
GMH: A Message Passing Toolkit for GPU Clusters

Jie Chen and William Watson III
The Scientific Computing Group

Jefferson Lab
Newport News, Virginia 23606, USA

Email: {chen,watson}@jlab.org

Weizhen Mao
Department of Computer Science

College of William and Mary
Williamsburg, Virginia 23187, USA

Email: wm@cs.wm.edu

Abstract—Driven by the market demand for high-definition
3D graphics, commodity graphics processing units (GPUs)
have evolved into highly parallel, multi-threaded, many-core
processors, which are ideal for data parallel computing. Many
applications have been ported to run on a single GPU with
tremendous speedups using general C-style programming lan-
guages such as CUDA. However, large applications require
multiple GPUs and demand explicit message passing. This
paper presents a message passing toolkit, called GMH (GPU
Message Handler), on NVIDIA GPUs. This toolkit utilizes a
data-parallel thread group as a way to map multiple GPUs on
a single host to an MPI rank, and introduces a notion of virtual
GPUs as a way to bind a thread to a GPU automatically. This
toolkit provides high performance MPI style point-to-point
and collective communication, but more importantly, facilitates
event-driven APIs to allow an application to be managed and
executed by the toolkit at runtime.

Keywords-GPU; Cluster; Message Passing; MPI; CUDA

I. INTRODUCTION

In the past few decades, the performance of CPUs has
steadily increased according to Moore’s law. However, the
performance of scientific applications has not enjoyed the
same increase despite higher clock rates, larger memory
caches, and instruction-level parallelism of these CPUs.
This brings the recent multi-core processors [16], which
offer better performance for data parallel applications by
executing multiple threads simultaneously. However, the rel-
ative small number of processing cores and limited memory
bandwidth on this type of CPU prohibit further increases in
the performance for data parallel applications. On the other
hand, a modern graphics processing unit (GPU) contains
a scalable array of multi-threaded Streaming Multiproces-
sors (SMs) and offers extremely high memory bandwidth.
Each SM consists of many Scalar Processor (SP) cores
with on-chip shared memory and can execute hundreds
of threads in parallel efficiently in the Single Instruction
Multiple Thread (SIMT) fashion. Consequently, General-
Purpose computation on GPUs (GPGPU) [13] has taken
off. Excellent GPU performance speedups have become
common place in fields from molecular dynamics [2] to
lattice quantum chromodynamics (LQCD) [3]. For many
applications, GPUs have been excellent platforms providing

much better performance-to-cost ratio relative to their latest
mutil-core CPU counterparts [4].

Recently, AMD and NVIDIA have begun producing
GPUs not only tailored for the gaming community but
also suitable for high performance computing applications.
Meanwhile, GPU software development tools have evolved
rapidly as well. Several general purpose high level GPU pro-
gramming toolkits such as CUDA [9], Brook+ [1], and most
recently OpenCL [10] have replaced traditional computer
graphics development libraries, such as OpenGL [11], whose
Application Program Interfaces(APIs) are not suitable for
GPGPU. These new toolkits provide more natural GPGPU
programming environments, and expose more hardware ca-
pabilities. This paper focuses on CUDA, which is stable and
widely used by the scientific computing community.

CUDA is a general purpose programming system for
NVIDIA GPUs and was first released in the end of 2007. It
extends the C programming language to support executing
a GPU function (kernel) on a single GPU in the SIMT
fashion. A GPU kernel is very much like a regular CPU
function with minor notational change, and is executed by
all SMs using tens of thousands of threads at the same time
to achieve high performance. CUDA allows asynchronous
kernel execution and offers the capability of concurrent oper-
ations of kernels and host-GPU memory DMA transactions
on different “streams”. Furthermore, CUDA also provides
event recording APIs that enable applications to check the
progress of individual operations within an asynchronously
executing stream. Note that CPUs (hosts) are involved in
starting GPU kernels, managing GPU memory, and handling
communication among devices on the PCI buses.

Many scientific applications have achieved remarkable
speedups running on a single GPU using CUDA in compar-
ison to running on a multi-core CPU. For example, a lattice
QCD linear equation solver [3] using mixed precision on
NVIDIA GTX 280 has achieved more than a 10 times per-
formance increase relative to executing the same algorithm
on a host with dual quad-core Intel Nehalem processors.
However, large scientific applications may demand multiple
GPUs either on the same host or within a single GPU cluster
[5] because of the large memory requirement of this type of
application.



cudaMemcpy

Application

GPU GPU

cudaMemcpy

Figure 1. Exchange a single message between two GPUs

Using multiple GPUs for multiple independent processes
or threads is trivial. However, exchanging messages among
multiple GPUs for large applications is cumbersome. Fig.
1 describes what is involved in an exchange of a single
message between two GPUs on a single host in the CUDA
programming environment using a single host buffer in a
multi-threaded application.

