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ABSTRACT

Given a multicomputer system of parallel processors con-
nected in a torus network, the one-to-all personalized com-
munication is to send from the root processor unique data
to each of the other processors in the network. Under the
assumptions of same-size data to each processor, store-
and-forward routing, and all-port processors, we fornailat
the one-to-all personalized communication problem as an
optimization problem with the goal to minimize the total
elapsed time (measured in the number of time steps) for
all data to reach their respective destinations. We design
an optimal algorithm based on partitioning the torus net-
work into disjoint subnetworks. We also present a heuris-
tic algorithm based on a greedy strategy. We implement
the algorithms on two Linux clusters with Gigabit Ethernet
torus connection, currently in use at the Jefferson Nationa
Lab and configured as a 2-dimensiofak 8 torus and a
3-dimensionall x 8 x 8 torus, respectively. We analyze
the performance of the algorithms using data collected in
experiments.
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1 Introduction

A multicomputer is a multiple processor system with dis-
tributed memory. It contains parallel running processors
connected in a network topology by message passing links.
To run a parallel job on a multicomputer involving all pro-
cessors, inter-processor communication is often a frequen
issue to deal with. For examples, a certain processor needs
to exchange data with another processor (i.e., one-to-one
communication), input data which originally reside at a
root processor need to be moved to other processors (i.e.,
one-to-all communication), or results obtained by each pro
cessor need to be sent to every other processor (i.e., all-
to-all communication). The communication between pro-
cessors is often the main obstacle to increasing the perfor-
mance of a multicomputer since it is not only dependent on
the network topology (e.g., how many links are available
at a processor to send or receive data to or from other pro-
cessors) but also restricted by the capability of processor
(e.g., how many simultaneous activities of sending and re-
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ceiving a processor can engage in). Thus, it is commonly
agreed that inter-processor communication is an important
bottleneck.

In general, an inter-processor communication prob-
lem can be formulated by specifying the following para-
metric factors:

e The network topology of the multicomputer;

e The communication pattern of the application running
on the multicomputer;

e The routing method for sending data from source to
destination; and

e The number of ports available at each processor in the
multicomputer.

The network topology is how the processors are connected
in a multicomputer. Conventionally , such a network is
viewed as a graph, where each node presents a processor
and each edge represents a link. The multi-dimensional
torus (which is a multi-dimensional grid with wrap-around
edges in all dimensions) is the most common topology
used. Communication patterns include one-to-one trans-
fer (a single node sending its own data to another node),
one-to-all broadcast (a single node sending its own data to
all other nodes), one-to-all personalized communicaton (
single node sending unique data to each of other nodes),
all-to-all broadcast (each node sending its own data to all
other nodes), and all-to-all personalized communication
(each node sending unique data to each of other nodes).
Note that personalized communication is also called scat-
tering for the one-to-all pattern and gathering for the all-
to-one pattern. The most commonly used routing method
is the store-and-forward method, where data move from
source to destination one hop at a time, and at each inter-
mediate node, the data are stored before starting the next
hop, although wormhole routing and circuit-switched rout-
ing are also used. The number of ports that a node can
monitor simultaneously gives an upper bound to the num-
ber of sending and receiving activities that the node can
engage in simultaneously. A node can be of single-port,
multi-port, or all-port (with the number of ports equal to
the number of edges adjacent to the node, whi@tisn a
D-dimensional torus).

