

Introduction to Quantum Chromodynamics (QCD)

Jianwei Qiu Theory Center, Jefferson Lab May 29 – June 15, 2018

Lecture Two

QCD is everywhere in our universe

□ What is the role of QCD in the evolution of the universe?

□ How hadrons are emerged from quarks and gluons?

How does QCD make up the properties of hadrons? Their mass, spin, magnetic moment, ...

□ What is the QCD landscape of nucleon and nuclei?

Unprecedented Intellectual Challenge!

□ Facts:

No modern detector has been able to see quarks and gluons in isolation!

Gluons are dark!

□ The challenge:

How to probe the quark-gluon dynamics, quantify the hadron structure, study the emergence of hadrons, ..., if we cannot see quarks and gluons?

□ Answer to the challenge:

Theory advances:

QCD factorization – matching the quarks/gluons to hadrons with controllable approximations!

Experimental breakthroughs:

Jets – Footprints of energetic quarks and gluons

Quarks – Need an EM probe to "see" their existence, ...

Gluons – Varying the probe's resolution to "see" their effect, ...

Energy, luminosity and measurement – Unprecedented resolution, event rates, and precision probes, especially EM probes, like one at Jlab, ...

Theoretical approaches – approximations

Effective field theory (EFT):

– Approximation at the Lagrangian level

See Stewart's lectures Cirigliano's lectures

Soft-collinear effective theory (SCET), Non-relativistic QCD (NRQCD), Heavy quark EFT, chiral EFT(s), ...

□ Other approaches:

Light-cone perturbation theory, Dyson-Schwinger Equations (DSE), Constituent quark models, AdS/CFT correspondence, ...

□ Lattice QCD:

- Approximation mainly due to computer power

See Stevens' lecture Pastore's lectures

Hadron structure, hadron spectroscopy, nuclear structure, phase shift, ...

See Stevens' lectures Pastore's lectures **Physical Observables**

Cross sections with identified hadrons are non-perturbative!

Hadronic scale ~ 1/fm ~ 200 MeV is not a perturbative scale

Purely infrared safe quantities

Observables without identified hadron(s)

Fully infrared safe observables – I

Fully inclusive, without any identified hadron!

$$\sigma_{e^+e^- \rightarrow \text{hadrons}}^{\text{total}} = \sigma_{e^+e^- \rightarrow \text{partons}}^{\text{total}}$$

The simplest observable in QCD

e⁺e⁻ → hadrons inclsusive cross sections

$\Box e^+e^- \rightarrow$ hadron total cross section – not a specific hadron!

If there is no quantum interference between partons and hadrons,

$$\sigma_{e^+e^- \to \text{hadrons}}^{\text{tot}} \propto \sum_n P_{e^+e^- \to n} = \sum_n \sum_m P_{e^+e^- \to m} P_{m \to n} = \sum_m P_{e^+e^- \to m} \sum_n P_{m \to n} = 1$$

$$\sigma_{e^+e^- \to \text{partons}}^{\text{tot}} \propto \sum_m P_{e^+e^- \to m}$$

$$\sigma_{e^+e^- \to \text{hadrons}}^{\text{tot}} = \sigma_{e^+e^- \to \text{partons}}^{\text{tot}}$$
Finite in perturbation
theory – KLN theorem

$\Box e^+e^- \rightarrow$ parton total cross section:

$$\sigma_{e^+e^- \to \text{partons}}^{\text{tot}}(s=Q^2) = \sum_n \sigma^{(n)}(Q^2, \mu^2) \left(\frac{\alpha_s(\mu^2)}{\pi}\right)^n$$

Calculable in pQCD

Infrared Safety of e⁺e⁻ Total Cross Sections

Optical theorem:

□ Time-like vacuum polarization:

IR safety of $\sigma_{e^+e^- \rightarrow \text{partons}}^{\text{tot}} = \text{IR safety of } \prod(Q^2) \text{ with } Q^2 > 0$

\Box IR safety of $\Pi(Q^2)$

If there were pinched poles in $\Pi(\mathbb{Q}^2)$, \diamond real partons moving away from each other \diamond cannot be back to form the virtual photon again! \leftarrow Rest frame of the virtual photon

