JPARSS: A Java Parallel Network Package for Grid
Computing'

Jie Chen, Walt AKkers, Ying Chen and William Watson II1

High Performance Computing Group
Thomas Jefferson National Accelerator Facility
12000, Jefferson Ave.

Newport News, Virginia 23606, USA

chen@jlab.org

Abstract

The emergence of high speed wide area networks makes
grid computing a reality. However grid applications that
need reliable data transfer still have difficulties to achieve
optimal TCP performance due to network tuning of TCP
window size to improve bandwidth and to reduce la-
tency on a high speed wide area network. This paper
presents a Java package called JPARSS (Java Parallel Se-
cure Stream (Socket)) that divides data into partitions that
are sent over several parallel Java streams simultaneously
and allows Java or Web applications to achieve optimal
TCP performance in a grid environment without the ne-
cessity of tuning TCP window size. This package enables
single sign-on, certificate delegation and secure or plain-
text data transfer using several security components based
on X.509 certificate and SSL. Several experiments will
be presented to show that using Java parallel streams is
more effective than tuning TCP window size. In addition
a simple architecture using Web services to facilitate peer
to peer and third party file transfer will be presented.

1 Introduction

With the rapid growth of high performance networking
technologies, grid computing especially data-intensive
computing has become reality among national laborato-
ries and universities. Example of data-intensive applica-
tions include data acquisition, data analysis and simula-
tion in various scientific or engineering fields such as high
energy physics, climate modeling and aerospace simu-
lation. These applications usually accumulate a large
amount of data at one or more sites. The data then
will be shared by a large community of researchers who
are distributed among different computing sites. There-
fore grid computing applications usually demand high
TCP bandwidth in wide area networks. However achiev-
ing optimal bandwidth in practice can be difficult due
to lack of automatic network tuning [1].To maximize
TCP performance, the sender and the receiver of appli-
cations should adjust send/receive buffer (window) size
no less than the capacity of the TCP pipe. This ca-

pacity usually is the product of transmission rate and
round trip time (bandwidth*delay product). TCP perfor-
mance problems arise when the bandwidth*delay product
is large, where high performance wide area networks are
deployed in grid computing environment, due to a default
smaller send/receive buffer size on most operating sys-
tems. Therefore it is highly desirable to have a toolkit or
a package that lets grid applications achieve optimal TCP
bandwidth without tuning TCP window size.

Grid applications not only require efficient transfer of
a large amount of data in wide area networks but also de-
mand security and authentication services that enhance
data integrity and enable data access control. In the past,
user authentication required users to enter a password or
pass-phrase to identify themselves to a server. This is
inconvenient to users who initiate many short duration
connections to the server. A single sign-on mechanism,
which lets users authenticate only once to a server (e.g.
when starting a grid application) and initiate additional
connections to the server during a interval of time with-
out being further prompted for identification, solves this
problem. In addition a “third party” file transfer or a sim-
ilar action requires delegation of user identity from one
process to another so that a process can act on behalf of a
user.

In recent years, Web technologies, driven by the huge
and rapidly growing electronic commerce industry, pro-
vided valuable components to construct Web portals [2]
allowing users to access grid servers or services through
Web browsers. Since Java servlet technology is becoming
the overwhelming choice for Web server programming
and Java applets are the standard way to deploy sophis-
ticated user interfaces through Web browsers, non Java
solutions[3][4] will be difficult to use in Java/Web appli-
cations.

There have been a few stand alone applications or li-
braries [3][4] that meet some, but not all, of the above
requirements.This paper focuses on a Java networking
toolkit called JPARSS (Java Parallel Secure Stream
(Socket)) that enables grid applications and Java/Web ser-
vices to handle encrypted or plain data transfer with opti-

"'Work Supported by the Department of Energy, Contract DE-AC05-84ER40150.

mal bandwidth, to access data with single sign-on mech-
anism and to facilitate convenient peer-to-peer and third
party data transfer.

2 JPARSS
2.1 TCP Bandwidth Performance

Applications using JPARSS can achieve near optimal uti-
lization of network bandwidth without the necessity of
tuning TCP window size. The idea is to divide data into
partitions that are sent over a network through several
Java socket streams in parallel. This method sometimes
is called network striping. Since the default socket buffer
size is usually much smaller than the bandwidth*delay
product in a grid environment, applications using a sin-
gle socket will have sub-par performance in TCP band-
width without tuning the buffer size. However, appli-
cations using multiple streams/sockets can overcome the
limitations impacting single socket implementation.

