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Abstract— Multi-core processors based commodity servers re- this: OpenMP [14] and Posix Thread (Pthread). OpenMP is
cently become building blocks for high performance comput- g specification designed to support portable implementatio
ing Linux clusters. The multi-core processors deliver be#r ¢ i threaded programs for SMP machines. It contains a

performance-to-cost ratios relative to their single-core prede- t of iler directi d I t of callabl
cessors through on-chip multi-threading. However, they pesent Set or compiler directives and a smail set or callable run-

challenges in developing high performance multi-threadectode. time library routines that extend to Fortran, C and C++
In this paper we study the performance of different software to express parallelism in a fork-join programming model.
barrier algorithms on Intel Xeon and AMD Opteron multi-core  The performance of an OpenMP application is thus compiler
processor based servers. Especially, we explore how diftlt geonendent. The Pthread library is a portable C library that
memory subsystems, such as shared bus or ccNUMA, and their . .

cache coherence protocols effect the performance of bartie offers varl_ous_ programmlng models, but has a large set of
algorithms. In addition, we compare multi-threading software APIs and is difficult to program. However, a carefully crafte
overhead between OpenMP directives and a locally developed architectural optimal run-time library with a simple setAfPIs
threading library that utilizes optimized barrier algorit hms along that support the fork-join programming model could offer

with low overhead locking primitives. We find that OpenMP 46 flexibility, enhance performance of applications aed b
implementations provide high performance run-time libraries

coupled with excellent compiler directives with overhead lghtly eaSY to use. . . .
more than the carefully optimized library. It is a well-known fact that the choice of a barrier algorithm
is critical to the performance of any library that suppotie t
1. INTRODUCTION fork-join programming model since each join action leads to

Recently, multi-core processors based on the chip muléxecutions of the barrier synchronization among all thee&dd
threading/processing (CMT/CMP) [16] architecture, whicbarrier for a group of threads means that any thread must stop
uses multiple single-thread processor core in a single GiRlJ aat this point and cannot proceed until all other threadshreac
executes multiple threads in parallel across the multiptes, this barrier. The performance of a barrier is heavily infloet
appear to dominate both the high-end and the mainstreamthe memory subsystem of an SMP machine. Currently there
computing markets. Because a multi-core processor offene two commonly used memory architectures in commodity
better performance-to-cost ratios relative to a tradaionulti- multi-core SMP systems: the shared bus architecture, where
processor solution such as the Symmetric MultiProccssiegch core accesses the memory uniformly through a common
(SMP) systems, computers based on multi-core processdmss; and the cache coherent Non-Uniform Memory Architec-
e.g., Intel dual-core Xeons [20] and AMD dual-core Opterortare (ccNUMA), where each core has different access speeds
[10], become building blocks for high performance compagtinto its local and remote memory through different paths and
Linux clusters. For a system with a single multi-core preces has channels to maintain cache coherence with the othes.core
it is indeed a slim implementation of an SMP node on a chiven though a threaded application only deals with a uniform
For a system with multiple multi-core processors organired and global shared memory address space on an SMP system,
the SMP fashion, it behaves as a traditional SMP machirtee memory subsystem takes care of communications among
where the number of processors is the number of cores. caches/memories of multiple cores to ensure cache colerenc

Scientific applications can benefit from multi-core procestnd cache to memory coherence. The memory subsystem
sors, where code can be executed in multiple threads, eaeh rusually minimizes unnecessary accesses to the relatil@ly s
ning on a dedicated processing core. Especially applisatiomain memory by using fast caches in order to improve overall
of data parallelism, where multiple threads execute theesamerformance. However, reading from and writing to main
code on different sets of data, can improve their perforrmanmemory are inevitable because of the limited size of caches
dramatically relative to their single threaded versions. Tand maintenance of cache coherence among multiple cores.
take advantage of multi-core architecture, applicatioasdh The cache coherence is achieved by bus-snooping governed
to be either rewritten or converted into multi-threaded saneby a cache coherence protocol [4], which influences how the
Currently there are two commonly used strategies to achiewgin memory is accessed.



