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Abstract— Multi-core processors based commodity servers re-
cently become building blocks for high performance comput-
ing Linux clusters. The multi-core processors deliver better
performance-to-cost ratios relative to their single-coreprede-
cessors through on-chip multi-threading. However, they present
challenges in developing high performance multi-threadedcode.
In this paper we study the performance of different software
barrier algorithms on Intel Xeon and AMD Opteron multi-core
processor based servers. Especially, we explore how different
memory subsystems, such as shared bus or ccNUMA, and their
cache coherence protocols effect the performance of barrier
algorithms. In addition, we compare multi-threading software
overhead between OpenMP directives and a locally developed
threading library that utilizes optimized barrier algorit hms along
with low overhead locking primitives. We find that OpenMP
implementations provide high performance run-time librar ies
coupled with excellent compiler directives with overhead slightly
more than the carefully optimized library.

1. INTRODUCTION

Recently, multi-core processors based on the chip multi-
threading/processing (CMT/CMP) [16] architecture, which
uses multiple single-thread processor core in a single CPU and
executes multiple threads in parallel across the multiple cores,
appear to dominate both the high-end and the mainstream
computing markets. Because a multi-core processor offers
better performance-to-cost ratios relative to a traditional multi-
processor solution such as the Symmetric MultiProccssing
(SMP) systems, computers based on multi-core processors,
e.g., Intel dual-core Xeons [20] and AMD dual-core Opterons
[10], become building blocks for high performance computing
Linux clusters. For a system with a single multi-core processor,
it is indeed a slim implementation of an SMP node on a chip.
For a system with multiple multi-core processors organizedin
the SMP fashion, it behaves as a traditional SMP machine,
where the number of processors is the number of cores.

Scientific applications can benefit from multi-core proces-
sors, where code can be executed in multiple threads, each run-
ning on a dedicated processing core. Especially applications
of data parallelism, where multiple threads execute the same
code on different sets of data, can improve their performance
dramatically relative to their single threaded versions. To
take advantage of multi-core architecture, applications need
to be either rewritten or converted into multi-threaded ones.
Currently there are two commonly used strategies to achieve

this: OpenMP [14] and Posix Thread (Pthread). OpenMP is
a specification designed to support portable implementation
of multi-threaded programs for SMP machines. It contains a
set of compiler directives and a small set of callable run-
time library routines that extend to Fortran, C and C++
to express parallelism in a fork-join programming model.
The performance of an OpenMP application is thus compiler
dependent. The Pthread library is a portable C library that
offers various programming models, but has a large set of
APIs and is difficult to program. However, a carefully crafted
architectural optimal run-time library with a simple set ofAPIs
that support the fork-join programming model could offer
more flexibility, enhance performance of applications and be
easy to use.

It is a well-known fact that the choice of a barrier algorithm
is critical to the performance of any library that supports the
fork-join programming model since each join action leads to
executions of the barrier synchronization among all threads. A
barrier for a group of threads means that any thread must stop
at this point and cannot proceed until all other threads reach
this barrier. The performance of a barrier is heavily influenced
by the memory subsystem of an SMP machine. Currently there
are two commonly used memory architectures in commodity
multi-core SMP systems: the shared bus architecture, where
each core accesses the memory uniformly through a common
bus; and the cache coherent Non-Uniform Memory Architec-
ture (ccNUMA), where each core has different access speeds
to its local and remote memory through different paths and
has channels to maintain cache coherence with the other cores.
Even though a threaded application only deals with a uniform
and global shared memory address space on an SMP system,
the memory subsystem takes care of communications among
caches/memories of multiple cores to ensure cache coherence
and cache to memory coherence. The memory subsystem
usually minimizes unnecessary accesses to the relatively slow
main memory by using fast caches in order to improve overall
performance. However, reading from and writing to main
memory are inevitable because of the limited size of caches
and maintenance of cache coherence among multiple cores.
The cache coherence is achieved by bus-snooping governed
by a cache coherence protocol [4], which influences how the
main memory is accessed.



Past research has focused on how to improve barrier perfor-
mance by either reducing memory contentions introduced by
accessing shared flags within a barrier or by reducing the criti-
cal path of a barrier [3] [12] [13]. There is a lack of studies on
how the memory subsystem, particularly its cache coherence
protocol, influences the performance of barrier algorithms. In
addition, most well known barrier algorithms target to large
SMP machines. This paper compares the performance of a
few known software barrier algorithms on small commodity
multi-core processor based SMP systems (using Intel Xeons
and AMD Opterons) to shed light on the above issues.