A few years ago, two production Linux clusters (mul-
ticomputers) with Gigabit Ethernet torus connection of



sizes8 x 8 and4 x 8 x 8 were deployed at the Jeffer-
son National Lab (a research lab under the Department of
Energy). The primary mission of the clusters is to carry
out Lattice Chromodynamics (LQCD) calculations to study
strong interactions among quarks. A typical LQCD calcu-
lation involves all nodes, which in our case are connected
into a 2-dimensional or 3-dimensional torus. Each node
needs its own input data to carry out its specific calcu-
lation. However, the data are initially stored at the root
node (any specific processor in the cluster). Before the par-
allel calculation begins at each node, a major preparation
step is to dispatch in the store-and-forward fashion all in-
put data from the root node to the nodes where they belong
to. This is actually the one-to-all personalized communica
tion (scattering) problem. Since the input data needed by
each node are huge in LQCD calculations, they have to be
broken into small-size messages to be sent from the root
node. On average, an LQCD calculation involves send-
ing messages (small-size data) from the root node to the
messages’ respective destinations a total of 250,000 times
This makes it necessary and beneficial to design optimal or
near-optimal algorithms to handle the one-to-all personal
ized communication problem.

This paper is organized as follows. In Section 2 we
give a precise definition of our one-to-all personalized €com
munication problem on torus networks of all-port proces-
sors with store-and-forward routing. We also give a brief
discussion of related work. In Section 3, we discuss our
algorithms, OPT and SDF. For the OPT algorithm, we also
prove its optimality. In Section 4, we present some data
collected in experiments conducted on two clusters avail-
able at the Jefferson National Lab to evaluate the average
performance of our algorithms. Finally, we make conclu-
sions in Section 5.

2 Problem Definition and Related Work

The communication problem that arises in LQCD calcula-
tion uses a multi-dimensional torus network of all-port{pro
cessors and the communication pattern is one-to-all seatte
ing by store-and-forward routing. Assume that in the torus
there are nodes (processors), indexedy..,p—1. Ob-
viously, the number of messages is the same as the number
of nodesp. Also assume that the messages are named ac-
cording to the destinations where they will later be sent,
ie.,,0,1,...,p — 1, where messageis destined to node

7. Initially, all messages reside at the root n@deAssume

that all messages are of the same size and will take one time
step to traverse a link. The goal of our one-to-all personal-
ized communication problem is to scatter, in the store-and-
forward fashion, all messages from the root node to their re-
spective destinations in the minimum number of time steps
(hops). At the beginning of the communication, message

is at the root nod®, but at the end of the communication
message will be at nodei, fori = 0,1,...,p — 1. We
should mention that once the calculation at each processor
is completed, the result may need to be sent back to the root

node. This follows the reversed communication pattern of
scattering. The resulting all-to-one personalized commu-
nication problem is called gathering and can be solved by
the reverse of any scattering algorithm. For this reason, we
will focus of one-to-all scattering in this paper.

A general discussion on communication problems
in multicomputers, including both one-to-all and all-tib-a
patterns of broadcasting and personalized communication,
can be found in [1]. Focusing on the store-and-forward
routing method and personalized communication, we re-
view some of the results relevant to our work. Being per-
haps the most difficult among all, the all-to-all person-
alized communication pattern has received the most at-
tention from the research community. Optimal and ap-
proximation algorithms for all-to-all personalized comimu
nication have been proposed for various network topolo-
gies, such as hypercubes [2], 2-dimensional tori [3], fully
connected networks [4], multistage interconnection net-
works [5], and wavelength-division-multiplexed (WDM)
rings [6]. All-to-all communication (including broadcast
ing and personalized communication) is implemented on
the IBM BlueGene/L systems using the MPI programming
model [7]. For the one-to-all personalized communication
pattern, however, the research is rather sparse. Both lower
and upper bounds on the number of steps to scatter mes-
sages from the root node to their respective destinations on
an arbitrary network topology are given in [8]. Algorithms
are given for tree-shaped networks in [9]. A dispatching
strategy called Furthest-Distance-First is studied foedir
arrays (rings) with set-up times in [10].