Since a GPU kernel can not manage GPU memory di-
rectly, a datum in a GPU memory location has to be first
transferred out from the GPU to the host by the cudaMemcpy
host function followed by another cudaMemcpy function call
to send the datum from the host to the other GPU. Multi-
threaded applications have to synchronize memory access to
the host memory buffers that are used for the transfers. In
contrast, the same type of transfers will be more complicated
for applications using multiple processes on the same host or
on different hosts because of the required message passing
from one process to another. Furthermore, to port single
GPU applications to run on multiple GPUs or to develop
applications for GPU clusters, developers usually face sev-
eral obstacles: splitting kernels to handle calculations for
interior volume and surface area respectively, overlapping
computation and communication, and so on.

To reduce the complexity of programming for multiple
GPUs, this paper presents a message passing toolkit for GPU
clusters, called the GPU message handler (GMH), which not
only provides high performance point-to-point and collective
GPU communication but also facilitates a new framework to
allow applications to be managed and executed by the toolkit
at runtime.

This paper is organized as follows. Section 2 reviews
previous related work. Section 3 describes the design and
implementation of the GMH toolkit. Section 4 overviews
the software and hardware environment where performance
evaluations are carried out. Section 5 presents the perfor-
mance data for the toolkit. Section 6 concludes.

II. RELATED WORK

Similar to parallel applications using multiple CPUs on
clusters, there are two major paradigms for programming
and implementing GPU parallel applications using GPU
clusters: shared memory paradigm that share data between
processes through shared memory and message passing

paradigm that exchange messages between processes or
threads running concurrently.

On CPU clusters, shared memory parallel programs are
widely considered easier to develop than message passing
programs. There has been research that extends shared
memory paradigm to GPU clusters. For example, a software
based distributed shared memory can be implemented by
modifying each memory access to use a GPU page table,
but the performance of this type of implementation shows
a drastic performance slowdown [8]. Therefore, distributed
memory with explicit message passing is the only viable
option known to scale well for GPU clusters.

The Message Passing Interface (MPI) [15] is the de facto
standard for developing parallel programs for CPU clusters.
Recently, there have been several research efforts to provide
MPI style message passing for parallel GPU applications.
For example, cudaMPI [6] replicates most MPI functions. It
offers message passing from CPU to GPU or from GPU to
GPU, and delivers reasonably good performance. However,
it only supports the configuration of one GPU on one
computing host, it does not provide any new framework that
simplifies development efforts of parallel GPU applications,
and it does not isolate its message passing from MPI
implementations, which may result in conflicts in sending
and receiving messages when applications mix cudaMPI and
MPI together. Nonetheless, cudaMPI takes a CPU centric
approach in the sense that all message exchanges are dictated
by CPUs. On the other hand, DCGN [17] adopts a GPU
centric approach in the way that GPUs initiate message
exchanges while CPUs serve as mere I/O processors to
poll for GPU communication. Unfortunately, it requires
hundreds of microseconds extra overhead for each GPU
message due to CPU polling for messages. In addition,
DCGN implementation does not support any application
using just one host with multiple GPUs and does not allow
mixing DCGN and MPI together. If 100% of any application
could run on GPUs, the GPU centric message passing would
be clearly preferable over the CPU centric message passing.
Until that happens, the CPU centric message passing remains
an ideal choice for most GPU parallel applications.

The GMH toolkit developed at Jefferson Lab, a national
laboratory under the Office of Science in the Department
of Energy, follows the CPU centric message passing ap-
proach. It utilizes MPI to deliver messages among hosts
where GPUs are situated. It uses a thread group on each
individual computing host as a way to map GPUs to an
MPI rank. Each thread in the thread group is bonded to
a particular GPU automatically. The message exchanges
among GPUs on a single host are carried out without host
memory copies. Furthermore, GMH is implemented as an
MPI library, therefore GMH applications can mix GMH and
MPI together. More importantly, GMH not only provides
MPI style communication primitives but also offers an event-
driven flow control framework that allows applications to be



S
M

V

IMV IMV

IMVIMV

Messages

v accurate ?