Past research has also focused on performance evaluation of
OpenMP on different types of processors such as multi-core
processors and processors with HyperThreading capability[5].
There have been no detailed comparison studies on the per-
formance between the OpenMP directives and related routines
from Pthread based multi-threading libraries. This paper com-
pares software synchronization overhead between the OpenMP
directives and the corresponding routines of a hand crafted
threading library, called QCD Multi-Thread (QMT) for the
multi-threaded LQCD (Lattice Quantum Chromodynamics)
applications, which utilizes an optimized barrier algorithm
and low overhead locking primitives to address issues such
as different ways to multi-thread scientific applications.We
show that some OpenMP implementation provide a high
performance run-time library coupled with excellent compiler
directives with overhead only slightly more than the overhead
introduced by the QMT library routines.

The paper is organized as follows. Section 2 describes the
software and hardware environment where our performance
evaluations are carried out. Section 3 overviews the memory
organizations and cache coherence protocols deployed by
the commodity multi-core SMP systems. Section 4 presents
two barrier algorithms. Section 5 analyzes the memory/cache
transactions of the algorithms under different memory archi-
tectures utilized by our test machines. Section 6 illustrates how
memory subsystems and their cache coherence protocols effect
the performance of the barrier algorithms. Section 7 compares
synchronization overhead between the OpenMP directives and
the corresponding QMT library routines. Section 8 concludes.

2. HARDWARE AND SOFTWARE ENVIRONMENT

We have chosen the Dell PowerEdge 1850 with two Intel
Xeon dual-core processors and the Dell PowerEdge SC1435
with two AMD Opteron dual-core processors as test beds. In
this section, we describe these two machines, benchmarks that
we ran, and how to execute the benchmarks.

The Dell PowerEdge 1850 has two Intel Xeon 5150 [20]
2.66 GHz dual-core processors.The memory system is orga-
nized as a shared bus system, where each core accesses to
the FB-DIMM [6] memory through a common memory con-
troller. The Dell PowerEdge SC1435 hosts two AMD Opteron
2220SE 2.8 GHz dual-core processors. Each processor has its
own memory controller that creates a path to its own locally
attached memory. A processor can access to the memory or
the L2 cache of the other processor through an interconnect

called HyperTransport [8]. Thus, the system is a ccNUMA
architecture because of the non-uniform memory access times
for local and remote memory. From here on, we refer to the
two test machines as Intel and AMD, respectively. Table 1
summarizes the configurations of the two systems in detail.

Table 1: Configuration of Test Machines
CPUs L1 L2 Memory

Intel Two 32K Data 4 MB 4GB
2.66GHz 32K Instr Shared Shared

Dual-Core Bus
AMD Two 64K Data 1 MB 4GB

2.8 GHz 64K Instr Private ccNUMA
Dual-Core

QMT is a light weight library developed at Jefferson Lab to
ease the effort of multi-threading LQCD applications running
on multi-core processors. It offers a very simple set of APIs
that support the fork-join OpenMP programming model, and
provides some of the OpenMP capabilities such as barrier
synchronization and global reduction. It utilizes an optimal
barrier algorithm for either Intel or AMD machine and is
portable on any platform where Pthread is available.

Both test machines are running Fedora Core 5 Linux x8664
distribution with a Linux kernel of 2.6.17. Two compilers
are utilized: the gcc version 4.1 and the Intel icc version
9.1. The synchronization overhead introduced by the OpenMP
directives are measured through the EPCC microbenchmark
[2]. On the other hand, the synchronization overhead induced
by software barriers and other QMT library routines are
collected through a slightly modified EPCC microbenchmark
program. In addition, the Linux kernel is patched to support
Performance API (PAPI) [1] version 3.5, which is used to
collect performance events through the event counters on the
processors of the test machines.

