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Let me try to explain some basics of gauge theory  
on the lattice & their physical interpretation

Then you come up with the answer of why we do  
Lattice QCD 

Slowly, we will move towards concepts of correlation functions 
 (two-point, three-point [connected and disconnected insertions],  
four-point functions) to calculate mass, charge, form factors, parton 
distributions on the lattice) 

Other than going too technical, I will follow path of  
asking simple questions. Aim is to discuss a very  
small segment of LQCD and be more interactive

Most important:  
Feel free to interrupt during the lecture 



We work in natural units

Natural Units

~ = c = 1

Convenient…..but is there a more fundamental reason ?

kg, lb, m, sec…these are very human centered measurement units

Units:

Standard HEP units, where

c = h̄ = kB = 1,

and thus

[length]−1 = [time]−1 = [mass] = [temperature] = [energy] = GeV.

Mass m = rest energy mc2 = (Compton wavelength)−1 mc/h̄.

(1GeV)−1 ≈ 0.2 fm

4

SR : time = distance / c 
QM: energy =    /time~

Much better way is to tie units to nature itself

For example: lecture duration 1 hr ~ 1027 GeV-1 is what the  
light takes to travel in terms of 1 proton length (mass mpc2 ~ 1 GeV)

Well….up to a certain scale…….. 

(Something very 
interesting next slide)
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F(grav)

strength ~1/137 (pure number)
⇠ (10�33cm)2 ⇠ (LP )

2

1

Lp
⇠ 1019 GeV

strength 
(not a pure 
number)

e-e scattering through graviton: QM probability ~ (amplitude)2

amplitude~ GN ⇥ E2

tiny for E << Ep bigger than 1(!!) for E > Ep

Not allowed in QM !!

So, one can’t (NAIVELY) extrapolate understanding 
 of ordinary gravity at large scale to very short scale 

(Planck Scale)
NOT END OF STORY 

IF TIME PERMITS —LATER

(Something even More interesting next slide)



To approach a plausible solution string theory 
comes into play (and exactly why “string”, not point,  

straight line, triangle or some other shapes)

Actually, similar type of argument can explain 
why Higgs particle required to solve problem with  

massive W-boson and how ~1989 people predicted  
80 < Higgs mass < 200 GeV 

(If one just doesn’t think in terms of Mexican-hat potential) 
Clue: massive particle has 3-spin, massless particle has         

2-spin(helicity). 

However, idea of “string” didn’t come first to solve QG,  
but came to explain QCD phenomenon

[possible discussion after lecture if interested]

Problem 



lattice, this symmetry is expected to be automatically restored in the continuum

limit. In the classical level QCD Lagrangian, QCD does not have any dimensionful

scale parameter in the massless quark limit. But when the theory is quantized, a

scale, called ⇤
QCD

emerges through the dimensional transmutation process. There-

fore, with massless quarks, a non-zero nucleon mass emerges due to the confinement

process and color-neutral hadrons can be produced. This is purely a nonperturbative

phenomenon and cannot be realized using perturbation theory. Lattice QCD emerges

as the best tool to study the nonperturbative phenomena in QCD. This is the only

reliable first-principles nonperturbative technique to study QCD. The fundamental

reason why lattice QCD is believed and has been tested as a reliable theory is be-

cause in the numerical simulations, uncertainties related to systematics such as finite

lattice spacing, finite volume e↵ects, etc. can be measured and thus artifacts can be

removed from the final results.

The consistent way of describing QCD on the lattice is the following:

1. discretization of spacetime (Euclidean) by a hypercubic lattice with cuto↵, ⇤

called lattice regularization,

2. discretization of continuum QCD action,

3. quantization of QCD using path integral formalism,

4. application of Monte-Carlo simulation to calculate expectation values

of di↵erent operators.

As the first step of lattice QCD calculation, one first converts QCD theory to

Euclidean spacetime using Wick rotation by replacing gµ⌫ with Euclidean metric �µ⌫ .

This Euclidean metric is obtained by performing the Wick rotation to imaginary time

t ! �i⌧ . This operation removes the distinction between covariant and contravariant

vectors on the lattice. The Euclidean spacetime is discretized by introducing a four-

dimensional grid points on the hypercubic lattice which are separated by the lattice

2

Lattice QCD Setup



Hyper-cubic lattice: 4D lattice for which distances between 
sites are same in all directions

Plaquette: elementary 
square closed by 4 links

Gauge field variables 
Uµ(x) 2 SU(3)

3x3 complex, unitary matrices on each link

Quark fields 
 

(f)
↵,c(x)

   color 3-vectors, 
   Dirac 4-spinors, 
   n_f vectors and 
Grassmann variables

Lattice QCD Setup



Fields on site  

What does it mean in comparison with continuum QFT  and  
how to approximate continuum fields??

Gauge fields attributed to links on lattice 

What is the physics?

Problem 

Calculate number of sites, links and plaquettes 
for a symmetric hypercubic d dimensional lattice  
lattice of size L with periodic boundary conditions

�(x)
cont

=) �

x

(lattice)



Need action invariant under local gauge transformation 
with SU(3) matrix 

S[ 0,  ̄0, A0] = S[ ,  ̄, A]

⌦(x)

Rotation invariance 

QuantumChromoDynamics

Pure gauge theory

Continuum QCD

Quantization

Lattice QCD

LQCD quantization

Gauge invariance

A local transformation with an SU(3) matrix Ω(x):

ψ(x) → ψ′(x) = Ω(x)ψ(x)

ψ(x) → ψ
′
(x) = ψ(x)Ω(x)†

Aµ(x) → A′
µ(x) = Ω(x)Aµ(x)Ω(x)† + i

(

∂µΩ(x)
)

Ω(x)†

leaves the action invariant

S[ψ′,ψ
′
,A′] = S[ψ,ψ,A] (1)

- Ω ∈ SU(3)→ Ω(x)†Ω(x) = 1

- Cf. rotation invariance, e.g., ψ(x)Ω(x)†Ω(x)ψ(x) = ψ(x)ψ(x)

- Action and observable (asymptotic) states have to be color singlets!

