HUGS

Introduction

 to
Quantum Chromodynamics (QCD)

Jianwei Qiu
Theory Center, Jefferson Lab May 29 - June 15, 2018

Secture Tiwo

QCD is everywhere in our universe

\square What is the role of QCD in the evolution of the universe?

\square How hadrons are emerged from quarks and gluons?
\square How does QCD make up the properties of hadrons?
Their mass, spin, magnetic moment, ...
\square What is the QCD landscape of nucleon and nuclei?

Asymptotic freedom
$2 \mathrm{GeV}(1 / 10 \mathrm{fm}) \quad$ Probing momentum
\square How do the nuclear force arise from QCD?
$\square \ldots$

Unprecedented Intellectual Challenge!

\square Facts:
No modern detector has been able to see quarks and gluons in isolation!
Gluons are dark!
\square The challenge:
How to probe the quark-gluon dynamics, quantify the hadron structure, study the emergence of hadrons, ..., if we cannot see quarks and gluons?
\square Answer to the challenge:
Theory advances:
QCD factorization - matching the quarks/gluons to hadrons with controllable approximations!
Experimental breakthroughs:
Jets - Footprints of energetic quarks and gluons
Quarks - Need an EM probe to "see" their existence, ...
Gluons - Varying the probe's resolution to "see" their effect, ...
Energy, luminosity and measurement - Unprecedented resolution, event rates, and precision probes, especially EM probes, like one at Jlab, ...

Theoretical approaches - approximations

\square Perturbative QCD Factorization:

- Approximation at Feynman diagram level

See Metz's lectures
Sokhan's lectures
Furletova's lectures

\square Effective field theory (EFT):

- Approximation at the Lagrangian level

See Stewart's lectures Cirigliano's lectures
Soft-collinear effective theory (SCET), Non-relativistic QCD (NRQCD), Heavy quark EFT, chiral EFT(s), ...
\square Other approaches:

See Stevens' lectures Pastore's lectures

Light-cone perturbation theory, Dyson-Schwinger Equations (DSE), Constituent quark models, AdS/CFT correspondence, ...
\square Lattice QCD:

- Approximation mainly due to computer power

See Stevens' lecture Pastore's lectures
Hadron structure, hadron spectroscopy, nuclear structure, phase shift, ...

Physical Observables

Cross sections with identified hadrons are non-perturbative!

Hadronic scale $\sim 1 / \mathrm{fm} \sim 200 \mathrm{MeV}$ is not a perturbative scale

Purely infrared safe quantities

Observables without identified hadron(s)

Fully infrared safe observables - I

Fully inclusive, without any identified hadron!

$$
\sigma_{e^{+}}^{\text {total }} \rightarrow \text { hadrons }=\sigma_{e^{+}}^{\text {total }} \rightarrow \text { partons }
$$

The simplest observable in QCD

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadrons inclsusive cross sections

$\square \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ hadron total cross section - not a specific hadron!

If there is no quantum interference between partons and hadrons,

Finite in perturbation theory - KLN theorem
$\square \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow$ parton total cross section:
$\sigma_{e^{+} e^{-} \rightarrow \text { partons }}^{\text {tot }}\left(s=Q^{2}\right)=\sum_{n} \sigma^{(n)}\left(Q^{2}, \mu^{2}\right)\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{n} \quad$ Calculable in pQCD

Infrared Safety of e+e- Total Cross Sections

\square Optical theorem:
\square Time-like vacuum polarization:

$$
\sim_{\vec{Q}}^{\nu} \int_{\stackrel{\rightharpoonup}{Q}}^{\mu} \sim=\left(Q^{\mu} Q^{\nu}-Q^{2} g^{\mu \nu}\right) \Pi\left(Q^{2}\right)
$$

IR safety of $\sigma_{e^{+} e^{-} \rightarrow \text { partons }}^{\text {tot }}=\mathbf{I R}$ safety of $\Pi\left(Q^{2}\right)$ with $Q^{2}>0$
\square IR safety of $\Pi\left(Q^{2}\right)$