3. MEMORY AND CACHE COHERENCEPROTOCOLS

In a multi-core SMP system, the memory system is orga-
nized in a hierarchical way including fast multi-level of caches
and relatively slow memory. Each core usually has its own
private L1 cache, but it can either has a private L2 cache such
as on the AMD test machine or has a shared L2 cache with
the other cores within a single CPU in the case of the Intel
test machine. Multiple caches at each level are allowed to have
copies simultaneously of a given memory location. A cache
coherence protocol is a mechanism to ensure that all copies
remain consistent when the contents of that memory location
are modified. On the Intel test machine with the shared bus
memory architecture, cache coherence is maintained by having
all cache controllers “snoop” on the memory bus and monitor
the transactions. A snooping cache controller may take an
appropriate action according to the coherence protocol if a
bus transaction is relevant to it. On the AMD test machine
with the ccNUMA architecture, a bus snooping is simulated
by explicit broadcasts of memory requests to all cores [10].

One type of popular cache coherence protocols for small
SMP systems with write-back caches is the invalidation-based



protocol: a snooping cache invalidates its cached copy on a
relevant write by another core. The cache coherence protocol
deployed by the Intel Xeons is the MESI protocol [15], named
from the four states of the protocol: Modified, Exclusive,
Shared, Invalid. For an application using multiple cores across
multiple CPUs, writing to an invalid cache block or writing to
a shared cache block (write miss) results in a read-exclusive
bus transaction, which causes the other copies of the block
to be invalidated. If a cache block is in the Modified state,
the block has to be written back to the main memory so that
another core can load correct value from the memory upon
accessing to its own invalid cache block. This certainly in-
troduces extra overhead because of the relatively high latency
of accessing main memory. However, for an application only
involving cores that share a single cache, a modified cache
block may not be written back to the memory. Hence, the
shared large L2 cache for the dual-core Intel test machine
enables fast cache-to-cache communication for applications
using only two threads within a single CPU.

To address the problem of writing a modified cache block to
the main memory to maintain cache coherence, the modified
cache coherence protocol called MOESI [18], which adds an
Owner state as the fifth state, is used by the AMD Opterons. A
cached block in the Owner state holds the most recent correct
copy of the data. Unlike the Shared state, the copy in the main
memory can be stale. Only one cache can hold a block of data
in the Owner state, all others must hold the data in the Shared
state. The Owner of a cache block is responsible to update
other caches that try to read the block. This avoids the need to
write a modified cache back to the main memory. Data flagged
as in the Owner state in an Opteron cache can be delivered
directly from the cache of one CPU either to another CPU via
a CPU-to-CPU HyperTransport link or to other caches on the
same CPU via the system request interface (SRI) [17].

Traditionally, a simple barrier can be implemented by hav-
ing each thread increment/decrement one or more barrier count
variables. The barrier completion is signaled by a release flag
that each thread checks in a spin loop until it shows that all
threads have arrived at the barrier. Hence the performance of
accessing to these variables is crucial to the performance of
a barrier. Table 2 shows the random access latency to each
level of the memory system on the test machines using the
LMbench [11] benchmark.

Table 2: Random Memory Access Latency
L1(ns) L2(ns) Memory(ns)

Intel 1.13 5.29 150.3
AMD 1.07 4.3 173

Cache to cache transfer latency is also important to multi-
threaded applications on a multi-core SMP machine. An AMD
Opteron based SMP machine has two ways to achieve this:
the SRI channels for transferring data among L2 caches
on different cores within one CPU, and the HyperTransport
channels for delivering cache data from one core to another
across CPU boundaries. It is obvious that an SRI channel
transfers data faster than a HyperTransport channel. Executing

a simple C program that uses two threads to send and receive
cache data back and forth between two cores on the AMD test
machine shows an SRI cache-to-cache latency of 83.5ns and
a HyperTransport cache-to-cache latency of 119ns. On the
other hand, running the same program on the Intel test machine
shows the cache-to-cache latency of 55ns for two cores within
one CPU and 187ns for two cores between two CPUs. This
is due to the shared L2 cache for the two cores within a CPU
and the cache coherence dictated by MESI protocol through
the system memory for cores across multiple CPUs.

4. BARRIER ALGORITHMS

A software barrier synchronizes a number of cooperating
threads that repeatedly perform some work and then wait until
all threads are ready to move to the next computing phase.
Fig. 1 illustrates the timing information for a single barrier
operation/synchronization. The total elapsed time of a single
barrier operation is the time difference between the time of
the first thread arriving at the barrier and the time of the last
thread leaving the barrier. The total time can be further divided
into two phases: the gather phase is the time period during
which each thread signals its arrival at the barrier; the release
phase denotes the time interval during which each thread is
notified the completion of the barrier operation and is allowed
to resume execution. During a barrier operation, a thread can
perform no other computation except signaling its arrival at
the barrier and being signaled the end of the barrier operation.
Therefore, to improve the performance of a barrier algorithm
is to reduce the total time of the barrier operation.