- This is the SU(3)color gauge invariance!
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 (x) !  

0(x) = ⌦(x) (x)

 ̄(x) !  ̄

0(x) =  ̄(x)⌦(x)†

Aµ(x) ! A

0
µ(x) = ⌦(x)Aµ(x)⌦(x)

† + i(@µ⌦(x))⌦(x)
†

Consider discretized version of lattice fermion action

Discretized version of derivative @µ (x)

Not gauge invariant

Sf [ ,  ̄] = a4
X

n2⇤

 ̄(n)

✓ 4X

µ=1

�µ
 (n+ µ̂)�  (n� µ̂)

2a
+m (n)

◆QuantumChromoDynamics

Pure gauge theory

Continuum QCD

Quantization

Lattice QCD

LQCD quantization

Lattice gauge field: oriented link variable

U−µ(n) ≡ Uµ(n − µ̂)†

✉ ✉ ✉ ✉✛

U−µ(n) ≡ Uµ(n − µ̂)†
n n + µ̂

Uµ(n)
nn − µ̂

✲

Compare with the continuum gauge transporter

G(x , y) = P exp

(

i

∫

Cxy

A · ds

)

along a link from x = n to y = n + µ̂:

G(n, n + µ̂) = exp (i a Aµ(n))

= Uµ(n) = 1+ i a Aµ(n) +O(a2)
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Why? Maths next page



Gauge invariance of lattice action

 ̄(n) (n) !  ̄0(n) 0(n) =  ̄(n)⌦(n)†⌦(n) (n) =  ̄(n) (n)

 ̄(n) (n+ µ̂) !  ̄0(n) 0(n+ µ̂) =  ̄(n)⌦(n)†⌦(n+ µ̂) (n+ µ̂)

We need to connect quark fields at different sites with  
gauge link 

Uµ(n) ! U 0
µ(n) = ⌦(n)Uµ(n)⌦(n+ µ̂)†

Then we recover gauge invariance

 ̄0(n)U 0
µ(n) 

0(n+ µ̂) =  ̄(n)⌦(n)†U 0
µ(n)⌦(n+ µ̂0) (n+ µ̂)

=  ̄(n)⌦(n)†⌦(n)Uµ(n)⌦(n+ µ̂)†⌦(n+ µ̂) (n+ µ̂)

=  ̄(n)Uµ(n) (n+ µ̂)



          can be related to gauge transporter in continuum,  
 a path ordered exponential integral of gauge field  
 along         connecting x and y

Uµ(n)
Aµ

C
xy

G(x,y) = Pe
i

R
C
xy

A·ds

Along a link from x = n to y = n+ µ̂

G(n, n+ µ̂) = eiaAµ(n)

= Uµ(n) = 1 + iaAµ(n) +O(a2)

Then gauge invariant Sf [ ,  ̄, U ]

= a4
X

n2⇤

 ̄(n)

✓ 4X

µ=1

�µ
Uµ(n) (n+ µ̂)� U�µ(n) (n� µ̂)

2a
+m (n)

◆

n n+ µ̂Uµ(n)

Problem :: 
What does actually this gauge transporter allow the quark to change? 
Clue: Related to why U_\mu is a unitary NXN matrix !



Now construct lattice gauge action with gauge invariant 
 plaquette 

QuantumChromoDynamics

Pure gauge theory

Continuum QCD

Quantization

Lattice QCD

LQCD quantization

Can we build action terms just with gauge field variables?
Any term like that will do:

L[U] = Tr

[

∏

(n,µ)∈L

Uµ(n)

]

(L is a closed loop of links.)

Why? Consider the smallest loop: a plaquette!

Uµν(n) = Uµ(n)Uν(n + µ̂)

×U−µ(n + µ̂+ ν̂)U−ν(n + ν̂)

= Uµ(n)Uν(n + µ̂)Uµ(n + ν̂)† Uν(n)†

! !

!!

✲

✻

✲

✻ ✫✪
✬✩

✻

❛❛✦✦

❛❛✦✦

▲▲☞☞ ▲▲☞☞

n

n + ν̂

Uν(n + µ̂)

n + µ̂

n + µ̂ + ν̂

Uν(n)

Uµ(n + ν̂)

Uµ(n)

Is it gauge invariant?
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QuantumChromoDynamics

Pure gauge theory

Continuum QCD

Quantization

Lattice QCD

LQCD quantization

Can we build action terms just with gauge field variables?
Any term like that will do:

L[U] = Tr

[

∏

(n,µ)∈L

Uµ(n)

]

(L is a closed loop of links.)

Why? Consider the smallest loop: a plaquette!
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✲

✻

✲

✻ ✫✪
✬✩

✻

❛❛✦✦

❛❛✦✦

▲▲☞☞ ▲▲☞☞

n

n + ν̂

Uν(n + µ̂)

n + µ̂

n + µ̂ + ν̂

Uν(n)

Uµ(n + ν̂)

Uµ(n)

Is it gauge invariant?
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Wilson gauge action in terms of sum over all plaquettes 

SG[U ] =
2

g2

X

n2⇤

X

µ<⌫

Re Tr[1� Uµ⌫(n)]

=
a4

2g2

X

n2⇤

X

µ<⌫

Tr[Fµ⌫(n)
2] +O(a2)

Other complicated  
gauge actions involve 
 longer closed loops 

opposite direction



Wilson Loop and Confinement

Wilson loop (average)
W (C) ⌘ h 1

N
tr U(C)i

= Z

�1(�)

Z Y

x,µ

dU

µ

(x)e��S[U ] 1

N

tr U(C)

(0,0) (0,T)

(R,T)(R,0)

Wilson Loop

q̄(R)

q̄(0)q(0)

q(R)

propagation  
of q-qbar state

For T>>R, W(C) related to energy of interaction of static (WHY) 
quarks

W (R⇥ T ) = e�E0(R).T (T >> R)



Using strong-coupling expansion  (expansion in 1/g2 or   ) �

W (@p) = h 1
N

trU(@p)i

plaquette average area of minimal surface  
in leading order �
Amin(C)=R X T

The area law:

Potential energy is linear function of the distance between quarks

E(R) = �R

string tension (energy of string per unit length)

W (C) ! e

��Amin(C) (for large C)



inverse of plaquette average for 

� =
1

a2
ln

2N2

�
=

1

a2
ln(2Ng2)

N � 3

Can you guess, what will be the average of plaquette 
for SU(2) case ?