Past research has focused on how to improve barrier perfoalled HyperTransport [8]. Thus, the system is a ccNUMA
mance by either reducing memory contentions introduced hychitecture because of the non-uniform memory accesstime
accessing shared flags within a barrier or by reducing the crifor local and remote memory. From here on, we refer to the
cal path of a barrier [3] [12] [13]. There is a lack of studigs otwo test machines as Intel and AMD, respectively. Table 1
how the memory subsystem, particularly its cache coherersieanmarizes the configurations of the two systems in detail.
protocol, influences the performance of barrier algorithins

addition, most well known barrier algorithms target to krg Table 1: Configuration of Test Machines

. . CPUs L1 L2 Memory
SMP machines. This paper compares the performance of &
pap P P O' ¥ ntel | Two | 32K Data| 4 MB | 4GB
few known software barrier algorithms on small commodity
) : 2.66GHz | 32K Instr | Shared| Shared
multi-core processor based SMP systems (using Intel Xeons$ Dual-Core BUS

and AMD Opterons) to shed light on the above issues.

Past research has also focused on performance evaluation
OpenMP on different types of processors such as multi-core
processors and processors with HyperThreading capafslity
There have been no detailed comparison studies on the pel@QMT is a light weight library developed at Jefferson Lab to
formance between the OpenMP directives and related rautire@se the effort of multi-threading LQCD applications rumi
from Pthread based multi-threading libraries. This pamenc on multi-core processors. It offers a very simple set of APIs
pares software synchronization overhead between the OpenMat support the fork-join OpenMP programming model, and
directives and the corresponding routines of a hand craftptbvides some of the OpenMP capabilities such as barrier
threading library, called QCD Multi-Thread (QMT) for thesynchronization and global reduction. It utilizes an ogim
multi-threaded LQCD (Lattice Quantum Chromodynamicd)arrier algorithm for either Intel or AMD machine and is
applications, which utilizes an optimized barrier alglmt portable on any platform where Pthread is available.
and low overhead locking primitives to address issues suchBoth test machines are running Fedora Core 5 Linux 886
as different ways to multi-thread scientific application¥e distribution with a Linux kernel of 2.6.17. Two compilers
show that some OpenMP implementation provide a higite utilized: the gcc version 4.1 and the Intel icc version
performance run-time library coupled with excellent colapi 9.1. The synchronization overhead introduced by the OpenMP
directives with overhead only slightly more than the ovethe directives are measured through the EPCC microbenchmark
introduced by the QMT library routines. [2]. On the other hand, the synchronization overhead induce

The paper is organized as follows. Section 2 describes thg software barriers and other QMT library routines are
software and hardware environment where our performancellected through a slightly modified EPCC microbenchmark
evaluations are carried out. Section 3 overviews the memawogram. In addition, the Linux kernel is patched to support
organizations and cache coherence protocols deployed Bgrformance APl (PAPI) [1] version 3.5, which is used to
the commodity multi-core SMP systems. Section 4 presertgllect performance events through the event counters en th
two barrier algorithms. Section 5 analyzes the memory/eachrocessors of the test machines.
transactions of the algorithms under different memory &arch
tectures utilized by our test machines. Section 6 illusgditow
memory subsystems and their cache coherence protocats$ effe In a multi-core SMP system, the memory system is orga-
the performance of the barrier algorithms. Section 7 compamized in a hierarchical way including fast multi-level ofobees
synchronization overhead between the OpenMP directivds aand relatively slow memory. Each core usually has its own
the corresponding QMT library routines. Section 8 conctudeprivate L1 cache, but it can either has a private L2 cache such

as on the AMD test machine or has a shared L2 cache with
2. HARDWARE AND SOFTWARE ENVIRONMENT the other cores within a single CPU in the case of the Intel

We have chosen the Dell PowerEdge 1850 with two Intédst machine. Multiple caches at each level are allowedve ha
Xeon dual-core processors and the Dell PowerEdge SC14&ipies simultaneously of a given memory location. A cache
with two AMD Opteron dual-core processors as test beds. toherence protocol is a mechanism to ensure that all copies
this section, we describe these two machines, benchmaaks tiemain consistent when the contents of that memory location
we ran, and how to execute the benchmarks. are modified. On the Intel test machine with the shared bus

The Dell PowerEdge 1850 has two Intel Xeon 5150 [20fiemory architecture, cache coherence is maintained bygavi
2.66 GHz dual-core processors.The memory system is orgdl-cache controllers “snoop” on the memory bus and monitor
nized as a shared bus system, where each core accessdbetdransactions. A snooping cache controller may take an
the FB-DIMM [6] memory through a common memory conappropriate action according to the coherence protocol if a
troller. The Dell PowerEdge SC1435 hosts two AMD Opterobus transaction is relevant to it. On the AMD test machine
2220SE 2.8 GHz dual-core processors. Each processor hasvith the ccNUMA architecture, a bus snooping is simulated
own memory controller that creates a path to its own locallyy explicit broadcasts of memory requests to all cores [10].
attached memory. A processor can access to the memory o®ne type of popular cache coherence protocols for small
the L2 cache of the other processor through an interconn&NP systems with write-back caches is the invalidatioretas