Sender Receiver

(a) Single socket stream with default buffer size.

(b) Single socket stream with buffer size = capacity.

-

ACK

-

Receiver
—

(c) Multiple socket streams with default buffer size.

Figure 1: Single or multiple TCP socket streams with
different buffer sizes.

JPARSS opens multiple socket streams between the
sender and the receiver for an application. Data needed
by the application are then partitioned into segments. The
number of segments is equal to the number of streams.
The segments are sent through streams in parallel by
different threads and are then reassembled by the re-
ceiver.The final data are presented to the application as
if they were transmitted through a single socket. Figure
1 illustrates why sending partitioned data through multi-
ple socket streams can achieve near optimal bandwidth.
In the figure the shaded areas represent socket buffer size
and the large empty rectangles represent TCP pipe capac-
ity (bandwidth*delay).

Several experiments have been conducted between
Jefferson Lab in Newport News (Virginia) and Florida In-
ternational University in Miami (Florida). Both sites are
connected to the Internet via OC3 connection. The link is
not only limited by the 100 Mb/s Fast-Ethernet connec-
tion on host machines (PIII 700MHz), but also by numer-
ous intermediate hops. Experimental host machines are
running RedHat Linux 6.2 with kernel 2.2.16 and using

the Java Virtual machine version 1.2. Figure 2 and figure
3 summarize the results of TCP bandwidth performance
for JPARSS under various conditions along with the re-
sults from a well known Iperf [5] that is a C utility using
one socket stream.

4.0 :
o®
¢ ./' 7‘*n/.\
3.0 ‘j/‘ \',7 ®
@ e
= ®
§ 2.0 ’
z
s [¢
@ TCP Window: 65535
or Buffer: 500000
(]
o)
0.0
0 20 40 60

Number of Streams

Figure 2: TCP bandwidth for different parallel
streams.

Figure 2 shows that TCP bandwidth increases as the
number of socket streams increases from 1 to 16 with a
fixed TCP window size and a fixed sending buffer size.
The maximum bandwidth is achieved when the number of
streams is around 16. The TCP bandwidth starts dropping
when the number of streams is above 20 because of over-
heads introduced with extra threads for parallel streams.

3 T T T T 3 T
Buffer Size: 100000 TCP Window: 65536
P
/
25 - /) b
sete
!
M
/ =X _ - K|
@ 2r " ,/ b 2 i X
[an] ! \\/
% !’ ‘
o 1
§ 15 " = u u
= | /
© I
G ! Ema/
om 1Ly ~a il 1 4
*
1
05 & [e
e 1 // = |perf @1 Stream
"4 - -8 Streams A Seams
8 Streams
L L L L 0 L
4194304 0 200000 400000

04096 65536
Log2 (TCP Window Size in Bytes) Buffer Size (Bytes)
(A) (B)
Figure 3: TCP bandwidth for different TCP window
sizes and different data sizes.

Figure 3 (A) highlights the improvements of TCP
bandwidth using JPARSS over a traditional single socket
stream C implementation with varying TCP window size
and a fixed buffer size. The Java implementation using
8 parallel streams consistently outperforms Iperf for all

TCP window sizes ranging from 4KB to 4 MB. Antici-
pated equality in bandwidth between JPARSS and Iperf
does not materialize when TCP window size is beyond
bandwidth*delay product of 2.15 MB for the connection.
This may be caused by driver of network interface cards
or the network itself [4].

Figure 3 (B) illustrates the tremendous effect on band-
width using multiple socket streams with varying send-
ing buffer size and a fixed TCP window size. TCP band-
width using parallel streams increases when number of
parallel streams increases from 1 to 8 across the range of
data transfer buffer sizes. The JPARSS test using a sin-
gle stream actually performs as well as the test of Iperf.
There are no obvious benefits to throughput when transfer
buffer size exceeds 16 KB.