Yes

No

Global Synchronization

S
M

V

S
M

V

S
M

V

Figure 2. Event flow model of a parallel iterative solver

executed by GMH at run time.

III. THE GMH TOOLKIT

Solving linear systems is a common occurrence in many
scientific applications. For example, iterative linear system
solvers, such as the BiCGSTAB [14] method, have been
utilized frequently in theoretical physics LQCD calculations
[3]. A successful convergence of a parallel BiCGSTAB
execution requires many iterations, during which many
steps of parallel matrix-vector multiplications are carried
out followed by a global synchronization. Thus a parallel
iterative solver can be encapsulated into an event flow model
as illustrated in Fig. 2, where IMV stands for interior volume
matrix vector multiplications, and SMV stands for surface
area matrix vector multiplications. In the figure, message
exchanges among GPUs are initiated at the same time when
IMV kernels start execution. The SMV kernels start running
once surface messages are exchanged. The above steps re-
peat many times until a global synchronization is performed.
Then, the accuracy of the solution vector is checked to
determine whether the iteration process continues.

GMH provides a set of C programming APIs to enable
an event flow message passing programming development
in addition to the conventional MPI style message passing
primitives. Applications can either use the MPI style APIs
in the GMH library to control iterative processes or register
commands and events with GMH, whose command queues
and event handlers manage these iterative processes for the
applications. The later approach can significantly reduce
the effort of porting GPU applications running on a single
GPU to the applications running on multiple GPUs because
developers could concentrate on algorithms and event flow
instead of programming details.

A. GMH Architecture

The GMH toolkit is a multi-threaded event driven message
passing C programming library. It utilizes a dedicated CPU
core to handle each GPU to ensure good performance.

GPU 1

GPU

Kernel

Send

Memory

Recv

Memory

GPU

Kernel

CPU

Task

Reduction

GPU

Kernel

Send

Memory

Recv

Memory

GPU

Kernel

CPU

Task

Reduction

GPU 0

Figure 3. GMH run time architecture

It uses MPI as its underlying inter-host communication
mechanism and eliminates host memory copies for intra-host
GPU communication. It depends on MPI implementations
with fully threaded support to avoid unnecessary polling of
underlying communication buffers, which adds overhead to
each message. Furthermore, GMH automatically assigns and
binds a CPU thread to a GPU due to a one-to-one mapping
of CPU threads to GPUs, which is a mandate from CUDA.

A GMH thread controlling a GPU owns a command
queue, into which requests/commands such as GPU kernels
or communication calls are funneled. The GMH toolkit ex-
ecutes developer specified requests in the command queues
either synchronously or asynchronously at runtime. The
command queue can hold multiple streams so that con-
current memory transfers and kernel executions can take
place. A command is able to generate an event so that any
command can have an event dependency specified such that
the command can not be executed until some event has
finished. Similarly, GMH can explicitly wait on one or a
set of events before executing the next available command.
Fig. 3 illustrates one example of GMH command queues on
two threads managing two GPUs at run time.

B. GMH Implementation

The implementation of GMH faces several challenges.
First of all, each GPU has to be presented as a communi-
cation end point to hide the difference between inter-host
and intra-host GPU communication. Secondly, the GPUs
on a host must be managed automatically to avoid static
mapping between GMH threads and GPU devices. These
two challenges along with the goals of making GMH a high
performance, flexible and easy to use toolkit shape the final
implementation.

1) GMH Environment: The GMH environment can be
initialized by calling gmh init with the number of requested
GPUs on a single host. The initialization routine spawns the
number of threads equal to the number of requested GPUs on
the host. Each thread is bound to a GPU and executes a user
supplied thread function once the GMH environment is set
up. To better manage multiple threads and GPUs on a single



host, GMH employs a concept of virtual GPU: a virtual
GPU device number that always starts from 0 is assigned to
a thread once the thread is bound to a GPU. The adoption of
the concept of virtual GPUs enables GMH to launch either
one process or multiple processes on a single host without
causing GPU resource conflicts among GMH threads. Since
there is a one-to-one mapping between a GMH thread and
a GPU, this paper treats these two terms the same from
here on. In addition, a communication end point for a GMH
thread is a unique integer that combines the virtual GPU id
of the thread with the MPI rank of the process that owns
the thread attached to the GPU. The combined integers are
called GMH ranks.