Rest frame of the virtual photon

Lowest order (LO) perturbative calculation

\square Lowest order Feynman diagram:
\square Invariant amplitude square:

$$
\begin{aligned}
\left|\bar{M}_{e^{+} e^{-} \rightarrow Q \bar{Q}}\right|^{2} & =e^{4} e_{Q}^{2} N_{c} \frac{1}{s^{2}} \frac{1}{2^{2}} \operatorname{Tr}\left[\gamma \cdot p_{2} \gamma^{\mu} \gamma \cdot p_{1} \gamma^{v}\right] \\
& \times \operatorname{Tr}\left[\left(\gamma \cdot k_{1}+m_{Q}\right) \gamma_{\mu}\left(\gamma \cdot k_{2}-m_{Q}\right) \gamma_{v}\right] \\
& =e^{4} e_{Q}^{2} N_{c} \frac{2}{s^{2}}\left[\left(m_{Q}^{2}-t\right)^{2}+\left(m_{Q}^{2}-u\right)^{2}+2 m_{Q}^{2} s\right]
\end{aligned}
$$

$$
\begin{aligned}
& s=\left(p_{1}+p_{2}\right)^{2} \\
& t=\left(p_{1}-k_{1}\right)^{2} \\
& u=\left(p_{2}-k_{1}\right)^{2}
\end{aligned}
$$

\square Lowest order cross section:

$$
\begin{aligned}
& \frac{d \sigma_{e^{+} e^{-} \rightarrow Q \bar{Q}}}{d t}=\frac{1}{16 \pi s^{2}}\left|\bar{M}_{e^{+} e^{+} \rightarrow Q \bar{Q}}\right|^{2} \quad \text { where } s=Q^{2} \\
& \sigma_{2}^{(0)}=\sum_{Q} \sigma_{e^{+} e^{+} \rightarrow Q \bar{Q}}=\sum_{Q} e_{Q}^{2} N_{c}^{2} \frac{4 \pi \alpha_{\alpha_{m}^{2}}^{2}}{3 s}\left[1+\frac{2 m_{Q}^{2}}{s}\right] \sqrt{1-\frac{4 m_{Q}^{2}}{s}}
\end{aligned}
$$

Threshold constraint

One of the best tests for the number of colors

Next-to-leading order (NLO) contribution

\square Real Feynman diagram:

$$
\begin{gathered}
x_{i}=\frac{E_{i}}{\sqrt{s} / 2}=\frac{2 p_{i} \cdot q}{s} \quad \text { with } i=1,2,3 \\
\sum_{i} x_{i}=\frac{2\left(\sum_{i} p_{i}\right) \cdot q}{s}=2 \\
2\left(1-x_{1}\right)=x_{2} x_{3}\left(1-\cos \theta_{23}\right), \quad \text { cycl. }
\end{gathered}
$$

\square Contribution to the cross section:

$$
\frac{1}{\sigma_{0}} \frac{d \sigma_{e^{+} e^{-} \rightarrow Q \bar{Q} g}}{d x_{1} d x_{2}}=\frac{\alpha_{s}}{2 \pi} C_{F} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}
$$

IR as $\times 3 \rightarrow 0$
CO as $\begin{array}{r}\theta+0 \\ \theta_{23} \rightarrow 0\end{array}$

Divergent as $x_{i} \rightarrow 1$
Need the virtual contribution and a regulator!

How does dimensional regularization work?

\square Complex n-dimensional space:

$$
\int d^{n} k F(k, Q)
$$

Dimensional regularization for both IR and CO

\square NLO with a dimensional regulator:
\diamond Real: $\quad \sigma_{3, \varepsilon}^{(1)}=\sigma_{2, \varepsilon}^{(0)} \frac{4}{3}\left(\frac{\alpha_{s}}{\pi}\right)\left(\frac{4 \pi \mu^{2}}{Q^{2}}\right)^{\varepsilon}\left[\frac{\Gamma(1-\varepsilon)^{2}}{\Gamma(1-3 \varepsilon)}\right]\left[\frac{1}{\varepsilon^{2}}+\frac{3}{2 \varepsilon}+\frac{19}{4}\right]$
\triangleleft Virtual:

$$
\sigma_{2, \varepsilon}^{(1)}=\sigma_{2, \varepsilon}^{(0)} \frac{4}{3}\left(\frac{\alpha_{s}}{\pi}\right)\left(\frac{4 \pi \mu^{2}}{Q^{2}}\right)^{\varepsilon}\left[\frac{\Gamma(1-\varepsilon)^{2} \Gamma(1+\varepsilon)}{\Gamma(1-2 \varepsilon)}\right]\left[-\frac{1}{\varepsilon^{2}}-\frac{3}{2 \varepsilon}+\frac{\pi^{2}}{2}-4\right]
$$

