$2.1580(93)$	$1.3201(10)$	0.8380
$(1,2,2)$	$2.1405(72)$	$1.1907(7)$	0.9498
$(1,2,3)$	$2.1899(71)$	$1.3084(9)$	0.8815
$(1,2,4)$	$2.2516(79)$	$1.4221(12)$	0.8296
$(1,3,4)$	$2.2907(91)$	$1.5260(15)$	0.7647
$(1,4,4)$	$2.3807(138)$	$1.6322(20)$	0.7485
$(2,2,2)$	$2.1776(111)$	$1.2844(10)$	0.8932
$(2,2,3)$	$2.2242(96)$	$1.3882(11)$	0.8360
$(2,2,4)$	$2.2799(98)$	$1.4952(15)$	0.7847
$(2,3,4)$	$2.3637(100)$	$1.5853(18)$	0.7784
$(2,4,4)$	$2.4108(137)$	$1.6836(23)$	0.7271
$(3,3,3)$	$2.3408(168)$	$1.5680(19)$	0.7728
$(3,3,4)$	$2.3958(151)$	$1.6635(22)$	0.7323
$(3,4,4)$	$2.4645(177)$	$1.7565(30)$	0.7081
$(4,4,4)$	$2.5245(340)$	$1.8408(42)$	0.6837

Lattice QQQ baryon and hybrid potentials...

- Calculate $\mathrm{L}_{\text {min }}$ plot V_{B} and $\mathrm{V}_{\mathrm{H} 1}$ vs. $\mathrm{L}_{\text {min }}$

Flux tube vs. lattice results

- Difference $\mathrm{V}_{\mathrm{H} 1}-\mathrm{V}_{\mathrm{B}} \quad$ - Calculated in model for l_{i} values used by Takahashi \& Suganuma
- Note offset zeros

Hybrid baryon quantum numbers

- Parity of string:
- Ground state and lightest (in plane) excited state H_{1} (also H_{2}): +ve
- Out of plane $\left(\mathrm{H}_{3}\right)$: -ve
- Quark-label exchange symmetry:
- $T_{\text {junction }}(\dot{\vec{r}})+V_{\text {junction }}(\vec{r})$ invariant
- Excited states both totally S and AS
- Checked ground state S
- Angular momentum of string:
- Adiabatic approx breaks rotational invariance
- Flux wvfn not eigenfunction of I (junction)
- But overall wvfn must be eigenfunction of $\mathbf{L}=\mathrm{L}_{\mathrm{qqq}}+\mathrm{I}$

...Hybrid baryon quantum numbers

- Expect ground state 0^{+}, first excited state 1^{+}
- Note: $\Psi_{H 1}(\mathbf{r}) \alpha \eta_{-} \cdot \boldsymbol{r} \Psi_{B}(\mathbf{r})$
- Since $\eta_{\text {. }}$.r lies in plane of quarks, \& Ψ_{B} has $\mathrm{I}=0$ to very good approximation:
- Know $\eta_{-} . \mathbf{r} \propto \mathrm{ar}_{11}(\mathbf{r})+\mathrm{bY}_{1-1}(\mathbf{r})$
- So $m=+1,-1$ in body-fixed system
- If quarks have $\mathrm{L}_{\mathrm{qqq}}=0$ (lowest energy):
- $M=+1,-1$ and so $L=L_{q q q}+1 \geq 1$
- L=1 expected lightest
- Checked $\mathrm{E}_{\mathrm{qqq}}$ rises with $\mathrm{L}_{\mathrm{qqq}}$ in $\mathrm{V}_{\mathrm{H} 1}$

...Hybrid baryon quantum numbers

- Additional symmetry: parity under reflection in qqq plane - "chirality"
- Changes sign of z, and out of plane bead coordinates
- Chirality +1: $\Psi_{\mathrm{H}_{1}}(\mathbf{r}), \Psi_{\mathrm{H}_{2}}(\mathbf{r}), \Psi_{\mathrm{B}}(\mathbf{r})$
- Chirality -1: $\Psi^{\mathrm{H} 3}(\mathbf{r})$ (out of plane)
- Should classify flux wvfns in adiabatic lattice QCD according to:
- Exchange symmetry
- Parity
- chirality

Hybrid baryon masses

- Find quark energies by adding $\mathrm{V}_{\mathrm{H} 1}-\mathrm{V}_{\mathrm{B}}$ to usual interquark potential
- Find lowest energy quark excitations with $L_{q}=0,1,2, \ldots$
- Expand wvfn in large oscillator basis of fixed $\mathrm{L}_{\text {qqa }}$
- Numerical calculations:
- Spin-averaged $\mathrm{L}_{\mathrm{qqa}}=0$ hybrid: $1975+/-100 \mathrm{MeV}$
- Add 365 MeV with $\mathrm{L}_{\mathrm{qqq}}=1$, and 640 MeV with $\mathrm{L}_{\mathrm{qqq}}=2$
- Quantum numbers: $\mathrm{L}_{\mathrm{qq}}{ }^{\mathrm{P}}=0^{+}$and $\mathrm{I}^{\pi}=1^{+} \rightarrow \mathrm{L}^{\mathrm{P}}=1^{+}$
- Combine with quark spin, and S or AS flux symmetry:
\rightarrow S hybrids $(N, \Delta)^{2 S+1} J^{P}=N^{2} \frac{1}{2}^{+}, N^{2} \frac{3}{2}^{+}, \Delta^{4} \frac{1}{2}^{+}, \Delta^{4} \frac{3}{2}^{+}, \Delta^{4} \frac{5}{2}^{+}$
\rightarrow AS hybrids (flavor-spin AS) $N^{2} \frac{1}{2}^{+}, N^{2} \frac{3}{2}^{+}$

...Hybrid baryon masses

- Add short distance potential from onegluon exchange
- Color structure same as conventional baryons
$-\mathrm{S}_{\mathrm{qqq}}=1 / 2(\mathrm{~N})$ states: approx. $1870+/-100 \mathrm{MeV}$
$-\mathrm{S}_{\mathrm{qqq}}=3 / 2(\Delta)$ states: approx. $2075+/-100 \mathrm{MeV}$
- Considerably more energetic than bag model constituent gluon (qqq) 8 g hybrids
- Almost same quantum numbers as bag model
- Bag model (mixed symmetry color for qqq):
- $\mathrm{S}_{\mathrm{qqq}}=1 / 2: \mathrm{N} 1 / 2^{+}, \mathrm{N} 3 / 2^{+}, \Delta 1 / 2^{+}, \Delta 3 / 2^{+}$
- $\mathrm{S}_{\mathrm{qqq}}=3 / 2: \mathrm{N} 1 / 2^{+}, \mathrm{N} 3 / 2^{+}, \mathrm{N} 5 / 2^{+}$

Nucleon flux-tube hybrids

Simon Capstick, Florida State University

Δ flux-tube hybrids

Simon Capstick, Florida State University

Conclusions

- Flux-tube model describes collective excitations of glue
- Predictions for light hybrids
- Masses significantly heavier than 1500 MeV from bag model - consistent with lattice results
- Positive-parity states with JP $=1 / 2^{+}, 3 / 2^{+}, 5 / 2^{+}$
- Lightest states N1/2+, N3/2+ with usual spinspin interactions
- Masses similar to missing conventional states with same quantum numbers
\Rightarrow Strange hybrids, strong and EM couplings with PRP