Barrier Time

Gather Release Last leaves

Last comes

First comes

Fig. 1: Timing for a Single Barrier

There are a few popular barrier algorithms used over the
years, such as the centralized barrier, the combining tree
barrier, the tournament barrier [12] and so on. The centralized
barrier works well for a small number of threads but does not
scale well for a large number of threads because all threads
contend for the same set of variables. The combining tree
and the tournament barrier reduce the above contention and
work best for a large SMP system but not particularly well
for a small SMP system [4]. Recently, the queue-based barrier
algorithm [3] has gained popularity because it reduces the
contention, performs well for small and large SMP systems
and is easy to implement.

The implementation of the centralized barrier (given below)
uses one shared counter variable and one hared release flag.

int flag = atomicget(&release);
int count= atomicint dec (&counter);
if (count == 0){

atomic int set (&counter, numthread);
atomic int inc (&release);}

elsespin until (flag 6= release);



To avoid contention to the shared counter variable, the
queue-based barrier algorithm (given below) picks one thread
as the coordinating-thread or the master-thread and allocates
a global array of flags. Each thread participating in the barrier
operation signals its arrival at the barrier by writing to its
flag variable in the flag array, and then spins on the separate
release flag. It is the master-thread’s responsibility to check
the above signal flags to find out whether the other threads
have arrived at the barrier and to update the release flag for
which non-master threads are waiting.

typedef struct qmt cflag {
int volatile c flag;
/∗ each flag on different cache line∗/
int c pad[CACHELINE SIZE - 1];

}qmt flag t;
typedef struct qmt barrier{

int volatile release;
char br pad[B CACHE SIZE - 1];
qmt flag t flags[1];

}qmt barrier t;
/∗ Master Thread∗/
for (i = 1; i < num threads; i++){

while (barrier→flags[i].cflag == 0);
barrier→flags[i].cflag = 0;}

atomic inc (barrier→release);
/∗ Thread i∗/
int rkey = barrier→release;
barrier→flags[i].cflag = -1;
while (rkey == barrier→release);

5. ANALYSIS OF BARRIER ALGORITHMS

To find out how the memory architecture of an SMP system
effects the performance of a barrier algorithm, we analyze
memory and cache transactions of two barrier algorithms
under the MESI and the MOESI cache coherence protocols.

The performance of a barrier is clearly influenced by the
number of accesses to the main memory or the number of
cache-to-cache transfers depending on the cache coherence
protocol of a system. The difference between the centralized
algorithm and the queue-based algorithm lies in the gather
phase of each algorithm. The release phase is rather similar.
For the simplicity of analyzing of these algorithms, let us
assume that there aren processing cores. Furthermore, let us
use RdX to denote the READEXCLUSIVE bus transaction
generated by a cache write miss, and Rd to denote the READ
bus transaction. Finally, we assume that a thread running on
a core has the same id as the core id.

5.1. MESI Protocol on the Intel Test Machine

A centralized barrier employs one counter variable and one
release variable. Initially, the counter variable is the same as
the number of cores and the release variable is set to be
zero. Let us assume that one core initially holds valid cached
values of the counter variable and the release variable, andthat
the other caches are all invalidated. Furthermore, all threads
are assumed to arrive at the barrier at about the same time.

Therefore, all threads contend for the counter variable because
each thread attempts to perform the atomicdec() instruction
on the counter variable when it arrives at the barrier. Updating
the counter variable inside an invalid cache block causes an
RdX bus transaction. Since only one RdX bus transaction on
the same cache line can be granted, one core will be allowed to
update the counter variable. The left part of Fig. 2 is a snapshot
of the bus and the memory transactions for thread 2 arriving at
the barrier, where the numbers inside the small circles denote
the sequence of the transactions. Thread 2 is being granted the
bus while thread 1 is holding the updated/valid cache value of
the counter variable. When thread 2 generates an RdX bus
transaction, thread 1 has to flush out the counter variable in
its cache to the main memory and changes the cache block
into an invalid state. Thread 2 then has to load the updated
counter variable from the main memory, to decrease the value
by one and to put the cache block in a modified state. A Rd bus
transaction is generated when thread 1 compares the counter
variable to zero, which leads thread 2 to write the modified
value of the variable in its cache to the system memory.
Finally thread 1 reads the updated counter variable from the
memory. There is a total of 4 memory reads/writes and two
bus transactions for thread 2 to complete signaling the arrival
at the barrier. Similar analysis leads to the same conclusion for
each of the other threads. At the end of the gather phase of the
barrier, there are no memory reads/writes when the last thread
is setting the counter variable to be the same as the number
of cores because the thread is holding the updated value of
the counter variable and the other threads are not reading
the variable. In the release phase of the barrier, there are
n−1 memory reads and one single memory write because one
thread writes the modified cache value of the release flag to the
main memory while the other threads read the value from the
memory. Hence the total number of memory accesses during
a centralized barrier operation is4n+(n−1)+1 = 5n. Worst
of all, most of the above transactions can not be carried out
in parallel because of the serialization of the RdX transactions
on the same cache block of the counter variable. This leads
to performance degradation of the barrier algorithm.