2) GMH Memory: A GPU memory location is encap-
sulated into a GMH memory structure called gmh mem t,
which holds information about the GPU memory location,
its size and permission. The GMH memory is created with
a default option that a page locked (pinned) host memory
of the same size is also allocated.

3) GMH Commands and Events: Each GMH thread
attached to a GPU contains a command queue into which
an application inserts any supported commands through the
GMH APIs. A command queue qmh tasklist t is FIFO in
nature, but it may contain multiple streams. A command has
to be associated with a stream upon creation. Commands on
different streams can be executed concurrently to offer the
capability of overlapping communication and computation.
Even though the GMH commands are the most important
building blocks of the GMH toolkit, developers never inter-
act with commands directly but rather through APIs.

When applications issue a gmh init function call, the cre-
ated command queues are delivered back to the applications
as the first argument to the user provided thread functions.
The following is the definition for the user provided thread
function:

void* (*gmh thread func t) (gmh task list t , void *);

Each GMH command can be either synchronous or asyn-
chronous. An asynchronous command generates a GMH
event which can be used to track the progress of the
command. Each GMH event is comprised of one CUDA
event, one MPI request, or both. Applications can wait on a
single event or wait on a set of events. Thus, events can
be used to build up a dependency structure to enable a
command to wait for a set of events to finish before the
command can start to execute. The following code segment
illustrates the concepts of streams, commands and events.

gmh tasklist t l; gmh stream t s;
gmh event t ev, ∗evs wait;
gmh kernel t func;
int nevs; void *arg;

gmh create command stream (l, &s, 0);

gmh add gpu kernel (l, s, func, arg, nevs, evs wait, &ev);

In the above code segment, a command stream s is created
for the command queue l. A new command, which is a GPU
kernel specified by a user function func along with a user
argument arg, starts only after nevs number of events stored
in evs wait have finished and then generates a new event
denoted by ev.

4) GMH Point-to-point Communication: GMH provides
two flavors of communication APIs for applications. One
set of APIs is very much MPI alike with communication
end points defined by GMH ranks which are used to either
identify MPI processes across a cluster or to distinguish
GMH threads within a single host. GMH mandates the
underlying MPI implementation to be fully threaded since
each necessary MPI call is invoked by individual GMH
thread attached to a particular GPU. The following code
segment describes the conventional asynchronous commu-
nication APIs.

void *sbuf, *rbuf; gmh datatype t type;
gmh tasklist t l; gmh stream t s;
int dest, src, tag, count;
gmh event t sev, rev;

gmh Isend(l, s, sbuf, count,type, dest,tag, &sev);
gmh Irecv(l, s, rbuf, count, type, src,tag, &rev);

The other set of APIs takes the event flow approach.
Applications register send or receive commands to GMH
which executes these commands at run time. The following
code segment describes the idea, where block specifies
whether a routine is a blocked call.

gmh tasklist t l; gmh datatype t type;
gmh mem t sbuf, rbuf;
int dest, src, block, nevs;
gmh event t sev, rev, ev, ∗evs wait;

gmh add send buffer(l, s, sbuf, block, dest, tag, nevs,
evs wait, &sev);
gmh add recv buffer(l, s, rbuf, block, src, tag, nevs,
evs wait, &rev);

5) GMH Collective Communication: Collective commu-
nication involves global data movement and global control
among all GPUs in a cluster. Unlike point-to-point commu-
nication routines, collective communication is synchronous,
which means that all events generated before a collective
call have to be finished before the call starts. Once again,
GMH provides one set of APIs that are very similar to
MPIs and offers another set of APIs allowing applications
to register collective communication commands to GMH.
More importantly, GMH leverages the power of the under-
lying MPI collective functions to achieve high performance
for collective communication. The following code snippet



MPI_Bcast

Figure 4. Mapping multiple GPUs to an MPI rank

illustrates functionalities of collective communication.

gmh tasklist t l; gmh mem t sbuf, rbuf;
int root, type, op;

gmh bcast(l, sbuf, root);
gmh reduce(l, sbuf, rbuf, type, op, root);

In comparison to point-to-point communication, GMH
maps multiple GPUs to a single MPI rank during collective
communication. For example, a GMH thread with a virtual
GPU id of 0 on a host forwards the messages delivered
by MPI Bcast to other GPUs on the same host upon the
execution of gmh bcast. Fig. 4 illustrates the concept of
mapping multiple GPUs to a single MPI rank.