For Coulomb like potential one gets perimeter law
W (C) ! e�const.L(C)

(for large C) (no confinement)

QuantumChromoDynamics

Pure gauge theory

Monte Carlo integration

Confinement at strong coupling

How to set the scale?

The three limits of LQCD

How to set the scale?

2 4 6 8
n

0.4

0.6

0.8

1.0

a V(an)

β = 5.95

2 4 6 8 10 12 14 16
n

0.4

0.5

0.6

0.7

0.8

0.9
β = 6.20

Example for evaluation of the static potential: linearly rising!

The lattice spacing is not yet fixed. We need a physical scale parameter
to fix it.

Christian B. Lang Lattice QCD for Pedestrians

Problem

Lattice spacing 
can be calculated 

from this fig

W (@p) =
�

2N2



Euclidean Rotation

G(x� y) =

Z
d

d

p

(2⇡)d
e

ip(x�y) i

p

2 �m

2 + i✏

Free propagator in  
Minkowski space

Passing into Euclidean variables
G

E

(x� y) =

Z
d

d

p

(2⇡)d
e

ip(y�x) i

p

2 +m

2 i✏No     prescription required

Wick rotation: Switching from a (1,d)-spacetime quantum theory to a 
(1+d)Euclidean quantum theory to compute observables and then switching back 



Lattice FormulationLattice QCD 

• Generate an ensemble of gauge configurations  

• Calculate observable

Observables in lattice QCD are then expressed in terms of the path 
integral as

hOi = 1

Z

Y

n,µ

dUµ(n)
Y

n

d (n)
Y

n

d ̄(n)O(U, ,  ̄)e�(SG[U ]+SF [U, , ̄])

Importance 
Sampling

Integrate out the Grassmann variables: 

where 

hOi = 1

Z

Y

n,µ

dUµ(n)O(U,G[U ]) detM [U ]e�SG[U ]

G(U, x, y)ij↵� ⌘ h i
↵(x) ̄

j
�(y)i = M

�1(U)

P [U ] / detM [U ]e�SG[U ]

hOi = 1

N

NX

n=1

O(Un, G[Un])
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1.

2.

3.

4.

Quark Propagator

describes the roles of  

quark loops 

 in the vacuum 



What We Actually Measure on Lattice
Euclidean correlator hO2(t)O1(0)iT =

1

ZT
tr[e�(T�t)ĤÔ2e

�tĤÔ1]

hO2(t)O1(0)iT =
1

ZT

X

m,n

hm|e�(T�t)ĤÔ2|nihn|e�tĤÔ1|mi

=
1

ZT

X

m,n

e�(T�t)Emhm|Ô2|nie�tEnhn|Ô1|mi

=

P
m,n < m|Ô2|n >< n|Ô1|m > e�t�Ene�(T�t)�Em

1 + e�T�E1+e�T�E2 + ......

�En = En � E0

lim
T!1

hO2(t)O1(0)iT =
X

n

< 0|Ô2|n >< n|Ô1|0 > e�tEn

Define

1

ZT
tr[e�(T�t)ĤÔ2e

�tĤÔ1] =
1

ZT

Z
D[�]e�SE [�]O2[�(., t)]O1[�(., 0)]

Integrand of the operators on LHS translated to functionals of the fields and then 
weighted with Boltzman factor containing classical Euclidean action



Correlation Functions

Chapter 3 Lattice Formalism: Two-Point Nucleon Correlation Function

3.1 Nucleon Two Point Correlation Function

The majority of the visible matter in the universe is made of nucleon, so the nucleon is

the most interesting baryon amongst plenty of baryons. There are two nucleons: the

proton and the neutron. The valence quark contents, quantum numbers, and masses

on proton and nucleon are listed in the following table: On the lattice we calculate

Table 3.1: Nucleon quantum numbers and their physical masses.

Baryon Quarks I(JP ) Mass (MeV)

Proton uud 1

2

(1
2

+

) 938.272081(6) MeV

Neutron udd 1

2

(1
2

+

) 939.565413(6) MeV

with mass degenerate up u quark and down d so that the nucleons also become mass

degenerate. There are a number of nucleon operators listed in the Appendix 8.1 that

have some overlap with the full nucleon. In the following lattice QCD calculation

we have used the following annihilation and creation nucleon interpolation fields in

Eqs. (8.16) and (8.17), respectively.