Lowest order (LO) perturbative calculation

Lowest order Feynman diagram:

□ Invariant amplitude square:

$$|\bar{M}_{e^+e^- \to Q\bar{Q}}|^2 = e^4 e_Q^2 N_c \frac{1}{s^2} \frac{1}{2^2} \operatorname{Tr} \left[\gamma \cdot p_2 \gamma^{\mu} \gamma \cdot p_1 \gamma^{\nu} \right] \\ \times \operatorname{Tr} \left[\left(\gamma \cdot k_1 + m_Q \right) \gamma_{\mu} \left(\gamma \cdot k_2 - m_Q \right) \gamma_{\nu} \right] \\ = e^4 e_Q^2 N_c \frac{2}{s^2} \left[\left(m_Q^2 - t \right)^2 + \left(m_Q^2 - u \right)^2 + 2 m_Q^2 s \right]$$

$$s = (p_1 + p_2)^2$$

$$t = (p_1 - k_1)^2$$

$$u = (p_2 - k_1)^2$$

Lowest order cross section:

$$\frac{d\sigma_{e^+e^- \to Q\bar{Q}}}{dt} = \frac{1}{16\pi s^2} \left| \bar{M}_{e^+e^- \to Q\bar{Q}} \right|^2 \quad \text{where } s = Q^2 \quad \text{Threshold constraint}$$

$$\sigma_2^{(0)} = \sum_Q \sigma_{e^+e^- \to Q\bar{Q}} = \sum_Q e_Q^2 N_c \frac{4\pi \alpha_{em}^2}{3s} \left[1 + \frac{2m_Q^2}{s} \right] \sqrt{1 - \frac{4m_Q^2}{s}}$$

One of the best tests for the number of colors

Next-to-leading order (NLO) contribution

Real Feynman diagram:

IR as $x3 \rightarrow 0$

Contribution to the cross section:

$$\frac{1}{\sigma_0} \frac{d\sigma_{e^+e^- \to Q\bar{Q}g}}{dx_1 dx_2} = \frac{\alpha_s}{2\pi} C_F \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)} \qquad \begin{array}{c} \text{CO as } \theta_{13} \to 0\\ \theta_{23} \to 0 \end{array}$$

Divergent as $x_i \rightarrow 1$ Need the virtual contribution and a regulator!

How does dimensional regularization work?

Dimensional regularization for both IR and CO

□ NLO with a dimensional regulator:

$$\Rightarrow \text{ Real:} \quad \sigma_{3,\varepsilon}^{(1)} = \sigma_{2,\varepsilon}^{(0)} \frac{4}{3} \left(\frac{\alpha_s}{\pi}\right) \left(\frac{4\pi\mu^2}{Q^2}\right)^{\varepsilon} \left[\frac{\Gamma(1-\varepsilon)^2}{\Gamma(1-3\varepsilon)}\right] \left[\frac{1}{\varepsilon^2} + \frac{3}{2\varepsilon} + \frac{19}{4}\right]$$

 \diamond Virtual:

$$\sigma_{2,\varepsilon}^{(1)} = \sigma_{2,\varepsilon}^{(0)} \frac{4}{3} \left(\frac{\alpha_s}{\pi}\right) \left(\frac{4\pi\mu^2}{Q^2}\right)^{\varepsilon} \left[\frac{\Gamma(1-\varepsilon)^2 \Gamma(1+\varepsilon)}{\Gamma(1-2\varepsilon)}\right] \left[-\frac{1}{\varepsilon^2} - \frac{3}{2\varepsilon} + \frac{\pi^2}{2} - 4\right]$$

 $\Rightarrow \text{ NLO: } \quad \sigma_{3,\varepsilon}^{(1)} + \sigma_{2,\varepsilon}^{(1)} = \sigma_2^{(0)} \left[\frac{\alpha_s}{\pi} + O(\varepsilon) \right]$

No ε dependence!

$$\Rightarrow \text{ Total: } \sigma^{\text{tot}} = \sigma_2^{(0)} + \sigma_{3,\varepsilon}^{(1)} + \sigma_{2,\varepsilon}^{(1)} + O\left(\alpha_s^2\right) = \sigma_2^{(0)} \left[1 + \frac{\alpha_s}{\pi}\right] + O\left(\alpha_s^2\right)$$

 σ^{tot} is Infrared Safe!