Unlike the centralized barrier algorithm, the queue-based
algorithm does not use a shared counter variable. Instead, it
designates one thread as themaster and allocates an array
of flags, one per participating thread. Each thread signals its
arrival at a barrier by updating its flag in the array. The right
part of Fig. 2 illustrates the memory and the bus transactions
for one particular thread, e.g. thread 2, arriving at the barrier.
Initially, the master thread holds all flags exclusively. When
thread 2 updates its flag, an RdX bus transaction is generated.
This bus transaction prompts the master thread to flush the
cached copy of the flag to the memory and thread 2 reads the
updated value of the flag from the memory, which leads to two
memory transactions. When the master thread is checking the
flag, it generates an Rd bus transaction which requests thread
2 to flush the modified value of the flag to the memory. This
yields two more memory transactions. This analysis applies
to the other non-master threads as well. There are no memory



writes at the end of the gather phase of the barrier when the
master thread resets all flags because the master thread has
the updated flag values. Similar to the centralized algorithm,
the number of memory accesses during the release phase of
the barrier isn. Hence the total number of memory accesses
during a queue-based barrier operation is4(n−1)+n = 5n−4.
It is clear that a queue-based barrier operation generates fewer
memory transactions than a centralized barrier does. More
importantly, updating each flag in the global flag array of a
queue-based barrier can be carried out in parallel since each
flag resides on a different cache line. These two factors lead
to a better performance for the queue-based algorithm.
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Fig. 2: Bus/Memory Transactions

Finally, two threads running on two cores within a single
CPU exchange data without going through the main memory
since the Intel Xeon utilizes a 4MB shared L2 cache for the
two cores. Hence the above analysis of the algorithms can only
be applied to the cases of more than two threads. The two
algorithms perform similarly when two threads are involved.
Table 3 summarizes the number of memory transactions of the
algorithms and the ratio of memory transactions between the
centralized algorithm and the queue-based algorithm.

Table 3: Memory Transactions on Intel
Threads Centralized Queuebased Ratio

2 N/A N/A 1.00
3 15 11 1.36
4 20 16 1.25

5.2. MOESI Protocol on the AMD Test Machine

The centralized barrier algorithm under the MOESI protocol
behaves similar to what it does under the MESI protocol except
that there could be no main memory transactions, which are
substituted by cache-to-cache transactions, if cache evictions
can be avoided. Once again let us assume that one core initially
has updated values of the counter variable and the release
variable, and that the other caches are all invalidated. Theleft
part of Fig. 3 demonstrates the bus and the cache transactions
for thread 2 arriving at a centralized barrier. Under the MESI
protocol on the Intel test machine, thread 1 has to flush its
cached counter variable value to the main memory in order
for thread 2 to load the correct value. Now thread 1 is the
owner of the counter variable and it updates the cache of
thread 2 which has generated the RdX bus transaction upon
trying to write to the counter variable. Thread 1 invalidates
its own cache block after the update is carried out via a
cache-to-cache transfer channel. Thread 2 then becomes the