This paper extends and details our earlier work in
[11]. The exact one-to-all personalized communication
problem like ours, with the torus topology, store-and-
forward routing, and all-port processors, is studied in [12
and [13]. But both use different scattering algorithms from
ours. In [12], messages are sent one dimension at a time.
For example, in a 2-dimensional torus with each node refer-
enced by the correspondingndy coordinates, a message
originally at the root node of0, 0) and with a destination
of (i, —), will be first sent to the intermediate nodg0)
along thez-axis and then will be sent to the destination
along they-axis. In [13], a tree-like partition of the torus
network is used in scattering the messages from the root
node. Our first algorithm that will be described in the next
section also uses a partition scheme, but it differs from the
tree partition in [13] in that each subnetwork in our parti-
tion has a node that is a neighbor of the root node while the
partition in [13] may have subnetworks that are many hops
away from the root node.

3 Algorithms for One-to-All Personalized
Communication

We now describe two algorithms for the one-to-all person-
alized communication problem for torus networks. Al-
though we have implemented our algorithms on a 2-



dimensionaB x 8 torus and a 3-dimensionélk 8 x 8 torus
already in place and functioning at the Jefferson National
Lab, the algorithms work for higher dimensions as well.
From now on, we will name a node in the torus with its
coordinates, e.g., nodes (z;, y;, z;) in the 3-dimensional
case. Assume that the root node is the origin of the co-
ordination system with zero coordinates in all dimensions,
i.e.,(0,0,0)in the 3-dimensional case. Also, we will name

a message with the coordinates of the message’s destina-
tion, e.g., messageis (z;,yi,2;). In general, an algo-
rithm for the one-to-all personalized communication prob-
lem must contain two components. The first componentis
the selection of messages to send for each time step. In a
multicomputer system, the number of sending and receiv-
ing activities that a node can engage in is bounded by the
number of ports the node can monitor simultaneously (e.g.,
single-port, multi-port, and all-port). When the number of
messages waiting at a node is more than the number of al-
lowable ports, a message or a set of messages has to be
selected to be sent in the next time step. The second com-
ponent is the actual routing. After a message is selected,
a direction (among four in the 2-dimensional case and six
in the 3-dimensional case) needs to be chosen to send the
message in the next time step.

3.1 Optimal Algorithm OPT

Ouir first algorithm achieves optimality in minimizing the
total time steps needed to scattermthessages to their re-
spective destinations. So we call it OPT. In one-to-all per-
sonalized communication, the root node is the bottleneck
for delays since all messages are initially at the root node
and have to be sent one by one (in the single-port mode) or
group by group (in the multi-port and all-port modes) to-
ward their respective destinations. The optimality of OPT
is achieved in several ways.

First, each message is guaranteed to travel the short-
est distance possible. For example, in the 3-dimensional
case, if the message (s;, v:, z;) then the distance (mea-
sured by the number of hops) it will travel using OPT is
d(i) min{x;, xdim — z;} + min{y;, ydim — y;} +
min{z;, zdim — z;}, wherexdim, ydim, and zdim are
sizes of the torus in dimensions y, andz, respectively.
Second, messages are selected by OPT using the Furthest-
Distance-First principle [10]. That is, a message that will
travel the furthest distance to reach its destination véll b
among the first to be sent from each node. This way,
collisions among messages could be entirely eliminated.
Third, and most importantly, the torus is first partitioned
into equal-size regions (i.e., containing roughly the same
number of nodes in each region), with one region corre-
sponding to one link leaving the root node and all nodes in
the region are accessible from the link in the smallest num-
ber of hops possible. Consequently, all messages are also
divided into groups, with one group corresponding to one
region and with all messages of destinations falling in& th
region being put in the corresponding group. The partition

Figure 1. Partition of & x 5 torus into four equal-size
regions

establishes a 1-1-1 correspondence among a link leaving
the root node, a region of nodes, and a group of messages.
To spread out the congestion at the root node, messages in
groupi will be sent via link: to leave the root node to enter
regioni. And from then on, the message will stay within
region: and travel to its destination without any delay in
the smallest number of hops.