The nucleon two-point correlation function is defined as:

G↵�(t, ~p, ~x0

) =
X

x

e�i~p.(~x�~x
0

) h0|T
✓

�↵(x)�̄�(x0

)

◆

|0i (3.1)

where t is the sink time, ~p is the momentum of the particle, �(�̄) is the annihila-

tion(creation) interpolation field, and ↵, � are Dirac indices. The interpolation fields

with explicit color indices are written in the Appendix 8.1. Inserting a complete set of
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annihilation(creation) interpolation field
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normalized energy eigenstates of the QCD Hamiltonian and using the completeness

property consistent with the normalization of Dirac spinors in Appendix 8.1,

X

n,~q,s

|n, ~q, si hn, ~q, s| = 1, (3.2)

with t
0

and x
0

being the nucleon source temporal and spatial positions, respectively,

we can rewrite Eq. (3.1) as

G↵�(t, ~p) =
X

x

e�i~p·(~x�~x
0

)

X

n,~q,s

h0|T
✓

�↵(x) |n, ~q, si hn, ~q, s| �̄�(x0

)

◆

|0i

=
X

x

e�i~p·(~x�~x
0

)

X

n,~q,s

h0| eH(t�t
0

)�i~q·(~x�~x
0

)�↵(x0

)e�H(t�t
0

)+i~q·(~x�~x
0

)

|n, ~q, si hn, ~q, s| �̄�(x0

) |0i

=
X

x

e�i~p·(~x�~x
0

)

X

n,~q,s

e�En,~q(t�t
0

)+i~q·(~x�~x
0

)

h0|�↵(x0

) |n, ~q, si hn, ~q, s| �̄�(x0

) |0i

=
X

x,n,~q,s

e�i(~p�~q)·~xe�i(~p�~q)·~x
0e�En,~q(t�t

0

) h0|�↵(x0

) |n, ~q, si hn, ~q, s| �̄�(x0

) |0i

(3.3)

Using Fourier transform
P

x e
�i(~p�~q)·~x = N� ~p, ~q ,

G↵�(t, ~p) = N
X

n,~q,s

�(~p� ~q)e�i(~p�~q)·~x
0e�En,~q(t�t

0

)

h0|�↵(x0

) |n, ~q, si hn, ~q, s| �̄�(x0

) |0i

= N
X

n,s

e�En,~p(t�t
0

) h0|�↵(x0

) |n, ~p, si hn, ~p, s| �̄�(x0

) |0i (3.4)

where N is the number of total lattice sites, and the sum
P

n contains contributions

from positive and negative parity excited states. Retaining only positive and negative

parity ground state terms in the limit (t�t
0

) � 1, one can rewrite the above equation

as

G↵�(t, ~p) = N
X

s

✓

e�E0,+
p (t�t

0

) h0|�↵(x0

) |0, ~p, s,+i h0, ~p, s,+| �̄�(x0

) |0i

+e�E0,�
p (t�t

0

) h0|�↵(x0

) |0, ~p, s,�i h0, ~p, s,�| �̄�(x0

) |0i
◆

(3.5)

10

Use Fourier transform 

normalized energy eigenstates of the QCD Hamiltonian and using the completeness

property consistent with the normalization of Dirac spinors in Appendix 8.1,

X

n,~q,s

|n, ~q, si hn, ~q, s| = 1, (3.2)

with t
0

and x
0

being the nucleon source temporal and spatial positions, respectively,

we can rewrite Eq. (3.1) as

G↵�(t, ~p) =
X

x

e�i~p·(~x�~x
0

)

X

n,~q,s

h0|T
✓

�↵(x) |n, ~q, si hn, ~q, s| �̄�(x0

)

◆

|0i

=
X

x

e�i~p·(~x�~x
0

)

X

n,~q,s

h0| eH(t�t
0

)�i~q·(~x�~x
0

)�↵(x0

)e�H(t�t
0

)+i~q·(~x�~x
0

)

|n, ~q, si hn, ~q, s| �̄�(x0

) |0i

=
X

x

e�i~p·(~x�~x
0

)

X

n,~q,s

e�En,~q(t�t
0

)+i~q·(~x�~x
0

)

h0|�↵(x0

) |n, ~q, si hn, ~q, s| �̄�(x0

) |0i

=
X

x,n,~q,s

e�i(~p�~q)·~xe�i(~p�~q)·~x
0e�En,~q(t�t

0

) h0|�↵(x0

) |n, ~q, si hn, ~q, s| �̄�(x0

) |0i

(3.3)

Using Fourier transform
P

x e
�i(~p�~q)·~x = N� ~p, ~q ,

G↵�(t, ~p) = N
X

n,~q,s

�(~p� ~q)e�i(~p�~q)·~x
0e�En,~q(t�t

0

)

h0|�↵(x0

) |n, ~q, si hn, ~q, s| �̄�(x0

) |0i

= N
X

n,s

e�En,~p(t�t
0

) h0|�↵(x0

) |n, ~p, si hn, ~p, s| �̄�(x0

) |0i (3.4)

where N is the number of total lattice sites, and the sum
P

n contains contributions

from positive and negative parity excited states. Retaining only positive and negative

parity ground state terms in the limit (t�t
0

) � 1, one can rewrite the above equation

as

G↵�(t, ~p) = N
X

s

✓

e�E0,+
p (t�t

0

) h0|�↵(x0

) |0, ~p, s,+i h0, ~p, s,+| �̄�(x0

) |0i

+e�E0,�
p (t�t

0

) h0|�↵(x0

) |0, ~p, s,�i h0, ~p, s,�| �̄�(x0

) |0i
◆

(3.5)

10

normalized energy eigenstates of the QCD Hamiltonian and using the completeness

property consistent with the normalization of Dirac spinors in Appendix 8.1,

X

n,~q,s

|n, ~q, si hn, ~q, s| = 1, (3.2)

with t
0

and x
0

being the nucleon source temporal and spatial positions, respectively,

we can rewrite Eq. (3.1) as

G↵�(t, ~p) =
X

x

e�i~p·(~x�~x
0

)

X

n,~q,s

h0|T
✓

�↵(x) |n, ~q, si hn, ~q, s| �̄�(x0

)

◆

|0i

=
X

x

e�i~p·(~x�~x
0

)

X

n,~q,s

h0| eH(t�t
0

)�i~q·(~x�~x
0

)�↵(x0

)e�H(t�t
0

)+i~q·(~x�~x
0

)

|n, ~q, si hn, ~q, s| �̄�(x0

) |0i

=
X

x

e�i~p·(~x�~x
0

)