)fAMD Two 64K Data| 1 MB 4GB
2.8 GHz | 64K Instr | Private | ccNUMA
Dual-Core

3. MEMORY AND CACHE COHERENCEPROTOCOLS



protocol: a snooping cache invalidates its cached copy oraaimple C program that uses two threads to send and receive
relevant write by another core. The cache coherence prbtocache data back and forth between two cores on the AMD test
deployed by the Intel Xeons is the MESI protocol [15], nhameehachine shows an SRI cache-to-cache latency of 838.&nd
from the four states of the protocol: Modified, Exclusivea HyperTransport cache-to-cache latency of 1k9 On the
Shared, Invalid. For an application using multiple core®ag other hand, running the same program on the Intel test machin
multiple CPUs, writing to an invalid cache block or writing t shows the cache-to-cache latency ofi&5or two cores within
a shared cache block (write miss) results in a read-ex@usiomne CPU and 187s for two cores between two CPUs. This
bus transaction, which causes the other copies of the bldskdue to the shared L2 cache for the two cores within a CPU
to be invalidated. If a cache block is in the Modified stateand the cache coherence dictated by MESI protocol through
the block has to be written back to the main memory so thiéite system memory for cores across multiple CPUs.
another core can load correct value from the memory upon 4. BARRIER ALGORITHMS
accessing to its own invalid cache block. This certainly in- '
troduces extra overhead because of the relatively highdgte A software barrier synchronizes a number of cooperating
of accessing main memory. However, for an application ontjpreads that repeatedly perform some work and then wait unti
involving cores that share a single cache, a modified cachl threads are ready to move to the next computing phase.
block may not be written back to the memory. Hence, tHeld- 1 illustrates the timing information for a single bami
shared large L2 cache for the dual-core Intel test machif@eration/synchronization. The total elapsed time of glsin
enables fast cache-to-cache communication for appﬁwtid)arrier Operation is the time difference between the time of
using only two threads within a single CPU. the first thread arriving at the barrier and the time of the las
To address the problem of writing a modified cache block #§read leaving the barrier. The total time can be furtheickid
the main memory to maintain cache coherence, the modifigd0 two phases: the gather phase is the time period during
cache coherence protocol called MOESI [18], which adds M¢hich each thread signals its arrival at the barrier; theasé
Owner state as the fifth state, is used by the AMD Opterons.pase denotes the time interval during which each thread is
cached block in the Owner state holds the most recent corr8étified the completion of the barrier operation and is aédw
copy of the data. Unlike the Shared state, the copy in the maghresume execution. During a barrier operation, a thread ca
memory can be stale. Only one cache can hold a block of d@gfform no other computation except signaling its arrivial a
in the Owner state, all others must hold the data in the Shafég barrier and being signaled the end of the barrier operati
state. The Owner of a cache block is responsible to upddterefore, to improve the performance of a barrier alganith
other caches that try to read the block. This avoids the need$ to reduce the total time of the barrier operation.

write a modified cache back to the main memory. Data flagged Last comes
as in the Owner state in an Opteron cache can be delivered Firstcomes,  Gather Release | Lastlea
directly from the cache of one CPU either to another CPU via e e ™ >
a CPU-to-CPU HyperTransport link or to other caches on the o
same CPU via the system request interface (SRI) [17]. Barrier Time

Traditionally, a simple barrier can be implemented by hav- Fig. 1: Timing for a Single Barrier

ing each thread increment/decrement one or more barriertcou
variables. The barrier completion is signaled by a releasg fl ﬁ:ars, such as the centralized barrier, the combining tree

that each thread_ checks in a spin loop until it shows that arrier, the tournament barrier [12] and so on. The cemxedli
threads have arrived at the barrier. Hence the performahce Q . K Il § I fth
accessing to these variables is crucial to the performal‘lcebéj1rrler works well for a small number of threads but does not

. scgle well for a large number of threads because all threads
a barrier. Table 2 shows the random access latency to ea

level of the memorv svstem on the test machines usin tﬁ%ntend for the same set of variables. The combining tree
y sy 9 '8Rd the tournament barrier reduce the above contention and
LMbench [11] benchmark.

work best for a large SMP system but not particularly well

There are a few popular barrier algorithms used over the

Table 2: Random Memory Access Latency for a small SMP system [4]. Recently, the queue-based Ibarrie

L1(ns) | L2(ns) | Memory(s) algorithm [3] has gained popularity because it reduces the

Intel 1.13 5.29 150.3 contention, performs well for small and large SMP systems
AMD 1.07 4.3 173 and is easy to implement.