$\triangleleft \mathrm{NLO}: \sigma_{3, \varepsilon}^{(1)}+\sigma_{2, \varepsilon}^{(1)}=\sigma_{2}^{(0)}\left[\frac{\alpha_{s}}{\pi}+O(\varepsilon)\right]$
No ε dependence!
\diamond Total: $\sigma^{\text {tot }}=\sigma_{2}^{(0)}+\sigma_{3, \varepsilon}^{(1)}+\sigma_{2, \varepsilon}^{(1)}+O\left(\alpha_{s}^{2}\right)=\sigma_{2}^{(0)}\left[1+\frac{\alpha_{s}}{\pi}\right]+O\left(\alpha_{s}^{2}\right)$ $\sigma^{\text {tot }}$ is Infrared Safe!
$\sigma^{\text {tot }}$ is independent of the choice of IR and CO regularization
Go beyond the inclusive total cross section?

Hadronic cross section in e+e-collision

\square Normalized hadronic cross section:

$$
\begin{aligned}
R_{e^{+} e^{-}}(s) \equiv & \frac{\sigma_{e^{+} e^{-} \rightarrow \text { hadrons }}(s)}{\sigma_{e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}}(s)} \\
\approx & N_{c} \sum_{q=u, d, s} e_{q}^{2}\left[1+\frac{\alpha_{s}(s)}{\pi}+\mathcal{O}\left(\alpha_{s}^{2}(s)\right)\right] \\
& +N_{c} \sum_{q=c, \ldots} e_{q}^{2}\left[\left(1+\frac{2 m_{q}^{2}}{s}\right) \sqrt{1-\frac{4 m_{q}^{2}}{s}}+\mathcal{O}\left(\alpha_{s}(s)\right)\right]
\end{aligned}
$$

Fully infrared safe observables - II

No identified hadron, but, with phase space constraints

$$
\begin{aligned}
& \sigma_{e^{+} e^{-} \rightarrow \text { hadrons }}^{\mathrm{Jets}}=\sigma_{e^{+} e^{-} \rightarrow \text { partons }}^{\mathrm{Jets}} \\
& \text { Jets - "trace" or "footprint" of partons }
\end{aligned}
$$

Thrust distribution in $\mathrm{e}^{+} \mathrm{e}^{-}$collisions
etc.

Jets - trace of partons

\square Jets - "total" cross-section with a limited phase-space

Not any specific hadron!
\square Q: will IR cancellation be completed?
\diamond Leading partons are moving away from each other
\triangleleft Soft gluon interactions should not change the direction of an energetic parton \rightarrow a "jet" - "trace" of a parton

Many Jet algorithms

Sterman-Weinberg Jet

Infrared safety for restricted cross sections

\square For any observable with a phase space constraint, Γ,

$$
\begin{aligned}
d \sigma(\Gamma) & \equiv \frac{1}{2!} \int d \Omega_{2} \frac{d \sigma^{(2)}}{d \Omega_{2}} \Gamma_{2}\left(k_{1}, k_{2}\right) \\
& +\frac{1}{3!} \int d \Omega_{3} \frac{d \sigma^{(3)}}{d \Omega_{3}} \Gamma_{3}\left(k_{1}, k_{2}, k_{3}\right) \\
& +\ldots \\
& +\frac{1}{n!} \int d \Omega_{n} \frac{d \sigma^{(n)}}{d \Omega_{n}} \Gamma_{n}\left(k_{1}, k_{2}, \ldots, k_{n}\right)+\ldots
\end{aligned}
$$

\square Conditions for IRS of $\mathbf{d} \sigma(\Gamma)$:

Where $\Gamma_{n}\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ are constraint functions and invariant under Interchange of n-particles

$$
\Gamma_{n+1}\left(k_{1}, k_{2}, \ldots,(1-\lambda) k_{n}^{\mu}, \lambda k_{n}^{\mu}\right)=\Gamma_{n}\left(k_{1}, k_{2}, \ldots, k_{n}^{\mu}\right) \quad \text { with } 0 \leq \lambda \leq 1
$$

Physical meaning:
Measurement cannot distinguish a state with a zero/collinear momentum parton from a state without the parton

Special case: $\Gamma_{n}\left(k_{1}, k_{2}, \ldots, k_{n}\right)=1$ for all $n \Rightarrow \sigma^{(\text {tot })}$