X

n,~q,s

e�En,~q(t�t
0

)+i~q·(~x�~x
0

)

h0|�↵(x0

) |n, ~q, si hn, ~q, s| �̄�(x0

) |0i

=
X

x,n,~q,s

e�i(~p�~q)·~xe�i(~p�~q)·~x
0e�En,~q(t�t

0

) h0|�↵(x0

) |n, ~q, si hn, ~q, s| �̄�(x0

) |0i

(3.3)

Using Fourier transform
P

x e
�i(~p�~q)·~x = N� ~p, ~q ,

G↵�(t, ~p) = N
X

n,~q,s

�(~p� ~q)e�i(~p�~q)·~x
0e�En,~q(t�t

0

)

h0|�↵(x0

) |n, ~q, si hn, ~q, s| �̄�(x0

) |0i

= N
X

n,s

e�En,~p(t�t
0

) h0|�↵(x0

) |n, ~p, si hn, ~p, s| �̄�(x0

) |0i (3.4)

where N is the number of total lattice sites, and the sum
P

n contains contributions

from positive and negative parity excited states. Retaining only positive and negative

parity ground state terms in the limit (t�t
0

) � 1, one can rewrite the above equation

as

G↵�(t, ~p) = N
X

s

✓

e�E0,+
p (t�t

0

) h0|�↵(x0

) |0, ~p, s,+i h0, ~p, s,+| �̄�(x0

) |0i

+e�E0,�
p (t�t

0

) h0|�↵(x0

) |0, ~p, s,�i h0, ~p, s,�| �̄�(x0

) |0i
◆

(3.5)

10

Then nucleon two-point correlation function reads 

Number of lattice sites
sum over n contains contribution  
form positive and negative parity 

excited-states
To obtain nucleon ground-state matrix element  

we need to suppress these contributions
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10where |0, ~p, s,+i is the positive-parity nucleon ground-state with energy e�E
(0,+)

p and

JP = 1

2

+

and similarly for negative-parity ground-state with minus signs. Using

Eqs. (8.31)-(8.35) in the Appendix 8.1.6, Eq. (3.5) can be written as
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We want to obtain nucleon properties associated only with Jp = 1

2

+

. Various nucleon

properties from the nucleon correlation function can be obtained by projecting out the

negative-parity states and by taking the trace of positive-parity projection operator
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(3.7)

with G↵�.
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Excited-States Contaminations 

Taking trace with positive-parity projection operator In our numerical simulation, we use �
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If one has ~p 2

m� ⌧ 1,
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For a final nucleon state at rest (~p = 0),

GNN(t, ~p,�e) ⌘ Tr[�eG(t, ~p)]

= a6|�+

0

|2e�m+

(t�t
0

) (3.14)

Therefore, it is seen from Eq. (3.13) that the negative parity states are not completely

suppressed unless for zero nucleon momentum and so the nucleon with non-zero mo-

mentum has contamination from the negative-parity states in the correlation function.
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Three-point Correlation Function

1. Connected Insertions:

2. Disconnected Insertions:

Self contracted quark loop
correlated with valence quarks 
in the nucleon propagator by

fluctuating background gauge fields

Current connected to the nucleon
 through the quark lines 



Schematic Representation

Consider nucleon three-point correlator with 
source momentum 

sink momentum
~p0

~p

Chapter 4 Lattice Formalism: Three-Point Nucleon Correlation Function

4.1 Schematic Representation of Connected and Disconnected Insertions

In this section of the chapter, we present simple schematic representation of con-

nected and disconnected insertions in terms of quarks and quark propagators. We

shall present a formal derivation of nucleon three-point correlation function to calcu-

late electromagnetic form factors in section (4.2). Nucleon three-point functions are

classified according to two di↵erent topologies of the quark lines connected between

the source and the sink of the proton�called connected and disconnected insertions.

When the current is connected to the nucleon through the quark lines, we refer to it

as connected insertion (CI). When the quark fields of the current contract between

themselves, we refer it to as disconnected insertion (DI). These disconnected quark

loops are connected to the quark lines in the nucleon propagator through fluctuating

gauge background fields.

Let us consider three-point correlator with source momentum ~p 0 and sink momen-

tum ~p:

COq

↵� (t, ⌧ ; ~p, ~p
0) = h�↵(t, ~p)Oq(⌧)�̄�(0, ~p

0)i (4.1)

where the operator insertion with quark q-flavored current is written as

Oq(⌧) =
X

~y,v,w

q̄a↵(v)Oab
↵�(v, w; ~y, ⌧)q

b
�(w) (4.2)
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Positive-parity contracted three-point correlatorThen the positive-parity contracted correlator is

COq(t, ⌧ ; ~p, ~p 0) = ��↵h�↵(t, ~p)Oq(⌧)�̄�(0, ~p
0)i

=
X

~y,v,w

X

~x,~z0

e�i~p·~xei~p
0·~z0✏abc✏a0,b0,c0(C�

5

)��(�5C
�1)⇢���↵

hua
↵(~x, t)u

b
�(~x, t)d

c
�(~x, t)q̄

d
�(v)Ode

�(v, w, ~y, ⌧)q
e
(w)

ūa0

� (~z
0, 0)d̄b

0

⇢ (~z
0, 0)ūc0

� (~z
0, 0)i

(4.3)

4.1.1 q = u-quarks

If q = u, we obtain four connected contractions and two disconnected contractions as

shown in FIGS. 4.1a - 4.1f. We can use translational invariance to shift all ~z0 to zero

and obtain a factor Ns from the sum over ~z0 sum. Denoting a quark propagator by

S, from FIG. 4.1a,

CI-FIG(4.1a) ) Scb0

�⇢ [d](~x,~0, 0) · Sea0

� [u](w,~0, 0) · Sad
↵�[u](~x, t, v)

Sbc0

�� [u](~x, t,~0, 0) (4.4)