The implementation of the centralized barrier (given bglow

Cache to cache transfer latency is also important to multi es one shared counter variable and one hared release flag.

threaded applications on a multi-core SMP machine. An AmbB®
Opteron based SMP machine has two ways to achieve thigt: flag = atomicget(&release);

the SRI channels for transferring data among L2 cachi&g count= atomicint_dec (&counter);
on different cores within one CPU, and the HyperTranspadft (count == 0){

channels for delivering cache data from one core to anotheratomicint_set (&counter, nunthread);
across CPU boundaries. It is obvious that an SRI channeltomicint.inc (&release)}

transfers data faster than a HyperTransport channel. Execu elsespinuntil (flag # release);



To avoid contention to the shared counter variable, thiherefore, all threads contend for the counter variableabse
gueue-based barrier algorithm (given below) picks oneatthreeach thread attempts to perform the atakéc() instruction
as the coordinating-thread or the master-thread and adecaon the counter variable when it arrives at the barrier. Upngdat
a global array of flags. Each thread participating in theibarr the counter variable inside an invalid cache block causes an
operation signals its arrival at the barrier by writing t@ it RdX bus transaction. Since only one RdX bus transaction on
flag variable in the flag array, and then spins on the separéte same cache line can be granted, one core will be allowed to
release flag. It is the master-thread’s responsibility teckh update the counter variable. The left part of Fig. 2 is a shaps
the above signal flags to find out whether the other threadthe bus and the memory transactions for thread 2 arriving a
have arrived at the barrier and to update the release flag the barrier, where the numbers inside the small circles teno
which non-master threads are waiting. the sequence of the transactions. Thread 2 is being grameed t
bus while thread 1 is holding the updated/valid cache vafue o
the counter variable. When thread 2 generates an RdX bus
transaction, thread 1 has to flush out the counter variable in
its cache to the main memory and changes the cache block
into an invalid state. Thread 2 then has to load the updated
counter variable from the main memory, to decrease the value
by one and to put the cache block in a modified state. A Rd bus
transaction is generated when thread 1 compares the counter
variable to zero, which leads thread 2 to write the modified
value of the variable in its cache to the system memory.
Finally thread 1 reads the updated counter variable from the
memory. There is a total of 4 memory reads/writes and two
bus transactions for thread 2 to complete signaling thealrri
at the barrier. Similar analysis leads to the same conatusio
each of the other threads. At the end of the gather phase of the
barrier, there are no memory reads/writes when the lasathre
is setting the counter variable to be the same as the number
of cores because the thread is holding the updated value of
the counter variable and the other threads are not reading
the variable. In the release phase of the barrier, there are
5. ANALYSIS OF BARRIER ALGORITHMS n—1 memory reads and one single memory write because one

To find out how the memory architecture of an SMP Systeﬁqread writes the modified cache value of the release flageto th
effects the performance of a barrier algorithm, we analyi@ain memory while the other threads read the value from the
memory and cache transactions of two barrier algorithnf@@mory. Hence the total number of memory accesses during
under the MESI and the MOESI cache coherence protocold centralized barrier operation4s, + (n—1)+1 = 5n. Worst

The performance of a barrier is clearly influenced by thef all, most of the above transactions can not be carried out
number of accesses to the main memory or the number igfoarallel because of the serialization of the RdX trarnieast
cache-to-cache transfers depending on the cache coherétitdéhe same cache block of the counter variable. This leads
protocol of a system. The difference between the centrlizt® Performance degradation of the barrier algorithm.
algorithm and the queue-based algorithm lies in the gatherUnlike the centralized barrier algorithm, the queue-based
phase of each algorithm. The release phase is rather simifdgorithm does not use a shared counter variable. Instéad, i
For the simplicity of analyzing of these algorithms, let u§€signates one thread as theasterand allocates an array
assume that there areprocessing cores. Furthermore, let u8f flags, one per participating thread. Each thread signals i
use RdX to denote the REABXCLUSIVE bus transaction arrival at a barrier by updating its flag in the array. The tigh
generated by a cache write miss, and Rd to denote the REREST of Fig. 2 illustrates the memory and the bus transastion
bus transaction. Finally, we assume that a thread running & one particular thread, e.g. thread 2, arriving at theribar