An early clean two-jet event

Lowest order $\left(\mathcal{O}\left(\alpha^{2} \alpha_{s}^{0}\right)\right)$:
$\operatorname{LEP}(\sqrt{s}=90-205 \mathrm{GeV})$

Discovery of a gluon jet

First order in QCD $\left(\mathcal{O}\left(\alpha^{2} \alpha_{s}^{1}\right)\right)$:

Reputed to be the first three-jet event from TASSO

TASSO Collab., Phys. Lett. B86 (1979) 243
MARK-J Collab., Phys. Rev. Lett. 43 (1979) 830 PLUTO Collab., Phys. Lett. B86 (1979) 418 JADE Collab., Phys. Lett. B91 (1980) 142

PETRA $\mathrm{e}^{+} \mathrm{e}^{-}$storage ring at DESY:

$$
\mathrm{E}_{\mathrm{c} . \mathrm{m} .} \gtrsim 15 \mathrm{GeV}
$$

TASSO

Tagged three-jet event from LEP

\uparrow

Gluon Jet

Two-jet cross section in e+e- collisions

\square Parton-Model = Born term in QCD:

$$
\sigma_{2 \mathrm{Jet}}^{(\mathrm{PM})}=\frac{3}{8} \sigma_{0}\left(1+\cos ^{2} \theta\right)
$$

\square Two-jet in pQCD:

$$
\sigma_{2 \mathrm{Jet}}^{(\mathrm{peCD})}=\frac{3}{8} \sigma_{0}\left(1+\cos ^{2} \theta\right)\left(1+\sum_{n=1} C_{n}\left(\frac{\alpha_{s}}{\pi}\right)^{n}\right)
$$

$$
\text { with } \quad C_{n}=C_{n}(\delta)
$$

\square Sterman-Weinberg jet:

$$
\begin{aligned}
& \sigma_{2 \mathrm{Jet}}^{(\mathrm{peCD})}=\frac{3}{8} \sigma_{0}\left(1+\cos ^{2} \theta\right) \\
& \times\left[1-\frac{4}{3} \frac{\alpha_{s}}{\pi}\left(4 \ln (\delta) \ln \left(\delta^{\prime}\right)+3 \ln (\delta)+\frac{\pi^{2}}{3}+\frac{5}{2}\right)\right] \\
& \sigma_{\text {total }}=\sigma_{2 \mathrm{Jet}} \quad \text { as } Q \rightarrow \infty
\end{aligned}
$$

Basics of jet finding algorithms

\square Recombination jet algorithms (almost all e+e-colliders):
Recombination metric: $\quad y_{i j}=\frac{M_{i j}^{2}}{E_{\text {c.m. }}^{2}}$

$$
M_{i j}^{2}=2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right)
$$ for Durham $\mathbf{k}_{\boldsymbol{T}}$

\checkmark different algorithm = different choice of $M_{i j}^{2}$:
\diamond Combine the particle pair (i, j) with the smallest $y_{i j}:(i, j) \rightarrow k$

$$
\text { e.g. E scheme : } p_{k}=p_{i}+p_{j}
$$

\diamond iterate until all remaining pairs satisfy: $y_{i j}>y_{c u t}$
\square Cone jet algorithms (CDF, ..., colliders):
\diamond Cluster all particles into a cone of half angle R to form a jet:
\diamond Require a minimum visible jet energy: $E_{j e t}>\epsilon$
Recombination metric: $\quad d_{i j}=\min \left(k_{T_{i}}^{2 p}, k_{T_{j}}^{2 p}\right) \frac{\Delta_{i j}^{2}}{R^{2}}$ with $\quad \Delta_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}$
\diamond Classical choices: $p=1-$ " k_{T} algorithm", $p=-1-$ "anti- $k_{T} ", \ldots$

Thrust distribution

Thrust axis: \vec{u}

$$
-\frac{>}{T<1}<->\vec{u}
$$

$$
\begin{gathered}
T_{n}\left(p_{1}^{u}, p_{2}^{u}, \ldots, p_{n}^{u}\right)=\max _{\vec{u}}\left(\frac{\sum_{i=1}^{n} \vec{p}_{i} \cdot \vec{u}}{\sum_{i=1}^{n}\left|\vec{p}_{i}\right|}\right) \\
--\overline{T \sim 1}
\end{gathered}>\vec{u}
$$