6) GMH Event Run Loop: A GMH thread executes
all registered commands in an event loop by issuing
gmh start(list). The event loop executes each command in-
side the command queue one after another in the FIFO order.
Commands can run concurrently if they are on different
streams. Synchronizations can be achieved through three
different ways: explicit invocations of gmh wait for events;
executing commands with defined event dependency struc-
tures; any collective communication call. The end of the loop
is determined by a control CPU task, which is a C function
returning either GMH EXIT or GMH RERUN. The control
task is registered through the following function and is a
synchronous command.

gmh tasklist t l;
gmh control task t task;
void* arg;

gmh add control task (l, task, void);

IV. HARDWARE AND SOFTWARE ENVIRONMENT

Our test environment contains 16 hosts connected by quad
data rate(QDR) infiniband networks, which provide up to 40
Gbits/sec network bandwidth. Each host is equipped with
two Intel Nehalem E5530 quad-core CPUs running at 2.4
GHz. Each host has 24 GB ECC DDR3 memory clocked at
1331 MHz. In addition, each host has two NVIDIA GTX285
GPUs, each with 2 GB GDDR3 memory and 240 processing
cores running at 1.51 GHz. Each GPU provides internal
memory bandwidth of 121 GB/sec and supports PCI Express
2.0x16 host interface that provides bi-directional CPU-GPU
memory bandwidth up to 6.4 GB/sec.

Each single computing host is running CentOS 5.3 with
Linux Kernel 2.6.18. The MPI implementation is mvapich2-

Application Application

GMH GMH

GPU GPU

MPI

cudaMemcpy cudaMemcpy

Figure 5. GMH applications send GPU data across network

1.2 from Ohio University [7] with OFED [12] version 1.4.2.
All performance test programs are compiled with gcc version
4.1.2 using optimization flag “-O3”. The GPU driver version
is 190.29 and CUDA toolkit is version 2.3.

V. PERFORMANCE RESULTS OF GMH

To fully comprehend GMH, detailed performance tests
are conducted. These tests exercise point-to-point throughput
and latency (half round-trip time) involving two GPUs on a
single host or two GPUs on two hosts, In addition, these tests
analyze how well the collective communication performs
involving all GPUs in the test cluster.

A. Memory Transfers between GPUs and CPUs

The GMH toolkit, like any other GPU message passing
library, utilizes the synchronous function of cudaMemcpy
or the asynchronous function of cudaMemcpyAsync to
transfer data from GPUs to CPUs before sending the data
to other GPUs and to move data from CPUs to GPUs
after receiving the data from other GPUs. Since GMH
focuses on the capability of overlapping communication
and computation, it uses cudaMemcpyAsync for all point-to-
point communication primitives and uses cudaMemcpy for
all collective communication routines. Fig. 5 illustrates how
cudaMemcpy is used in a single message exchange between
two GPUs on two hosts.

To understand the performance characteristics of point-to-
point communication, the memory transfer bandwidth and
latency values are collected. Especially, the bandwidth val-
ues from CPUs to GPUs are compared with the bandwidth
values from GPUs to CPUs. Unlike conventional network
devices which have the same bandwidth values regardless
of directions of data transfers, a GTX 285 GPU on the test
platform can have different transfer bandwidths depending
on the direction of data transfers. Fig. 6 shows the results of
latency and bandwidth for memory transfers between GPUs
and CPUs along with the performance results from mvapich2
for comparison purposes.

In Fig. 6, a cudaMemcpy takes about 12 µs to transfer
a small message from a GPU to a CPU and vice versa. In
contrast, a cudaMemcpyAsync along with a proper synchro-
nization mechanism such as cudaEventSynchronize takes
about 32 µs to transfer a small message. More importantly,
the transfer bandwidth from a GTX 285 to a CPU saturates
at about 1800 MB/sec in comparison to a rather large
transfer bandwidth of 4700 MB/sec from a CPU to a GTX
285. For comparison purposes, the network bandwidth from



0 5000 10000 15000 20000
Data Size (Bytes)

0

10

20

30

40

50
La

te
nc

y 
(M

ic
ro

 S
ec

on
ds

)

cudaMemcpyAsync
cudaMemcpy
mvapich2

0 1e+06 2e+06 3e+06 4e+06
Data Size (Bytes)

0

1000

2000

3000

4000

5000

B
an

dw
id

th
 (M

B
yt

es
/s

ec
)

Host (CPU) to GPU
mvapich2
GPU to Host (CPU)

Figure 6. The performance values of memory transfers between CPUs
and GPUs

mvapich2 is approaching 3200 MB/sec, and the latency
values are very low at 3µs for small messages. The low
memory transfer bandwidth from a GTX 285 GPU to a
CPU thus dictates the overall communication bandwidth of
GMH because of relatively large network bandwidth from
mvapich2 under QDR infiniband networks.