CI-FIG(4.1b) ) Scb0

�⇢ [d](~x, t,~0, 0) · Sbd
��[u](~x, t, v) · Saa0

↵� [u](~x, t,~0, 0) ·

Sec0

� [u](w,~0, 0) (4.5)

CI-FIG(4.1c) ) �Sbd
��[u](~x, t, v) · Sea0

� [u](w,~0, 0) · Scb0

�⇢ [d](~x, t,~0, 0) ·

Sac0

↵� [u](~x, t,~0, 0) (4.6)

CI-FIG(4.1d) ) �Scb0

�⇢ [d](~x, t,~0, 0) · Sad
↵�[u](~x, t, v) · Sba0

�� [u](~x, t,~0, 0) ·

Sec0

� [u](w,~0, 0) (4.7)
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Figure 4.1: Schematic diagrams of connected and disconnected insertions when q = u.
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Figure 4.2: Schematic diagrams of connected and disconnected insertions when q = d.
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An Example LQCD Calculation 
(Strange Quark Electromagnetic Properties)

Zel’dovich (1957): EM interaction with parity violation

Unknown

Kaplan, Manohar (88):

*   McKeown and Beck (89):
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However, a significantly precise knowledge of GZ
A(Q

2) is required to extract Gs
E,M and

G
z,p(n)
E,M from the experimental measurements of parity-violating asymmetry. As we

will discuss below, although the typical electroweak radiative corrections are expected

to be O(↵), the tree-level suppression of the interaction in the parity-violating ~e� p

scattering makes the radiative corrections to GZ
A more significant. The uncertain-

ties in the radiative correction of GZ
A are large and radiative corrections involving

the strong interaction are not clearly known, so the extraction of GZ,p(n)
E,M from the

parity-violating scattering experiments is a tremendous challenge. One anticipates

that with a reliable first-principles estimate of Gs
E,M , one can also give a prediction

of the neutral weak form factors of the proton and the neutron.

5.3 Formalism

Electron-proton scattering can proceed through an exchange of a virtual Z-boson

or photon (�), represented in the lowest order by the Feynman diagrams shown

in FIG. 5.1. This process gives rise to a new current for the proton, called the

neutral weak current. Because the neutral weak charge of light quarks and electrons

are di↵erent for the left-handed and right-handed particles, parity is violated in the

scattering of polarized electrons o↵ the nucleon. The invariant amplitudes of the

scattering processes shown in FIG. 5.1 can be written in terms of leptonic vector

(lµ), axial (lµ5), nucleon vector (Jµ
� ), nucleon weak vector (Jµ

Z) and weak axial (Jµ5
Z )

currents:

M� =
4⇡↵

Q2

eil
µJ�

µ , (5.1)

MZ =
GF

2
p
2
(giV l

µ + giAl
µ5)(JZ

µ + JZ
µ5), (5.2)
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(b) Neutral weak Z-boson ex-

change

Figure 5.1: Tree level electromagnetic and weak Feynman diagrams in the e� � N
scattering: (5.1a) photon (�) exchange, (5.1b) neutral weak Z-boson exchange.
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Figure 5.2: Feynman diagrams representing “one-quark” radiative corrections in the
e� �N scattering: (5.2a) Vacuum polarization, (5.2b) � � Z box diagram.
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Figure 5.3: Feynman diagrams representing “many-quark” radiative corrections in
the e� � N scattering. The unfilled and filled circles represent vector and axial
couplings, respectively: (5.3a) Rho (⇢) meson pole, (5.3b) pion loop.

where ↵ is the electromagnetic coupling constant, GF = 1.166 ⇥ 10�5 GeV�2 is the

Fermi constant, ei is the electromagnetic charge of the incident electron, and glV (A)

is the weak vector (axial) charge in Eqs. (5.2), (5.3) and (5.4). From Eq. (5.3), it is

seen that the neutral weak boson can have both vector and axial vector interactions.

Therefore the amplitude MZ has both parity violating (PV) and parity conserving

(PC) amplitudes:

MPV
Z =

GF

2
p
2
(giV l

µJZ
µ5 + giAl

µ5JZ
µ ), (5.3)

45



s - quark contribution arises from vacuum: sign and 
magnitude related to nonperturbative structure of nucleon

Nonzero strange electric FF GsE at Q2 > 0  implies different 
spatial distribution of s and s  quarks 

Background in Qweak experiment arises from magnetization 
of strange quark [strange magnetic FF GsE,M ]

GsE,M (Q2) essential for determination of neutral weak FFs

Experimental results (G0,  HAPPEX,  A4, SAMPLE) of GsE,M  

quite uncertain

Strange Quark Contribution



Strange Quark Contribution

28

* Electromagnetic current C - odd

*Sensitive to difference between contributions from s and s

* Requires mechanisms beyond simple g     ss fluctuations 

* Example: Meson-Baryon fluctuation:



Pion mass   315 MeV
~

Theory & Experiment: GsM (Q2)

RED: Analysis of world
expt. data

GREEN: Indirect 
calculation

BLUE: Lattice QCD
Pion mass   600 MeV

~

Quenched



GsM(0) |physical = - 0.064(14)(09)

Most precise and accurate
 estimates of GsM }

RSS,Yang et .al 
 PRL 2017

r2s,E=  -0.0043(16)(14) fm2 



Parton Distribution Functions (PDFs)
Parton density function describes the probability to find a Parton of type  

“a” in a hadron “A”, carrying a momentum fraction    of the hadron⇠

3 free quarks in nucleon  
PDF    -function �

f(x) ⇠ �(x� 1/3)

Interactions between quarks 
with gluons exchange smears 
the distribution

      sea at small xqq̄

f(x)

f(x)

f(x)

x

x

x

What would be the distribution for a point-like nucleon?