2.2 Security Components
2.2.1 Proxy Certificate

A certificate is an electronic document used to identify an
individual or an application and to associate that identity
with a public key. The content of a certificate supported
by SSL [6] and many other softwares is organized accord-
ing to the X.509 v3 certificate specification, which has
been recommended by the International Telecommunica-
tions Union (ITU), an international standards body, since
1988. A X.509 certificate issued by a certificate author-
ity (CA) binds a particular public key to a distinguished
name (DN) the certificate identifies. Only the public key
certified by the certificate will work with the correspond-
ing private key possessed by the entity identified by the
certificate. To authenticate a user or an application, a
related application digitally signs a randomly generated
piece of data using the private key and sends both the
certificate and the signed data across the network. The
server uses techniques of public-key cryptography to val-
idate the signature and confirm the validity of the certifi-
cate. The DN of a user then can be mapped to a local
identity (e.g. Unix hosts have a file containing DN and
username pair).

The safety of a user private key that corresponds to the
user’s X.509 certificate is critical to the security of grid
computing. If another person were to gain access of the
private key, the second person would be able to imperson-
ate the owner at will until the certificate is revoked by the
CA. To limit this potential danger, a private key is usually
stored as a file encrypted by a password or a pass-phrase.

In a grid environment, users may need to authenticate
themselves multiple times in a relatively short period of
time. Each authentication requires a user to type pass-
phrase to decrypt the private key. Multiple pass-phrase
inputs not only are inconvenient for users but also are op-
portunities of compromising security. JPARSS solves this
problem using proxy certificate similar to the approach of
the globus [7] . A proxy certificate is a short-lived cer-
tificate that is created by a user and signed by the user’s
regular long-lived certificate. The proxy certificate has its

own non-encrypted private key stored in a file protected
by file permission, so it can be used multiple times with-
out typing a pass-phrase. In short, a proxy certificate is
a short-lived binding of the user’s DN to a different pair
of private and public key. At runtime a JPARSS applica-
tion first checks whether a proxy X.509 exists at an well
known location on a host when the application starts. If
the certificate exists and is valid, it will be used to authen-
ticate the application to a potential server. Otherwise a
new X.509 proxy certificate , that will be valid for a short
period of time (usually 24 hours) and has a non-encrypted
private key, will be generated, signed by the user’s per-
manent certificate and stored in the well known location.
Once a JPARSS server receives the X.509 proxy certifi-
cate, it will verify it and map the certificate onto a local
user on the host. This scheme allows single sign-on, pro-
tects user credentials because of the short lived certificate,
enables interoperability with local security solutions due
to the mapping from a certificate to a local user, and pro-
vides interoperability with secure Web servers because of
the standard of X.509.

2.2.2 Delegation of Proxy Certificate

In a grid environment, various processes need to per-
form secure operations on a user’s behalf and therefore
the user must delegate his/her identity. Since a proxy
is a short-lived identifier for a user, a user can delegate
his/her proxy certificate to a remote process which in turn
may delegate the proxy certificate to a different process.
JPARSS uses simple protocols to delegate proxy certifi-
cates to web servers or JPARSS daemons over secure SSL
connections.

2.2.3 Secure and Plain Text Data Transfer

A JPARSS application connects to a JPARSS server using
a proxy certificate and establishes a secure single socket
stream via SSL. All subsequent parallel connections can
be either secure streams or regular socket streams de-
pending on client requests. The parallel secure streams
can be used to transfer sensitive data and the regular par-
allel socket streams can be used to achieve optimal band-
width.

2.3 Java Implementation

Applications using JPARSS need only deal with
four socket classes: PClientSocket, PSocket,
PClientSSLSocket and PServerSocket. The first two
are derived from Java.net.Socket, the third one is de-
rived from the first one and the final one is derived from
Java.net.ServerSocket. The internal parallel streams can
be obtained from getInputStream or getOutputStream of
the derived socket classes. All I/O operations are handled
asynchronously via threads to improve I/O efficiency.
Client connections are established without callbacks from
servers to the clients to avoid problems introduced when
the clients are behind firewalls.

2.4 Applications

Several file transfer applications using JPARSS are im-
plemented and deployed in the Jefferson Lab/MIT Lattice
QCD grid environment. The achieved bandwidth of these
Java parallel file transfer utilities is 3 to 4 times better
than that of regular ftp. These applications include a file
transfer server and a simple command line file transfer
utility that imitates scp syntax but without requiring the
user to enter a password every time he/she transfers files.
The file server also accepts a delegated proxy certificate
from network to enable third party file transfers.