typedef struct gmtcflag {
int volatile c_flag;
/* each flag on different cache ling/
int c_.pad[CACHELINE_SIZE - 1];
tgmtflaget;
typedef struct gmtbarrier {
int volatile release;
char br_pad[B.CACHE SIZE - 1];
gmtflag-t flags[1];
tgmtbarriect;
/+ Master Threadk/
for (i = 1; i < numthreads; i++){
while (barrier—flags]i].cflag == 0);
barrie—flags[i].cflag = 0}
atomicinc (barrier—release);
/* Thread ix/
int rkey = barrier~release;
barrier—flags[i].cflag = -1;
while (rkey == barrier-release);

a core has the same id as the core id. Initially, the master thread holds all flags exclusively. &h
] thread 2 updates its flag, an RdX bus transaction is generated
5.1. MESI Protocol on the Intel Test Machine This bus transaction prompts the master thread to flush the

A centralized barrier employs one counter variable and owmached copy of the flag to the memory and thread 2 reads the
release variable. Initially, the counter variable is thensaas updated value of the flag from the memory, which leads to two
the number of cores and the release variable is set to memory transactions. When the master thread is checking the
zero. Let us assume that one core initially holds valid cdchélag, it generates an Rd bus transaction which requestsdthrea
values of the counter variable and the release variabletteatd 2 to flush the modified value of the flag to the memory. This
the other caches are all invalidated. Furthermore, allatise yields two more memory transactions. This analysis applies
are assumed to arrive at the barrier at about the same tirteethe other non-master threads as well. There are no memory



writes at the end of the gather phase of the barrier when thew owner of the counter variable right after it decrements
master thread resets all flags because the master threadthasvariable. When thread 1 later checks the counter varjabl
the updated flag values. Similar to the centralized algorjth thread 2 updates the cache of thread 1 immediately without
the number of memory accesses during the release phasamf memory transaction. The above discussion applies to all
the barrier isn. Hence the total number of memory accessédle threads. There is no more cache-to-cache transactien wh
during a queue-based barrier operatiot(is—1)+n = 5n—4. the last thread sets the counter variable to be the same as the
It is clear that a queue-based barrier operation generatesxf number of threads because the last thread is already therowne
memory transactions than a centralized barrier does. Maskéthe counter variable. Hence there is a totabefcache-to-
importantly, updating each flag in the global flag array of eache transactions during the gather phase of the baitrier. |
gueue-based barrier can be carried out in parallel sinch e@asy to see that there ane— 1 cache updates of the release
flag resides on a different cache line. These two factors lefldg from one core to the other cores in the release phase.
to a better performance for the queue-based algorithm.  Therefore, the total number of cache-to-cache transati®n

2n+n —1 = 3n — 1 during a centralized barrier operation.
@ @ \ @ Finally, the number of cache invalidations in the gatherggha
\“\éé 5 0b \®@*, ““i:é ‘@ variable after updating another thread; and a single idatitbn
‘ 1 ‘ ®® ‘ 3 ‘ 4‘ on the counter variable of each one of the 1 threads when
the last thread changes the counter variable. The number of

can be divided into two parts: owner cache invalidations,
Centralized Queue-based

each from a thread invalidating its own copy of the counter

cache invalidations in the release phase is simphl because
BusTransaction  Memory Access  Cache Invaldation n — 1 cached values of the release flag are invalidated when

Fig. 2: Bus/Memory Transactions one of the threads modifies the release flag. Hence the total

_ _ o ~ number of cache invalidations during the synchronizatibn o
Finally, two threads running on two cores within a singlene parrier is3n — 2.

CPU exchange data without going through the main memory
since the Intel Xeon utilizes a 4MB shared L2 cache for the
two cores. Hence the above analysis of the algorithms can onl
be applied to the cases of more than two threads. The two
algorithms perform similarly when two threads are involved
Table 3 summarizes the number of memory transactions of the
algorithms and the ratio of memory transactions between the

centralized algorithm and the queue-based algorithm. Centalized Queue-based
Table 3: Memory Transactions on Intel BusTransaction _ Memory Access _ Cache Invalidation
Threads| Centralized| Queuebased Ratio Fig. 3: Bus/Cache Transactions
2 N/A N/A 1.00 o . . . _
3 15 11 1.36 Similar to the above discussions for the centralized barrie
4 20 16 1.25 algorithm under MOESI protocol, there could be no mem-
- ory transactions during the synchronization of a queuedas
5.2. MOESI Protocol on the AMD Test Machine barrier. Initially, the master thread is the owner of all rei