Parton Distribution Functions (PDFs)
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Wilson Lines in QCD

hadron. Of course otherwise some partons would be traveling in the direction opposite
to the hadron, an extremely unlikely situation.

In addition, when the momentum transfer is very large, the virtual photon cannot travel
far and its resolving power will be very large. Then, the electron will interact only with a single
parton, if the parton mixture in the hadron is not too dense.

With these assumptions we have factorization [1]. That is, the interaction of the partons
among themselves that occur at time dilated time scales before and after the scattering cannot
interfere with the interaction of the parton with the electron

remainder (2.3)

remainder (2.4)

The remainder is down by a power of .
We have included a factorization scale into this equation. We had to include this parameter,

because for QCD there are quantum corrections to this factorization. These quantum fluctuations
can have an arbitrary energy. If the energy of such a virtual particle is relatively high according
to the momentum transfer the above discussion still holds and there is not a problem with
factorization. But, if the energy is of the same scale as the energy of the virtual photon, factor-
ization is troubled. To solve this we include a factorization scale parameter to described which
fluctuations should be included in the parton distribution functions and which can be included
in the hard-scattering functions. Of course, the cross section is independent of the factorization
scale .

The interpretation of (2.3) is that we factorize a deep inelastic scattering cross section into a
low energy part and a high energy part. All low energy interactions (or fluctuations) are de-
scribed by the parton distribution functions. All high energy interactions are described by the
hard-scattering functions. The hard-scattering function can be calculated using perturbation the-
ory, because for a high energy transfer the coupling constant is small, according to asymptotic
freedom. The parton distribution functions are nonperturbative objects, i.e. they cannot be calcu-
lated using perturbative methods. They should be found by comparing theory with experimental
data.

Essentially the same reasoning applies to factorization of Drell-Yan cross sections. The cross
section can be factorized to

remainder (2.5)

Inspired by the terminology of the operator product expansion it is conventional to call the first
term on rhs of (2.4) and (2.5) the leading twist contribution and the remainder the higher twist
contribution or power corrections.

The parton distribution functions in (2.4) and (2.5) are the same functions (if the
same factorization scheme is used), because these distributions describe the probability of find-
ing a quark inside a hadron. This probability is independent of the rest of the process under
consideration, so these parton distribution functions are universal.

2.2 Parton Distribution Functions
The parton distribution functions are defined as

(2.6)

4

Factorization

Power corrections
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Power corrections

1. There are quantum corrections to this factorization for QCD 

2. These quantum fluctuations can have arbitrary energy

3. Factorization in trouble if the energy of the virtual partonic 
    states of the same scale as the  Q2

4. Factorization scale     describes which fluctuations should be  
included in the PDFs and which can be included in the hard  
scattering part

µ

do not properly factorize 
Higher twist contribution

Problem: How is the    related to     ⇠ xbj
Does it have anything to do with LO and/or NLO…so on



 Wilson Lines… 

Why Wilson Line??

Asymptotic freedom states all higher order corrections  
in perturbation theory should be small for hard particles 

But the coupling strength is large if interactions are with soft particles.  
In scattering experiments there are soft,i.e. low energy, gluon radiation. 

Properties

1. Hermiticity:

2 Deep Inelastic Scattering

2.4.1 Properties for the Wilson Lines

Wilson lines have the following useful properties, which are proven to order in appendix
C:

hermiticity: Taking the hermitian conjugate of a Wilson line gives you the same line in the op-
posite direction

(2.50)

causality: Because of the path ordering we can glue paths together. If we first have a Wilson line
from to and then a line along the same direction form to , we can glue them together
into one Wilson line from to

(2.51)

This also works for lines that are not in the same direction.

unitarity: If we have a Wilson line from to and then a line back from to in the opposite
direction they will give

(2.52)

2.5 Back to the Leading Twist Approximation

With the properties for the Wilson lines (2.50), (2.51) and (2.52) the product of the electromag-
netic currents in the parton distribution function (2.8) is, using the operator product expansion
to leading twist, proportional to

(2.53)

Use causality to rewrite the second as a product

(2.54)

Use hermiticity to rewrite the first , then we have

(2.55)

Again, use causality to get

(2.56)

Thus, using the definition (2.49) for the Wilson line we find that the product of the two currents
is proportional to

(2.57)

What we have found is that the product of the two currents can be replaced, in leading twist, by a
field operator that “creates” a quark at position and a field operator that “annihilates” a quark
at position . In between the quark “moves” from to , described by a path ordered phase
factor: a Wilson line.
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Near threshold, large logarithms coming from soft radiation become  
the leading corrections to scattering cross section

3. This gluon radiation consists of an infinite number of soft gluons,  
which would make perturbation theory an unusable method for computing 
physical cross sections. 

1 Introduction

1 Introduction

Quantum Chromodynamics (QCD) is the theory that describes the interaction among quarks
and gluons, i.e. the fundamental strong force. This field theory is a nonabelian gauge theory
based on the symmetry group SU . Although the formulation for this theory is very simple, the
manifestations are of great complexity. One of the main difficulties is confinement, i.e. quarks and
gluons cannot be detected as free particles, they are only present in color–singlet bound hadron
states such as protons. Confinement is up to now not satisfactory understood by theoretical
physicists.

Another important aspect of QCD is asymptotic freedom, which is, on the contrary to con-
finement, very well understood. It states that the effective coupling between quarks and gluons
vanishes as the energy of the interactions goes to infinity. In other words, the theory can be
regarded as almost a free theory, i.e. without interactions, at very large energy. We can use per-
turbation theory to describe the remaining small interactions between the quarks and gluons.