B. Point-to-Point Communication

Point-to-point communication with GMH was measured
using micro-benchmarks of sends, receives, and ping-pong
tests. Many iterations of each type of test with varying sizes
are performed to accumulate the performance results. Spe-
cial attention is focused on the difference between intra-host
GPU communication and inter-host GPU communication.

1) Small Packet Latency: The latency benchmark mea-
sures how long it takes a datum to travel from one GPU
to another GPU. The performance data are obtained by
taking half the average round-trip time for various data
sizes. Fig. 7 presents the results of latency for GMH when
data are transferred between two GPUs on a single host
either using two GMH threads or using two GMH processes,
and between two GPUs on two hosts. Fig. 7 also displays
the latency results of mvapich2 between two hosts for
comparison purposes.

In Fig. 7, the latency values for small messages between
two GPUs on two hosts is 68 µs. This is very close to
(2 × 32 + 3) µs, where 32µs is the average latency value
for a memory transfer between a CPU and a GPU and 3µs is
the latency value of a small message for mvapich2 between
two hosts. Clearly, there is no incurred overhead in latency
for small messages, which affirms that the implementation
of GMH is highly efficient. However, the latency values
(≈ 80µs) for small messages between two GPUs on a single
host using two threads are actually larger than the latency
values between two processes. This is caused by the fine
grain synchronization overhead between two threads when

0 20000 40000 60000 80000
Data Size (Bytes)

0

40

80

120

160

200

La
te

nc
y 

(M
ic

ro
 S

ec
on

d)

Inter-node
Intra-node (2 GMH processes)
Intra-node (2 threads)
Inter-node mvapich2-1.2

Figure 7. GMH application-to-application latency

0 1e+06 2e+06 3e+06 4e+06
Data Size (Bytes)

0

500

1000

1500

2000

B
an

dw
id

th
 (M

B
yt

es
/s

ec
)

Ping-Pong 2 Threads
Ping-Pong 2 Processes

One node GPU-to-GPU

0 1e+06 2e+06 3e+06 4e+06
Data Size (Bytes)

0

500

1000

1500

2000

B
an

dw
id

th
 (M

B
yt

es
/s

ec
)

Bidirection
Unidirection
Ping-pong

Two Nodes GPU-to-GPU

Figure 8. GMH point-to-point bandwidth

transferring data between them. Nonetheless, the extra cost
of copying data between processes using MPI eventually
overtakes the cost of thread synchronization when data
transfer size increases. This is shown in Fig. 7, where the la-
tency values for the intra-host threaded data transfer become
smaller than the latency values for the other two cases. This
underscores the value of using threads as intra-host GPU
data transfer mechanisms for the GMH implementation.

2) Bandwidth: The experiments that measure three types
of bandwidth are carried out. These three different types of
bandwidth capture different communication patterns occur-
ring in typical user applications. In the bidirectional ping-
pong bandwidth, data flow back and forth, in a ping-pong
fashion. In the unidirectional bandwidth, data flow in one
direction only, which reveals the bandwidth capability of
underlying devices. Finally, the bidirectional simultaneous
bandwidth simulates data transfers in both directions si-
multaneously. Fig. 8 shows the results of these types of
bandwidth for GMH.

The left part of Fig. 8 shows the values of the ping-



2 4 6 8 10 12
Number of Nodes

0

20

40

60

80

100
B

ro
ad

ca
st

 L
at

en
cy

 (M
ic

ro
 S

ec
on

d)

GMH GPUs
MPI CPUs

0 4000 8000 12000 16000
Data Size (Bytes)

0

50

100

150

200

B
ro

ad
ca

st
 L

at
en

cy
 (M

ic
ro

 S
ec

on
d)

12 Nodes/24 GPUs

Data Size = 4 Bytes

Figure 9. GMH broadcast latency values

pong data transfer bandwidth between two GPUs on a single
host. Clearly, the GMH bandwidth values using two threads
are much better than the GMH bandwidth values using two
GMH processes, due to the extra host memory copies when
processes are used to transfer data. The right part of Fig.
8 shows the bandwidth values of three different types of
data transfer between two GPUs on two hosts. It is as
expected that the values of the bidirectional simultaneous
bandwidth are roughly twice those of ping-pong bandwidth.
Recall from Section 5.1 that the memory transfer speed
from GPUs to CPUs is 1800 MB/s. The results of the
unidirectional bandwidth are clearly approaching the above
number, demonstrating the high performance nature of the
GMH toolkit.