The centralized barrier algorithm under the MOESI protocdlags. The right part of Fig. 3 presents a snapshot for thread
behaves similar to what it does under the MESI protocol eixcep arriving at the barrier. When thread 2 tries to update its
that there could be no main memory transactions, which asignaling flag, the master thread updates the cache of tiead
substituted by cache-to-cache transactions, if cachdiewvic and invalidates its own copy. Therefore, thread 2 becomes th
can be avoided. Once again let us assume that one coreynitimew owner of the cache block of its own signal flag right after
has updated values of the counter variable and the releésghanges the value of the flag to bd. Thread 2 later updates
variable, and that the other caches are all invalidated.|&e its signal flag in the global flag array when the master thread
part of Fig. 3 demonstrates the bus and the cache transactionecks whether the other threads have arrived. Hence there
for thread 2 arriving at a centralized barrier. Under the MESre two cache transactions for each of the- 1 non-master
protocol on the Intel test machine, thread 1 has to flush itsreads. At the end of the gather phase, the master threaid res
cached counter variable value to the main memory in ordeach signal flag to be zero, and becomes the owner of each
for thread 2 to load the correct value. Now thread 1 is thgignal flag again without introducing any cache transaction
owner of the counter variable and it updates the cache lmécause it already has updated values of the signal flags.
thread 2 which has generated the RdX bus transaction upbime total number of cache-to-cache transactions during the
trying to write to the counter variable. Thread 1 invalidatesynchronization of a queue-based barri€x(is—1)+(n—1) =
its own cache block after the update is carried out via 3n—3, where the last.—1 is the contribution from the release
cache-to-cache transfer channel. Thread 2 then becomesphase of the barrier. Finally, the number of cache invailiohest



is 2(n — 1) during the gather phase of the barrier because thiowever, the queue-based algorithm performs much better as
master thread invalidates its own— 1 signal flags first and expected than the centralized algorithm does for three and
then invalidates signal flag in the other— 1 threads. Using four threads because a queue-based barrier has fewer memory
the same discussion as in the previous paragraph, the nuntb@nsactions thus reduces memory contentions. To ver#y th
of cache invalidations i& — 1 during the release phase of theabove observations, the number of memory transactions is
barrier. Hence the number of cache invalidations during tlellected during many consecutive loops for each of theidxarr
synchronization of the barrier i3n — 3. algorithms using the PAPI routines with the native event of
Even though the memory transactions could be avoided BUS_TRANS_MEM. The left part of Fig. 5 presents two ratios
both the centralized and the queue-based algorithms unbletween a centralized barrier and a queue-based barrier for
the MOESI protocol on the AMD test machine, the RdX busvo to four threads. They are the software overhead values
transactions always exist. They are difficult to be carrietl oand the number of memory transactions collected by the
in parallel for the centralized barrier algorithm becaus¢he PAPI event. The centralized barrier clearly has more memory
shared counter variable, but the queue-based barrieritigor transactions than the queue-based barrier, which agraés wi
has the advantage in this respect. Nonetheless, the lackoof analysis. The software overhead directly relates to the
access to the main memory in either type of barrier and a sméile number of memory transactions. However, the number of
difference in the number of cache transactions betweereth@semory transactions does not reveal the complete picture of
two types of barriers suggest that the centralized bartgr-a the barrier overhead. The serialization of the bus traisast
rithm may perform reasonably well for the small number oflue to the memory contention on the same shared cache block
threads. Table 4 summarizes the number of cache transactioh the counter variable in the centralized barrier algarith
of the algorithms and the ratio of cache transactions betweeontributes to the additional overhead of the algorithme Th
the centralized algorithm and the queue-based algorithm. smaller ratio of the number of memory transactions relative

Table 4- Cache Transactions on AMD to the ratio of the overhead values for four threads revéuads t

Threads| Centralized] Queuebased Ratio contribution from the memory contention to the centralized
> 5 3 167 barrier overhead.
3 8 6 1.33 e
4 11 9 1.22

Finally, there are two different cache-to-cache transacti
during a barrier operation for each of the two algorithms.
One is the cache-to-cache transactions between the twa core
within a single CPU via the SRI channels and the other
is the cache-to-cache transactions across physical bounda
of CPUs through the HyperTransport channels. A Hyper-
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Transport transaction clearly takes longer time than an SRI 600 i
transaction. For instance, a HyperTransport channel takes I
more nanoseconds than an SRI channel to transfer a single 3005 5 2