We explain the OPT algorithm using 2-dimensional
tori as examples, although the method extends to higher
dimensions. We first consider an example, where the net-
work topology is a 2-dimensional torus of size< 5. The
partition of the torus is illustrated in Figure 1, where the
solid black node is the root node with coordinéie0) and
the four regions in the partition are bordered by darkened
boundaries. For cleanliness, the wrap-around edges in the
torus are not drawn in the figure. Note that in a higher di-
mension ofD, the number of regions (or subnetworks, to
be more precise) to be created in the partition will2ie.
Once an equal-size partition is determined, the algorithm
works pretty intuitively. Messages with destination nodes
in regionsR, L, U, and D will be sent out from the root
node via the right, left, upper, and down links (marked by
arrows), respectively. Among the messages that will use a
certain one of the four links to enter the region of its desti-
nation, the message with the most number of hops to reach
its destination will have the highest priority to traverbe t
link.

The example illustrated in Figure 1 can be easily gen-
eralized to any 2-dimensional torus of si2e +1) x (2b+
1), resulting a partition with both thB and L regions to be
of rectangular size x (b+1) and both thé” andD regions
to be of rectangular siz@ + 1) x b. However, most mul-
ticomputers currently in use around the world have even
sizes in all dimensions. So assume the torus is of size
2ax2b. Using a similar partition method with theld x odd
case, we can partition the torus into tReL, U, andD re-
gions of rectangular sizés —1) x (b+1),ax b, ax (b—1),
and(a + 1) x b, respectively. This partition is clearly not
an equal-size partition. See Figure 2 for an example of par-
titioning an8 x 8 torus.
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Figure 2. Partition of a8 x 8 torus into four non-equal-size
regions

To partition ancven x even torus into equal-size re-
gions, we use an ad-hoc approach. That is, given a torus
topology with even sizes in all dimensions, we partition
the torus into equal-size regions by hand and then hard-
code the partition by defining each region one by one with
assignment statements in the implementation. Although
spotting an equal-size partition is not terribly hard, the-p
cess of hard-coding the partition is tedious. Fortunafely,
each torus network on which one-to-all personalized com-
munication is to be carried out, the partition of the network
needs to be done only once. Figure 3 gives an equal-size
partition of the8 x 8 torus.

3.2 Proof of Optimality of OPT

Let p be the number of nodes in tHe-dimensional torus.
Since we use the all-port mod2D is thus the number of
ports that a node can monitor simultaneously. Therefore, at
any time, the root node will send o2f) messages using
the 2D links adjacent to it. Then the root node will need
at least[(p — 1)/(2D)] time steps to send out ghl — 1
messages, excluding the one destined to the root node itself
Let Topr be the number of time steps that OPT takes to
dispatch allp — 1 messages to their destinations. Then

Topr = [(p—1)/(2D)].

We next prove the optimality of OPT by showing that OPT
indeed take$(p—1)/(2D)] time steps to dispatch all- 1
messages to their destinations.

The partition in OPT createxD equal-size regions,
Ry, ..., Rop, with the size of a region to be no greater than
[(p —1)/(2D)]. Since the movement of messages in dif-
ferent regions is parallel, we consider an arbitrary region
R;. For any nodé€ € R;, letd(:) be the minimum number
of hops that messagdwhich is the message with destina-
tion 4) travels from the root node to its destination. Recall

Figure 3. Partition of ai® x 8 torus into four equal-size

regions

thatd(i) is decided by all coordinates of nodes defined
earlier. Also, letw(i) be the number of time steps that mes-
sagei waits at the root node before being sent to leave the
root node. Assume(i) is the number of time steps that
OPT takes for messageo reach its destination, then

#(i) = d(i) + w(i).