new owner of the counter variable right after it decrements
the variable. When thread 1 later checks the counter variable,
thread 2 updates the cache of thread 1 immediately without
any memory transaction. The above discussion applies to all
the threads. There is no more cache-to-cache transaction when
the last thread sets the counter variable to be the same as the
number of threads because the last thread is already the owner
of the counter variable. Hence there is a total of2n cache-to-
cache transactions during the gather phase of the barrier. It is
easy to see that there aren − 1 cache updates of the release
flag from one core to the other cores in the release phase.
Therefore, the total number of cache-to-cache transactions is
2n + n − 1 = 3n − 1 during a centralized barrier operation.
Finally, the number of cache invalidations in the gather phase
can be divided into two parts:n owner cache invalidations,
each from a thread invalidating its own copy of the counter
variable after updating another thread; and a single invalidation
on the counter variable of each one of then−1 threads when
the last thread changes the counter variable. The number of
cache invalidations in the release phase is simplyn−1 because
n − 1 cached values of the release flag are invalidated when
one of the threads modifies the release flag. Hence the total
number of cache invalidations during the synchronization of
the barrier is3n − 2.
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Fig. 3: Bus/Cache Transactions

Similar to the above discussions for the centralized barrier
algorithm under MOESI protocol, there could be no mem-
ory transactions during the synchronization of a queue-based
barrier. Initially, the master thread is the owner of all signal
flags. The right part of Fig. 3 presents a snapshot for thread
2 arriving at the barrier. When thread 2 tries to update its
signaling flag, the master thread updates the cache of thread2
and invalidates its own copy. Therefore, thread 2 becomes the
new owner of the cache block of its own signal flag right after
it changes the value of the flag to be−1. Thread 2 later updates
its signal flag in the global flag array when the master thread
checks whether the other threads have arrived. Hence there
are two cache transactions for each of then − 1 non-master
threads. At the end of the gather phase, the master thread resets
each signal flag to be zero, and becomes the owner of each
signal flag again without introducing any cache transaction
because it already has updated values of the signal flags.
The total number of cache-to-cache transactions during the
synchronization of a queue-based barrier is2(n−1)+(n−1) =
3n−3, where the lastn−1 is the contribution from the release
phase of the barrier. Finally, the number of cache invalidations



is 2(n− 1) during the gather phase of the barrier because the
master thread invalidates its ownn − 1 signal flags first and
then invalidates signal flag in the othern − 1 threads. Using
the same discussion as in the previous paragraph, the number
of cache invalidations isn− 1 during the release phase of the
barrier. Hence the number of cache invalidations during the
synchronization of the barrier is3n − 3.

Even though the memory transactions could be avoided for
both the centralized and the queue-based algorithms under
the MOESI protocol on the AMD test machine, the RdX bus
transactions always exist. They are difficult to be carried out
in parallel for the centralized barrier algorithm because of the
shared counter variable, but the queue-based barrier algorithm
has the advantage in this respect. Nonetheless, the lack of
access to the main memory in either type of barrier and a small
difference in the number of cache transactions between these
two types of barriers suggest that the centralized barrier algo-
rithm may perform reasonably well for the small number of
threads. Table 4 summarizes the number of cache transactions
of the algorithms and the ratio of cache transactions between
the centralized algorithm and the queue-based algorithm.

Table 4: Cache Transactions on AMD
Threads Centralized Queuebased Ratio

2 5 3 1.67
3 8 6 1.33
4 11 9 1.22

Finally, there are two different cache-to-cache transactions
during a barrier operation for each of the two algorithms.
One is the cache-to-cache transactions between the two cores
within a single CPU via the SRI channels and the other
is the cache-to-cache transactions across physical boundary
of CPUs through the HyperTransport channels. A Hyper-
Transport transaction clearly takes longer time than an SRI
transaction. For instance, a HyperTransport channel takes35.5
more nanoseconds than an SRI channel to transfer a single
integer on the AMD test machine. Therefore the performance
of the algorithms can be effected not only by the number of
cache transactions but also by the type of transactions.

6. PERFORMANCE OF THEBARRIER ALGORITHMS

In this section, we use the software overhead of a barrier
algorithm as the performance metric of the barrier algorithm.
The software overhead values of these two barrier algorithms
are collected using the modified EPCC microbenchmark pro-
gram. To understand the performance of the barrier algorithms,
the performance event counters on the Xeon and the Opteron
processors are utilized through the PAPI library routines to
quantify the relation between the number the memory/cache
transactions and the performance of a barrier. Fig. 4 shows the
overhead values in terms of CPU cycles for the centralized and
the queue-based algorithms on each of the test machines.

On the Intel test machine, the queue-based algorithm per-
forms essentially the same as the centralized algorithm for
two threads because there are no memory transactions due to
the shared L2 cache for the two cores within a single CPU.