Number of Threads

Fig. 4. Performance of Barrier Algorithms
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integer on the AMD test machine. Therefore the performance
of the algorithms can be effected not only by the number of
cache transactions but also by the type of transactions.
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6. PERFORMANCE OF THEBARRIER ALGORITHMS
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In this section, we use the software overhead of a barrier
algorithm as the performance metric of the barrier algonith
The software overhead values of these two barrier algosthm
are collected using the modified EPCC microbenchmark pro-
gram. To understand the performance of the barrier algosth
the performance event counters on the Xeon and the Opteron
processors are utilized through the PAPI library routin@s t ,
guantify the relation between the number the memory/cache e s 4 51 2 5 i s
transactions and the performance of a barrier. Fig. 4 shbess t
overhead values in terms of CPU cycles for the centralized an
the queue-based algorithms on each of the test machines. On the AMD machine where a barrier utilizes fast cache-

On the Intel test machine, the queue-based algorithm p&s-cache transactions, the queue-based algorithm pesform
forms essentially the same as the centralized algorithm fdifferently from the centralized algorithm for two threadse
two threads because there are no memory transactions duétdhe private L2 cache for each of the two cores within
the shared L2 cache for the two cores within a single CP@d. single CPU. The queue-based algorithm performs better

-

o
®

o
=

Centralized Barrier/Queue-based Barrier

o
=

Fig. 5: Centralized vs. Queue-based Barriers



than the centralized algorithm for two and three threadsetter on the Intel machine than they do on the AMD machine
because it has fewer cache-to-cache transactions thusegdbecause of the large shared L2 cache on the Intel machine.
the contention. But the queue-based barrier actually presiu
more overhead than the centralized barrier for four threads 7. OVERHEADS IN OPENMP AND QMT
even though the queue-based barrier generates fewer cacha OpenMP, most of the synchronizations including bar-
transactions. Hence the number of cache transactions is riet operations are realized by the compiler directives and
the determining factor for the performance of the barriersheir overhead depends on the implementation in the ven-
It is entirely possible for the queue-based barrier to hawr supplied OpenMP run-time library. In the QMT library
more HyperTransport cache-to-cache transactions than the developed, however, the overhead can be minimized by
centralized barrier when four threads are involved. In ordeptimal implementation tailored to a specific architecture
to substantiate the hypothesis, the number of HyperTrahspparticular, an optimized barrier algorithm is chosen at-run
transactions is collected for many consecutive barriecByo+ time according to the study in the previous sections. To
nization loops for each of the barrier algorithms througl thcompare the overhead values of the OpenMP directives from
PAPI event of NBHT_BUS(z)_DATA where z stands for the different OpenMP compilers, the EPCC microbenchmark code
transport buses 0, 1 and 2. In addition, the number of caclsecompiled on each of the test machines using the Intel idc an
invalidations is collected during the same loops becauseeththe GNU gcc compilers. The benchmark program is executed
is no direct performance event monitoring the number of eacbbn each of the test machines using one to four threads. The
transactions. The ratio of the cache invalidations betweeroverhead values of the OpenMP directives from the Intel icc
centralized barrier and a queue-based barrie%ig% which are much less than that of the OpenMP directives from the
approximately equals to the ratio of the cache transactio@NU gcc for all synchronization mechanisms. To highlight th
between the two barneré— Hence the PAPI routines with above observation, Table 5 shows the overhead values irsterm
the native events called DCOPYBACK., which track the of CPU cycles for the OpenMP directive of the lock/unlock
number cache invalidations, are utilized. The right parfigf. overhead on the test machines in the case of 4 threads. The
5 shows various ratios between a centralized barrier andaage lock/unlock overhead difference between gcc and icc
queue-based barrier. They are the software overhead valigssot a surprise because gcc implements the OpenMP lock
the number of cache invalidations, and the number of caghe-tising the Linux futex [7] system call, which incurs a lot of
cache transfers through the HyperTransport channels.vir toverhead, in comparison to the user level lock deployed by
and three threads, the software overhead ratio directtesl the icc compiler [19]. From now on, the gcc OpenMP is no
to the cache transaction ratio, which indicates that thdx€adonger under consideration.
transaction is the dominating factor of the performancehef t
barriers. For four threads, however, the software overledad
the centralized barrier is smaller than that of the quewsebta .
barrier along with a higher number of cache transactionsabut icc | 551 | 979
smaller number of HyperTransport transactions. This sstgge gee | 4503 | 4608
that the number of HyperTransport transactions becomes thdo measure the synchronization overhead induced by the
prominent factor in determining the performance of the learr QMT library routines, the two compilers are used to compile
algorithms on the AMD machine. In short, the performance @ benchmark code slightly modified from the EPCC code. The
a barrier algorithm is determined by two competing factorstew benchmark values are collected for one to four threads.
the number of cache/bus transactions and the percentagesgpecially, thetaskset command is used to bind two threads
cache transactions that are the HyperTransport transectio to the two cores on the same CPU when the benchmark
Finally, the same barrier algorithm has different perforprogram is executed using two threads. The left part of Fig. 6
mance characteristics on different machines because of #Hmows the results of executing the two benchmarks on thé Inte
memory architectures and the cache coherence protocads. Tést machine. The overhead value of every OpenMP directive
gueue-based barrier algorithm performs consistentlyebetis slightly larger than that of the corresponding QMT roetin
than the centralized algorithm for two to four threads on thEévery overhead scales close to linearly from one thread to
Intel machine, because the queue-based algorithm remof@mg threads. Moreover, the overhead values from either the
the memory contention on the shared cache block and M@agenMP directives or from the QMT routines show some
a smaller number of memory transactions. On the AMBensitivity to the change from running two to three threads
machine, the queue-based algorithm performs better thain trecause of the shared L2 cache of the two cores within a
centralized algorithm for two and three threads because thiagle CPU. Both the icc OpenMP implementation and the
gueue-based algorithm removes the contention on the sa@MT library offer very low lock/unlock overhead because of
cache block and has a fewer cache transactions. When fthwe light weight user level lock mechanism.
threads are involved, the queue-based algorithm actually p The right part of Fig. 6 presents the results of the two
forms a little worse than the centralized barrier algorithnbenchmarks on the AMD test machine. The overhead of each
because it introduces more HyperTransport cache traoseacti of the icc OpenMP directives exhibits similar behavior as
In the case of two threads, the two algorithms all perforim the previous figure even though it grows slightly larger