C. Collective Communication

Most collective communication primitives in the MPI
specification are implemented in the GMH toolkit. There
are two steps involved in executing a GMH collective
communication function: 1) GMH utilizes the underlying
MPI implementation to attain the inter-node collective com-
munication on host memories with mapping of multiple
GPUs on a host to a single MPI rank; 2) GMH employs
each thread attached to a GPU to copy data from or to the
MPI buffer populated or used by the corresponding MPI
function to or from every GPU on the host. Thus, every
GMH collective communication function inevitably incurs
an overhead of memory copies from CPUs to GPUs and vice
versa. Fig. 9 presents the latency values for GMH broadcast.

Recall that cudaMemcpy is used in all GMH collective
communication routines, which are all synchronous calls,
and each cudaMemcpy takes about 12µs. The left part of
Fig. 9 compares the broadcast latency values for message
size of 4 bytes between GMH and mvapich2. Clearly, it takes
about 20 µs extra time for GMH to do a broadcast than what
mvapich2 takes. The extra time is inline with the duration for
one CPU-GPU and one GPU-CPU memory transfers even

4 8 12 16 20 24 28 32
Number of GPUs

40

50

60

70

80

90

100

G
Fl

op
s/

G
PU

24^2x32 Single GPU Dslash
24^3x32 Local Size Dslash
32^3x64 Single GPU Dslash
32^3x256 GLobal Size Dslash

Figure 10. The performance values of dslash using GMH

though there are many CPU-GPU and GPU-CPU memory
copies involved on every host participating the broadcast.
This is because most of the memory copies are hidden within
the MPI binomial broadcast communication [19] except the
first GPU-CPU copy on the broadcast root node and the
CPU-GPU copy on the last node. Once again, the fact that
there is no additional unaccountable overhead reaffirms that
the GMH implementation is close to optimal. The right part
of Fig. 9 illustrates the linear increase in broadcast latency
value as the data size increases. This comes at no surprise
because of the linear increase in memory copy latency and
linear increase in MPI latency against data size.

D. LQCD Benchmark

The LQCD benchmark dslash [18] is one of the most
computing intensive parts within typical LQCD iterative
solvers. At each iterative step, it sums up two matrix-vector
products along each of x, y, z, t direction for each and every
4-dimensional discretized site. On each site and for every
single step, 3× 3 complex matrices and complex vectors
from all the neighboring sites have to be retrieved before
the calculations. The single GPU version of this benchmark
achieves about 98 Gflops on a single GTX285 GPU.

To parallelize the benchmark, the original dslash GPU
kernel has to be split into two kernels: one carries out the
calculations for the interior volume the same way as the
single GPU version; the other kernel has to wait for the
matrices and vectors sent from neighbors before carrying
out the calculations. The GMH toolkit simplifies the effort
of parallelizing the benchmark by reducing the effort of
handling message passing, overlapping computation and
communication, and so on. Fig. 10 presents normalized
dslash performance results for the fixed global lattice size
(strong scaling) of 323 × 256 and the fixed local lattice size
(weak scaling) of 243 × 32 for multiple GPUs.

For the fixed local lattice size of 243 × 32 , the perfor-
mance of dslash for multiple GPUs only drops by about



3% compared to the performance of the single GPU version
of dslash and stays nearly constant. On the other hand,
the performance values for the fixed global lattice size of
323 × 256 are almost the same as the performance value
for single GPU up to 16 GPUs with significant dropping
in performance when there are 32 GPUs. The reason for
the above performance drop is due to the effect of large
surface-to-volume ratio when the fixed global volume is
used with the large number of GPUs . The tiny performance
degradation and excellent scalability of dslash for multiple
GPUs demonstrate the high performance implementation of
the GMH toolkit.