2.5 Web Services

A simple Web service is implemented to enable peer-to-
peer and third party transfer via Web browsers. Users can
initiate, monitor and control the transfers all through Web
browsers. A simple modification to Apache mod-ssl en-
ables single sign-on using proxy certificates to a Web ser-
vice which delegates the proxy certificates to a file trans-
fer daemon. There is a communication channel between
the daemon and the Web service so that the file transfer
can be monitored and controlled. Figure 4 illustrates the
architecture of third party file transfer through Web ser-

vices.
@ Web Browser
request id
Firewall

N Proxy certificate
transfer status

Request file locati
Web Server [~ 1¢ 0¢UO web Server

. .| Proxy certificate
control info
File Server File Server

File tranfer
Site 2

Site 1
Figure 4: Architecture of third party transfer using
Web services.

2.6 Comparisons to other works

JPARSS has similarity to some components in the globus
toolkit. For example, both support efficient, reliable data
transfer, both support proxy certificate and certificate del-
egation, both could handle file transfer through Web ser-
vices (portals). But they differ from each other in several
aspects. First of all globus file transfer server is imple-
mented in C and its Java client does not support parallel
socket streams. In contrast the JPARSS file server and the
client APIs are implemented in Java and support paral-
lel socket streams. Secondly globus only uses SSL style
handshake to authenticate users and uses regular socket
to transfer data in plain text form. But JPARSS offers ap-
plications choices to transfer data either in encrypted or
in plain text from. Finally globus manages proxy certifi-
cate in a central server which is contacted by each grid
portal to retrieve a stored proxy certificate. A user will

be prompted to enter a password when he/she wishes to
access a different portal. In contrast JPARSS delegates
a user’s proxy certificate to portals directly so that the
owner of the proxy certificate will be allowed to access
all portals without entering a password again.

3 Conclusions

This paper presents a pure Java network package called
JPARSS. It helps grid applications to achieve near opti-
mal TCP bandwidth without tuning TCP window size,
provides simple Java classes as building blocks for
rapid development using applets or servlets, offers a
single sign-on mechanism, facilitates certificate delega-
tion, and reduces the complexity of development for se-
cure connection between communication peers. Finally
the source code and classes can be obtained through
ftp://ftp.jlab.org/pub/cdev/jparss.tar.gz

References

[1] Jeffery Semke, Jamshid Mahdavi and Mattew
Mathis. Automatic TCP Buffer Tunning. ACM SIG-
COMM’98/Computer Communication Review, Vol.
28, No.4, Oct. 1998.

[2] G. von Laszewski, I. Foster. Grid Infrastructure
to Support Science Portals for Large Scale Instru-
ments. In Proceedings of the Workshop Distributed
Computing on the Web. 1999.

[3] Ann Chervenak, Bill Alcock, Joe Bester, John Bres-
nahan, Ian Foster, Carl Kesselman, Sam Meder,
Veronika Nefedova, Darcy Quesnel, Steven Tuecke.
Secure, Efficient Data Transport and Replica
Management for High-Performance Data-Intensive
Computing. In Proceedings of 18th IEEE Sympo-
sium on Mass Storage Systems. San Diego, Califor-
nia. April, 2001.

[4] H. Sivakumar, S. Bailey and R. L. Grossman.
PSockets: The Case for Application-level Network
Striping for Data Intensive Applications using High
Speed Wide Area Networks. In Proceedings of Su-
perComputing 2000. Dallas, Texas. Nov. 2000.

[5] Ajay Tirumala, Jim Ferguson.
http://dast.nlanr.net/Projects/Iperf/index.html,
May 2001.

[6] K. Hickman and T. Elgamal. The SSL protocol. In-
ternet draft, Netscape Communication Corp., June
1995. Version 3.0.

[7] 1. Foster, C. Kesselman, G. Tsudik, S. Tuecke. A
Security Architecture for Computational Grids. In
Proceedings 5th ACM Conference on Computer and
Communications Security Conference, pg. 83-92,
1998.