\square Phase space constraint:

$$
\frac{d \sigma_{e^{+} e^{-} \rightarrow \text { hadrons }}}{d T} \quad \text { with } \quad \Gamma_{n}\left(p_{1}^{\mu}, p_{2}^{u}, \ldots, p_{n}^{\mu}\right)=\delta\left(T-T_{n}\left(p_{1}^{\mu}, p_{2}^{\mu}, \ldots, p_{n}^{\mu}\right)\right)
$$

\triangleleft Contribution from $\mathrm{p}=0$ particles drops out the sum
\triangleleft Replace two collinear particles by one particle does not change the thrust

$$
\left|(1-\lambda) \vec{p}_{n} \cdot \vec{u}\right|+\left|\lambda \vec{p}_{n} \cdot \vec{u}\right|=\left|\vec{p}_{n} \cdot \vec{u}\right|
$$

and

$$
\left|(1-\lambda) \vec{p}_{n}\right|+\left|\lambda \vec{p}_{n}\right|=\left|\vec{p}_{n}\right|
$$

The harder question

\square Question:
How to test QCD in a reaction with identified hadron(s)?

- to probe the quark-gluon structure of the hadron
\square Facts:
Hadronic scale $\sim 1 / \mathrm{fm} \sim \Lambda_{\text {QCD }}$ is non-perturbative
Cross section involving identified hadron(s) is not IR safe and is NOT perturbatively calculable!
\square Solution - Factorization:
\diamond Isolate the calculable dynamics of quarks and gluons
\triangleleft Connect quarks and gluons to hadrons via non-perturbative but universal distribution functions
- provide information on the partonic structure of the hadron

Observables with ONE identified hadron

\square DIS cross section is infrared divergent, and nonperturbative!

\square QCD factorization (approximation!)

Color entanglement Approximation

Pinch singularity and pinch surface

\square "Square" of the diagram with a "unobserved gluon":
"Cut-line" - final-state

- in a "cut-diagram" notation

$$
\begin{aligned}
& \propto \int \mathcal{T}(p-k, Q) \frac{1}{(p-k)^{2}+i \epsilon} \frac{1}{(p-k)^{2}-i \epsilon} d^{4} k \delta\left(k^{2}\right)_{+} \\
& \left.\propto \int \mathcal{T}(l, Q) \frac{1}{l^{2}+i \epsilon} \frac{1}{l^{2}-i \epsilon} d l^{2} \quad \operatorname{Im~} \uparrow \quad \right\rvert\, l^{2} \\
& \Rightarrow \infty \\
& \text { conjugate } \\
& \text { plitude }
\end{aligned}
$$

Amplitude
Complex conjugate of the Amplitude

Pinch surfaces

Pinch surfaces

= "surfaces" in k, k^{\prime}, \ldots
determined by $(p-k)^{2}=0,\left(p-k-k^{\prime}\right)^{2}=0, \ldots$
"perturbatively"

Hard collisions with identified hadron(s)

\square Creation of an identified hadron:

Pinc dron:

\square Identified initial hadron:

\square Initial + created identified hadron(s):

Cross section with identified hadron(s) is NOT perturbatively calculable

Hard collisions with identified hadron(s)

\square Creation of an identified hadron:

Pinc dron:

\square Identified initial hadron:

\square Initial + created identified hadron(s):

Dynamics at a HARD scale is linked

Hard collisions with identified hadrons)

Creation of an identified hadron:

Pinch ron:

\square Identified initial hadron:
Non-perturbative!
\square Initial + created identified hadrons):

Quantum interference between dynamics at the HARD and hadronic scales is powerly suppressed!

Pinch in both \mathbf{k}^{2} and $\mathbf{k}^{\prime 2}$

Backup slides

N-Jettiness

\square Event structure:
$p p \rightarrow$ leptons plus jets
\square N-Jettiness:
(Stewart, Tackmann, Waalewijin, 2010)
$\tau_{N}=\sum_{k} \min _{i}\left\{\frac{2 q_{i} \cdot p_{k}}{Q_{i}}\right\}$

The sum include all final-state hadrons excluding more than N jets
Allows for an event-shape based analysis of multi-jets events (a generalization of Thrust)
\square-infinitely narrow jets (jet veto): As a limit of N -Jettiness: $\quad \tau_{N} \rightarrow 0$ Generalization of the thrust distribution in $e^{+} e^{-}$ initial-state identified hadron!