Note that after waiting forw (i) time steps, messageen-
ters its region and from then on it travels within the region
without any further delay in the fastest way until reach-
ing the destination. For easy explanation, assume that the
nodes inR; are relabeled with indiced,, ..., |R,|, such
that w(i;) < w(iz) for iy < iz2. Therefore,w(l) =
0,w(2) =1,...,w(|R;|) = |R;|—1. Thatis, messagen
R; leaves the root node at tivie- 1 and enters?; at time
1. Under this labeling scheme, we observe that messages
with smaller indices wait less time to leave the root node
but have longer distances to travel. &d),...,d(|R,])
form a non-increasing sequence, witfi + 1) = d(z) or
d(i+1) =d(i) — 1 foranyi andw(l), ..., w(|R;|) forma
strictly increasing sequence, with(i + 1) = w(i) + 1
for any i. Adding the two sequences, we have a non-
decreasing sequent@d), ..., t(|R;|), with¢(i + 1) = ¢(¢)
ort(i + 1) = t(i) + 1 for any:. Therefore,

max (1)} = (R

d(|R;]) + w(|R;])

= 1+(|Rj| - 1)
= Ry
We then have the following definition fafo pr.
Topr = H%%ngleaé(j{t(l)}
= max{|R;l}

= [(p-1/@2D)].
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Matching the lower bound dfp p7, the OPT algorithm is
thus optimal.

3.3 Heuristic Algorithm SDF

Our second algorithm is a greedy heuristic, called Shortest
Direction-First (SDF), which does not go through the pre-
processing phase of partitioning the torus. At any time
step when there are nodes (including the root node) in the
torus holding messages that have not reached their destina-
tions, each of these nodes selects 2D (in the case ok

ports available at each processor) earliest arriving ngessa

to send according to the First-Come-First-Serve principle
and then send them along a direction (dimension) chosen
by the Shortest-Direction-First principle, i.e., the diien

in which a message has the smallest number of remain-
ing hops will be chosen. The algorithm does not dispatch
messages in the smallest number of time steps, thus is not
optimal. But its simple design makes the implementation
relatively easy without the partition overhead of the OPT
algorithm.

4 Experiments

To compare the performance of OPT and SDF in practice,
we have implemented both algorithms for&r 8 configu-
ration and at x 8 x 8 configuration of the torus connection
clusters available at the Jefferson National Lab. Figure 4
presents the time results of the OPT and SDF algorithms
on the8 x 8 cluster for various message sizes and Figure 5
presents the time results of OPT and SDF ondthe8 x 8
cluster. SDF is easier to implement and OPT requires more
overhead in obtaining the partition beforehand. However,
on average, OPT dispatches messages to their destinations
almost four times faster than SDF does for either cluster
configuration across all tested message sizes. In addition,
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our OPT algorithm scales very well from tBex 8 configu-
ration to thed x 8 x 8 configuration for most part of tested
message sizes except for the large sizes where simultane-
ous sending of large messages from the root node using all
links requires more memory in practice and thus becomes
difficult to achieve.

5 Conclusions

In this paper, we study the one-to-all personalized commu-
nication (scattering) problem for torus networks of alkpo
parallel processors with store-and-forward routing. We fo
mulate the problem as an optimization problem with the
goal to minimize the number of time steps needed to send
same-size messages from the root node to each of the other
nodes in the network. We give two algorithms, one of
which uses a partition scheme and is proved to be optimal
in that it takes the smallest number of time steps to dis-
patch all messages to their respective destinations, &d th
other of which is a heuristic algorithm. We present data
collected from experiments conducted on two clusters (a 2-
dimensionalB x 8 torus and a 3-dimensionék 8 x 8 torus)
available at the Jefferson National Lab. The data show that
both algorithms are able to scatter messages in a torus net-
work in a reasonably small amount of time although the
heuristic algorithm is about four times slower than the op-
timal algorithm.

Our design of the optimal algorithm is based on par-
titioning the network into equal-size subnetworks. In the
current implementation of the algorithm, the partition is
done by hand first and then hard-coded with assignment
statements. We are interested in developing a general parti
tion algorithm which takes in as input the dimension sizes
of a torus and produces as output an equal-size partition of
the torus, which can then be used in routing messages to
their destinations.
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