VI. CONCLUSIONS

This paper presents GMH, a message passing toolkit
for multiple GPUs. This toolkit provides not only high
performance MPI style communication primitives but also an
event flow programming framework to ease the development
effort for parallel iterative numerical solvers. At present,
it is the only known GPU message passing toolkit that
enables applications to transfer data among GPUs on just
one host as well as within a cluster. In addition, it is the
only known toolkit that allows applications mixing with any
thread safe MPI implementation. It utilizes a thread group
on a single host as a way to map GPU resources to an MPI
rank, eliminates host memory copies when transferring data
among GPUs on a single host, and introduces the notion
of “virtual GPU” as a way to bind a thread to a GPU
automatically when there are multiple GPUs on a single
host. In addition, GMH delivers high point-to-point data
transfer bandwidth only limited by the underlying GPU to
CPU memory transfer bandwidth, and offers low point-to-
point transfer and collective communication latency only
restrained by the internal GPU-CPU memory transfer la-
tency. More importantly, GMH offers flexible programming
interfaces such that developers can either stick with the
conventional MPI programming style or focus on the event
flow of applications, which can be managed and executed
by GMH at run time. Finally, the source code for GMH
and its test programs used in this paper can be found at
ftp://ftp.jlab.org/pub/hpc/gmh.tar.gz.

ACKNOWLEDGMENT

This work is supported by Jefferson Science Associates,
LLC under U.S. DOE Contract DE-AC05-06OR23177.

REFERENCES

[1] Advanced Micro Devices Inc., Brook+ SC07 BOF Session,
In Supercomputing Conference, 2007.

[2] J. A. Anderson, C. D. Lorenz, and A. Travesset, General
purpose molecular dynamics simulations fully implemented
on graphics processing units, In Journal of Chemical Physics,
vol. 227, no. 10, 5342-5359, 2008.

[3] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and
C. Rebbi, Solving Lattice QCD systems of equations using
mixed precision solvers on GPUs, arXiv:0911.3191v2 [hep-
lat].

[4] Z. Fan, F. Qiu, A. Kaufman, S. Yoakum-Stover, GPU Clus-
ter for High Performance Computing. In Proceedings of
ACM/IEEE Supercomputing Conference, 41-47, Nov. 2004.

[5] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S.
H. M. Buijssen, M. Grajewski, and S. Turek, Exploring weak
scalability for FEM calculations on a GPU-enhanced cluster,
In Parallel Computing, vol. 33, no. 10-11, 685-699, 2007.

[6] O. S. Lawlor, Message Passing for GPGPU Clusters: cud-
aMPI, In Proceedings of IEEE Cluster 2009, 2009.

[7] MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RD-
MAoE, http://mvapich.cse.ohio-state.edu/

[8] A. Moerschell and J. D. Owens, Distributed texture memory
in a multi-gpu environment, In Proceedings of the 21st
ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics
hardware, 31-38, 2006.

[9] J. Nickolls, I. Buck, and M. Garland, Scalable Parallel Com-
puting with CUDA, in ACM Queue, vol. 6, issue 2, 40-53,
2008.

[10] OpenCL: The open standard for parallel programming of
heterogeneous systems, http://www.khronos.org/opencl/ .

[11] OpenGL organization, http://www.opengl.org/ .

[12] OPENFABRICS ALLIANCE, http://www.openfabrics.org/ .

[13] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,
and J. C. Phillips, GPU Computing, In Proceedings of the
IEEE, vol. 96, 879-899,2008.

[14] C. Ouarraui and D Kaeli, Developing Object-oriented Parallel
Iterative Methods, In International Journal High Performance
Computing and Networking, vol. 1, Nos. 1/2/3 , 2004.

[15] P. S. Pacheco, Parallel Programming with MPI, Morgan
Kaufmann Publishers Inc., San Francisco, CA, 1996.

[16] L. Spracklen, S. G. Abraham, Chip Multithreading: Oppor-
tunities and Challenges, In Proceedings of the International
Symposium on High-Performance Computer Architecture,
248-252, 2005.

[17] J. Stuart and J. D. Owens, Message Passing on Data-Parallel
Architecture, In IEEE International Symposium on Parallel
& Distributed Processing, 1-12, 2009.

[18] P. Vranas, The BlueGene/L Supercomputer and Quantum
ChromoDynamics, In Proceedings of ACM/IEEE Supercom-
puting Conference, 2006.

[19] D. M. Wadsworth, Z. Chen, Performance of MPI broadcast
algorithms, In IEEE International Symposium on Parallel &
Distributed Processing, 1-7,2008.