 $\sigma^{\,\rm tot}$ is independent of the choice of IR and CO regularization

Go beyond the inclusive total cross section?

Hadronic cross section in e+e- collision

Normalized hadronic cross section:

Fully infrared safe observables - II

No identified hadron, but, with phase space constraints

$$\sigma_{e^+e^- \rightarrow \text{hadrons}}^{\text{Jets}} = \sigma_{e^+e^- \rightarrow \text{partons}}^{\text{Jets}}$$

Jets – "trace" or "footprint" of partons

Thrust distribution in e⁺e⁻ collisions

etc.

Jets – trace of partons

- Jets "total" cross-section with a limited phase-space Not any specific hadron!
- Q: will IR cancellation be completed?
 - Leading partons are moving away from each other
 - ◇ Soft gluon interactions should not change the direction of an energetic parton → a "jet" – "trace" of a parton
- Many Jet algorithms

Infrared safety for restricted cross sections

\Box For any observable with a phase space constraint, Γ ,

$$d\sigma(\Gamma) = \frac{1}{2!} \int d\Omega_2 \frac{d\sigma^{(2)}}{d\Omega_2} \Gamma_2(k_1, k_2)$$

+
$$\frac{1}{3!} \int d\Omega_3 \frac{d\sigma^{(3)}}{d\Omega_3} \Gamma_3(k_1, k_2, k_3)$$

+
$$\dots$$

+
$$\frac{1}{n!} \int d\Omega_n \frac{d\sigma^{(n)}}{d\Omega_n} \Gamma_n(k_1, k_2, \dots, k_n) + \dots$$

Where $\Gamma_n(k_1, k_2, ..., k_n)$ are constraint functions and invariant under Interchange of n-particles

Conditions for IRS of d σ (Γ):

$$\Gamma_{n+1}\left(k_1, k_2, \dots, (1-\lambda)k_n^{\mu}, \lambda k_n^{\mu}\right) = \Gamma_n\left(k_1, k_2, \dots, k_n^{\mu}\right) \quad \text{with} \quad 0 \le \lambda \le 1$$

Physical meaning:

Ι

Measurement cannot distinguish a state with a zero/collinear momentum parton from a state without the parton

Special case: $\Gamma_n(k_1, k_2, ..., k_n) = 1$ for all $n \Rightarrow \sigma^{(tot)}$

An early clean two-jet event

 $\mathsf{LEP}\ (\sqrt{s} = 90 - 205\ \mathsf{GeV})$

Discovery of a gluon jet

First order in QCD ($\mathcal{O}(\alpha^2 \alpha_s^1)$): PETRA e⁺e⁻ storage ring at DESY: $E_{c.m.} \gtrsim 15$ GeV α, TASSO γ/Z 4 trocks 6 tracks 4.3 GeV 4.1 GeV Jet **Reputed to be the first** three-jet event from TASSO TASSO Collab., Phys. Lett. <u>B86</u> (1979) 243 MARK-J Collab., Phys. Rev. Lett. <u>43</u> (1979) 830 4 tracks PLUTO Collab., Phys. Lett. <u>B86</u> (1979) 418 7.8 GeV JADE Collab., Phys. Lett. B91 (1980) 142

Tagged three-jet event from LEP

Two-jet cross section in e+e- collisions

□ Parton-Model = Born term in QCD:

$$\sigma_{2\text{Jet}}^{(\text{PM})} = \frac{3}{8}\sigma_0 \left(1 + \cos^2\theta\right)$$

□ Two-jet in pQCD:

$$\sigma_{2\text{Jet}}^{(\text{pQCD})} = \frac{3}{8} \sigma_0 \left(1 + \cos^2 \theta \right) \left(1 + \sum_{n=1}^{\infty} C_n \left(\frac{\alpha_s}{\pi} \right) \right)$$

with $C_n = C_n \left(\delta \right)$

□ Sterman-Weinberg jet:

$$\sigma_{2\text{Jet}}^{(\text{pQCD})} = \frac{3}{8} \sigma_0 \left(1 + \cos^2 \theta \right)$$

$$\mathbf{x} \left[1 - \frac{4}{3} \frac{\alpha_s}{\pi} \left(4\ln(\delta) \ln(\delta') + 3\ln(\delta) + \frac{\pi^2}{3} + \frac{5}{2} \right) \right] \mathbf{E}_1$$