Table 5: Lock/Unlock Overhead CPU Cycles
Intel | AMD




than the corresponding value for the Intel machine. This This paper also compares the software overhead of the
result comes at no surprise because the Intel icc is optinizBpenMP directives from the Intel icc compiler against a
for Intel architecture after all. However, the results ok thlocally developed Pthread library that supports the faikyj
overhead for the QMT routines bear remarkable similarigrogramming model. Even though the OpenMP directives
to the corresponding results collected on the Intel machipeoduce very little overhead and perform well, the local
because the QMT library is implemented optimally for eithdibrary still comes ahead for all measured benchmarks by

the Intel or the AMD architecture.
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Fig. 6: OpenMP and QMT Overheads 3]

Our studies indicate that the synchronization overhead for
the icc OpenMP directives scales almost linearly in spitgy
of its slightly larger value than the overhead value of the
corresponding QMT routine. Therefore applications thakse 5]
portability over absolute performance will benefit from allwe
implemented OpenMP compiler and its runtime library. On
the other hand, applications that look for performance antf!
flexibility will profit from a hand craft Pthread library sudcs

the QMT library. [71

8. CONCLUSIONS (8]

This paper studies the performance of two barrier algog,
rithms on commodity multi-core based SMP machines. They
centralized barrier algorithm is known to work well for a
small number of processing cores, and the queue—baseerbaﬁil]
algorithm tries to reduce memory contention introducedtzy t
centralized algorithm. Our study shows that the queue¢badé?]
algorithm indeed outperforms the centralized algorithntlu
Intel shared bus memory architecture for threads rangiogn fr [13]
two to four simply because it has litle memory contention
and fewer accesses to the main memory dictated by
MESI cache coherence protocol. On the AMD platform, witjg5]
the ccNUMA architecture and the MOESI cache coherence
protocol, the queue-based algorithm performs better than t[16]
centralized algorithm for two and three threads, but it per-
forms no better for four threads. The behavior is caused b
the MOESI protocol, which maintains the cache coheren@é
through the cache-to-cache transactions via either the Sk
channels or the slower HyperTransport channels instead of
accessing the main memory. In comparison to the centralizﬁg]
algorithm, the queue-based algorithm has fewer cache-to-
cache transactions on average for threads from two to four,
but it has more HyperTransport cache-to-cache transatiolf’
Therefore the performance of a barrier algorithm can be
influenced not only by the memory organization but also by
the cache coherence protocol of an SMP system.

] Dual-Core

small margins. Therefore, applications that seek poitgbil
: and simplicity over absolute performance will benefit from
OpenMP. However, a carefully crafted Pthread library willdfi
] a place for those who seek performance and flexibility.
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