However, the queue-based algorithm performs much better as
expected than the centralized algorithm does for three and
four threads because a queue-based barrier has fewer memory
transactions thus reduces memory contentions. To verify the
above observations, the number of memory transactions is
collected during many consecutive loops for each of the barrier
algorithms using the PAPI routines with the native event of
BUS TRANS MEM. The left part of Fig. 5 presents two ratios
between a centralized barrier and a queue-based barrier for
two to four threads. They are the software overhead values
and the number of memory transactions collected by the
PAPI event. The centralized barrier clearly has more memory
transactions than the queue-based barrier, which agrees with
our analysis. The software overhead directly relates to the
the number of memory transactions. However, the number of
memory transactions does not reveal the complete picture of
the barrier overhead. The serialization of the bus transactions
due to the memory contention on the same shared cache block
of the counter variable in the centralized barrier algorithm
contributes to the additional overhead of the algorithm. The
smaller ratio of the number of memory transactions relative
to the ratio of the overhead values for four threads reveals the
contribution from the memory contention to the centralized
barrier overhead.
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On the AMD machine where a barrier utilizes fast cache-
to-cache transactions, the queue-based algorithm performs
differently from the centralized algorithm for two threadsdue
to the private L2 cache for each of the two cores within
a single CPU. The queue-based algorithm performs better



than the centralized algorithm for two and three threads
because it has fewer cache-to-cache transactions thus reduces
the contention. But the queue-based barrier actually produces
more overhead than the centralized barrier for four threads
even though the queue-based barrier generates fewer cache
transactions. Hence the number of cache transactions is not
the determining factor for the performance of the barriers.
It is entirely possible for the queue-based barrier to have
more HyperTransport cache-to-cache transactions than the
centralized barrier when four threads are involved. In order
to substantiate the hypothesis, the number of HyperTransport
transactions is collected for many consecutive barrier synchro-
nization loops for each of the barrier algorithms through the
PAPI event of NBHT BUS(x) DATA where x stands for the
transport buses 0, 1 and 2. In addition, the number of cache
invalidations is collected during the same loops because there
is no direct performance event monitoring the number of cache
transactions. The ratio of the cache invalidations betweena
centralized barrier and a queue-based barrier is3n−2

3n−3
which

approximately equals to the ratio of the cache transactions
between the two barriers,3n−1

3n−3
. Hence the PAPI routines with

the native events called DCCOPYBACK I, which track the
number cache invalidations, are utilized. The right part ofFig.
5 shows various ratios between a centralized barrier and a
queue-based barrier. They are the software overhead values,
the number of cache invalidations, and the number of cache-to-
cache transfers through the HyperTransport channels. For two
and three threads, the software overhead ratio directly relates
to the cache transaction ratio, which indicates that the cache
transaction is the dominating factor of the performance of the
barriers. For four threads, however, the software overheadof
the centralized barrier is smaller than that of the queue-based
barrier along with a higher number of cache transactions buta
smaller number of HyperTransport transactions. This suggests
that the number of HyperTransport transactions becomes the
prominent factor in determining the performance of the barrier
algorithms on the AMD machine. In short, the performance of
a barrier algorithm is determined by two competing factors:
the number of cache/bus transactions and the percentage of
cache transactions that are the HyperTransport transactions.

Finally, the same barrier algorithm has different perfor-
mance characteristics on different machines because of the
memory architectures and the cache coherence protocols. The
queue-based barrier algorithm performs consistently better
than the centralized algorithm for two to four threads on the
Intel machine, because the queue-based algorithm removes
the memory contention on the shared cache block and has
a smaller number of memory transactions. On the AMD
machine, the queue-based algorithm performs better than the
centralized algorithm for two and three threads because the
queue-based algorithm removes the contention on the same
cache block and has a fewer cache transactions. When four
threads are involved, the queue-based algorithm actually per-
forms a little worse than the centralized barrier algorithm,
because it introduces more HyperTransport cache transactions.
In the case of two threads, the two algorithms all perform

better on the Intel machine than they do on the AMD machine
because of the large shared L2 cache on the Intel machine.