1

 $\sigma_{\text{total}} = \sigma_{2\text{Jet}} \quad \text{as } Q \to \infty$

$$\delta \qquad E_2$$

$$\theta$$

$$\epsilon \sqrt{s} = \delta, \quad Z \text{-axis}$$

$$E_1$$
Sterman-Weinberg Jet

Basics of jet finding algorithms

□ Recombination jet algorithms (almost all e+e- colliders):

Recombination metric: $y_{ij} = \frac{M_{ij}^2}{E_{cm}^2}$ $M_{ij}^2 = 2\min(E_i^2, E_j^2)(1 - \cos\theta_{ij})$

for Durham k_{T}

- \diamond different algorithm = different choice of M_{ij}^2 :
- \diamond Combine the particle pair (i, j) with the smallest \mathcal{Y}_{ij} : $(i, j) \rightarrow k$

e.g. E scheme : $p_k = p_i + p_j$

 \diamond iterate until all remaining pairs satisfy: $y_{ij} > y_{cut}$

□ Cone jet algorithms (CDF, ..., colliders):

- \diamond Cluster all particles into a cone of half angle *R* to form a jet:
- ♦ Require a minimum visible jet energy: $E_{jet} > \epsilon$

Recombination metric: $d_{ij} = \min\left(k_{T_i}^{2p}, k_{T_j}^{2p}\right) \frac{\Delta_{ij}^2}{R^2}$ with $\Delta_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$

♦ Classical choices: $p=1-"k_T$ algorithm", p=-1-"anti- k_T ", ...

Thrust distribution

□ Phase space constraint:

$$\frac{d\sigma_{e^+e^-\to \text{hadrons}}}{dT} \quad \text{with} \quad \Gamma_n\left(p_1^\mu, p_2^\mu, ..., p_n^\mu\right) = \delta\left(T - T_n\left(p_1^\mu, p_2^\mu, ..., p_n^\mu\right)\right)$$

♦ Contribution from p=0 particles drops out the sum

 Replace two collinear particles by one particle does not change the thrust

and
$$|(1 - \lambda) \vec{p}_n \cdot \vec{u}| + |\lambda \vec{p}_n \cdot \vec{u}| = |\vec{p}_n \cdot \vec{u}|$$
$$|(1 - \lambda) \vec{p}_n| + |\lambda \vec{p}_n| = |\vec{p}_n|$$

The harder question

Question:

How to test QCD in a reaction with identified hadron(s)? – to probe the quark-gluon structure of the hadron

□ Facts:

Hadronic scale ~ 1/fm ~ Λ_{QCD} is non-perturbative

Cross section involving identified hadron(s) is not IR safe and is NOT perturbatively calculable!

- □ Solution Factorization:
 - \diamond Isolate the calculable dynamics of quarks and gluons
 - Connect quarks and gluons to hadrons via non-perturbative but universal distribution functions

- provide information on the partonic structure of the hadron

Observables with ONE identified hadron

DIS cross section is infrared divergent, and nonperturbative!

Pinch singularity and pinch surface

Hard collisions with identified hadron(s)

Hard collisions with identified hadron(s)

Hard collisions with identified hadron(s)

Backup slides

N-Jettiness

Event structure:

 $pp \rightarrow$ leptons plus jets.

□ N-Jettiness:

(Stewart, Tackmann, Waalewijin, 2010)

$$\tau_N = \sum_k \min_i \left\{ \frac{2q_i \cdot p_k}{Q_i} \right\}$$

The sum include all final-state hadrons *excluding* more than N jets

Allows for an event-shape based analysis of multi-jets events (a generalization of Thrust)

□ N-infinitely narrow jets (jet veto):

As a limit of N-Jettiness: $au_N o 0$

Generalization of the thrust distribution in e⁺e⁻ initial-state identified hadron!