7. OVERHEADS IN OPENMP AND QMT

In OpenMP, most of the synchronizations including bar-
rier operations are realized by the compiler directives and
their overhead depends on the implementation in the ven-
dor supplied OpenMP run-time library. In the QMT library
we developed, however, the overhead can be minimized by
optimal implementation tailored to a specific architecture. In
particular, an optimized barrier algorithm is chosen at run-
time according to the study in the previous sections. To
compare the overhead values of the OpenMP directives from
different OpenMP compilers, the EPCC microbenchmark code
is compiled on each of the test machines using the Intel icc and
the GNU gcc compilers. The benchmark program is executed
on each of the test machines using one to four threads. The
overhead values of the OpenMP directives from the Intel icc
are much less than that of the OpenMP directives from the
GNU gcc for all synchronization mechanisms. To highlight the
above observation, Table 5 shows the overhead values in terms
of CPU cycles for the OpenMP directive of the lock/unlock
overhead on the test machines in the case of 4 threads. The
large lock/unlock overhead difference between gcc and icc
is not a surprise because gcc implements the OpenMP lock
using the Linux futex [7] system call, which incurs a lot of
overhead, in comparison to the user level lock deployed by
the icc compiler [19]. From now on, the gcc OpenMP is no
longer under consideration.

Table 5: Lock/Unlock Overhead CPU Cycles
Intel AMD

icc 551 979
gcc 4503 4608

To measure the synchronization overhead induced by the
QMT library routines, the two compilers are used to compile
a benchmark code slightly modified from the EPCC code. The
new benchmark values are collected for one to four threads.
Especially, thetaskset command is used to bind two threads
to the two cores on the same CPU when the benchmark
program is executed using two threads. The left part of Fig. 6
shows the results of executing the two benchmarks on the Intel
test machine. The overhead value of every OpenMP directive
is slightly larger than that of the corresponding QMT routine.
Every overhead scales close to linearly from one thread to
four threads. Moreover, the overhead values from either the
OpenMP directives or from the QMT routines show some
sensitivity to the change from running two to three threads
because of the shared L2 cache of the two cores within a
single CPU. Both the icc OpenMP implementation and the
QMT library offer very low lock/unlock overhead because of
the light weight user level lock mechanism.

The right part of Fig. 6 presents the results of the two
benchmarks on the AMD test machine. The overhead of each
of the icc OpenMP directives exhibits similar behavior as
in the previous figure even though it grows slightly larger



than the corresponding value for the Intel machine. This
result comes at no surprise because the Intel icc is optimized
for Intel architecture after all. However, the results of the
overhead for the QMT routines bear remarkable similarity
to the corresponding results collected on the Intel machine
because the QMT library is implemented optimally for either
the Intel or the AMD architecture.
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Our studies indicate that the synchronization overhead for
the icc OpenMP directives scales almost linearly in spite
of its slightly larger value than the overhead value of the
corresponding QMT routine. Therefore applications that seek
portability over absolute performance will benefit from a well
implemented OpenMP compiler and its runtime library. On
the other hand, applications that look for performance and
flexibility will profit from a hand craft Pthread library suchas
the QMT library.

8. CONCLUSIONS

This paper studies the performance of two barrier algo-
rithms on commodity multi-core based SMP machines. The
centralized barrier algorithm is known to work well for a
small number of processing cores, and the queue-based barrier
algorithm tries to reduce memory contention introduced by the
centralized algorithm. Our study shows that the queue-based
algorithm indeed outperforms the centralized algorithm onthe
Intel shared bus memory architecture for threads ranging from
two to four simply because it has little memory contention
and fewer accesses to the main memory dictated by the
MESI cache coherence protocol. On the AMD platform, with
the ccNUMA architecture and the MOESI cache coherence
protocol, the queue-based algorithm performs better than the
centralized algorithm for two and three threads, but it per-
forms no better for four threads. The behavior is caused by
the MOESI protocol, which maintains the cache coherence
through the cache-to-cache transactions via either the SRI
channels or the slower HyperTransport channels instead of
accessing the main memory. In comparison to the centralized
algorithm, the queue-based algorithm has fewer cache-to-
cache transactions on average for threads from two to four,
but it has more HyperTransport cache-to-cache transactions.
Therefore the performance of a barrier algorithm can be
influenced not only by the memory organization but also by
the cache coherence protocol of an SMP system.

This paper also compares the software overhead of the
OpenMP directives from the Intel icc compiler against a
locally developed Pthread library that supports the fork-join
programming model. Even though the OpenMP directives
produce very little overhead and perform well, the local
library still comes ahead for all measured benchmarks by
small margins. Therefore, applications that seek portability
and simplicity over absolute performance will benefit from
OpenMP. However, a carefully crafted Pthread library will find
a place for those who seek performance and flexibility.
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