1.1 Need for Wilson Lines

Asymptotic freedom states that all higher order corrections in perturbation theory should be
small for hard particles, i.e. particles with high energy, because the coupling strength vanishes
for high energy scales. On the other hand, the coupling strength is large if the interactions are
with soft particles. So, in scattering experiments there can (and always will) be soft, i.e. low
energy, gluon radiation. Near threshold the large logarithms coming from the soft radiation
become the leading corrections to the scattering cross section, see fig. 1.1. In principle, this gluon
radiation consists of an infinite number of soft gluons, which would make perturbation theory an
unusable method for computing physical cross sections. Fortunately, using some approximations
all this soft radiation can be described by a vacuum expectation value of a single path ordered
exponential

R
(1.1)

i.e. a Wilson line where the path is described by and is the classical path of the parton that
emits and absorbs the gluons. are the gauge group generators. On the contrary to an abelian
gauge theory, for QCD we need ordering of the exponential in the gauge group generators. The
easiest way to order the gauge group generators is according to the path of the parton emitting
and absorbing the soft radiation.

Fig. 1.1: Interaction of a quark with a photon including a gluon correction. If the momentum of the gluon
is small the internal quark propagator is almost on–shell and can lead to large logarithmic
corrections after the infrared divergences are canceled.

In this thesis we shall derive the properties of the Wilson line and show how to use it when
calculating cross sections and decay rates.

1

p2 = 0

1. If momentum of gluon small, internal quark propagator almost on–shell.

Interaction of a quark with a photon including 
a gluon correction

2. Can lead to large logarithmic corrections after the infrared  
divergences are canceled.
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by a vacuum expectation value of a single path ordered exponential 
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In this thesis we shall derive the properties of the Wilson line and show how to use it when
calculating cross sections and decay rates.

1

Path described by      
Classical paths of the parton that emits and absorbs gluons    

zµ

Wilson lines describe only soft gluons. So to use the Wilson lines 
 we have to separate the soft gluons, which we describe by the 
Wilson line, from the hard gluons, whose contributions can be 
calculated using ordinary perturbation theory. 



Unrenormalized quark distribution

4

Figure 5. World lines of the partons in a fast-
moving proton.

equal x+ in Fig. 5. To motivate the definition,
we use field theory quantized on planes of equal
x+ [8]. This quantization uses the gauge A+ = 0.
Then the unrenormalized quark field operator ψ0

is expanded in terms of

• quark destruction operators b and
• antiquark creation operators d†

using simple spinors w(s) normalized to w†w = 1:

1
2
γ−γ+ψ0(x

+, x−, x⃗T ) = (8)

1

(2π)3

∫ ∞

0

dk+

2k+

∫

dk⃗T

∑

s

(
√

2k+)1/2

×
{

e−i (k+x−−k⃗T ·x⃗T ) w(s) b(k+, k⃗T ; s; x+)

+ e+i (k+x−−k⃗T ·x⃗T ) w(−s) d†(k+, k⃗T ; s; x+)

}

.

The factor 1
2
γ−γ+ here serves to project out the

components of the quark field ψ0 that are the in-
dependent dynamical operators in null plane field
theory.
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where

O0 = P exp

(

ig0

∫ y−

0
dz− A+

0,a(0, z−, 0⃗T ) ta

)

.(12)

Here P denotes a path-ordered product, while the
ta are the generators for the 3 representation of
SU(3). There is an implied sum over the color
index a.

2.6. Interpretation of the eikonal gauge op-
erator

The appearance of the operator O, Eq. (12), in
the definition (11) seems to be just a technicality.
However, this operator has a physical interpreta-
tion that is of some importance. Let us write this
operator in the form

O0 = P exp

(

−ig0

∫ ∞

y−

dz− A+
0,a(0, z−, 0⃗T ) ta

)

×P exp

(

ig0

∫ ∞

0
dz− A+

0,a(0, z−, 0⃗T ) ta

)

.(13)

Inserting this form in the definition (11), we can
introduce a sum over states |N⟩⟨N | between the
two exponentials in Eq. (13). We take these states
to represent the final states after the quark has
been “measured.”

Consider now a deeply inelastic scattering ex-
periment that is used to determine the quark dis-
tribution. The experiment doesn’t just annihi-
late the quark’s color. In a suitable coordinate
system, a quark moving in the plus direction is
struck and exits to infinity with almost the speed
of light in the minus direction, as illustrated in
Fig. 6. As it goes, the struck quark interacts with
the gluon field of the hadron.

We can now see that the role of the operator O
is to replace the struck quark with a fixed color
charge that moves along a light-like line in the
minus-direction, mimicking the motion of the ac-
tual struck quark in a real experiment.

2.7. Renormalization

We now discuss the renormalization of the op-
erator products in the definition (11). We use
MS renormalized fields ψ(x) and Aµ(x) and we
use the MS renormalized coupling g. The field
operators are evaluated at points separated by
∆x with ∆xµ∆xµ = 0. For this reason, there
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distribution function, so the precise definition of the parton distribution functions leads to
the rules for calculating the hard scattering functions.

The definition of the parton distribution functions is to some extent a matter of conven-
tion. The most commonly used convention is the MS definition, which arose from the theory
of deeply inelastic scattering in the language of the “operator product expansion”[25]. Here I
will follow the (equivalent) formulation of Ref. [14]. For a more detailed pedagogical review,
the reader may consult Ref. [26].

Using the MS definition, the distribution of quarks in a hadron is given as the hadron
matrix element of certain quark field operators:

fi/h(ξ, µF ) =
1

2

∫ dy−

2π
e−iξp+y−⟨p|ψ̄i(0, y

−, 0)γ+Fψi(0)|p⟩. (78)

Here |p⟩ represents the state of a hadron with momentum pµ aligned so that pT = 0. For
simplicity, I take the hadron to have spin zero. The operator ψ(0), evaluated at xµ = 0,
annihilates a quark in the hadron. The operator ψ̄i(0, y−, 0) recreates the quark at x+ =
xT = 0 and x− = y−, where we take the appropriate Fourier transform in y− so that the
quark that was annihilated and recreated has momentum k+ = ξp+. The motivation for the
definition is that this is the hadron matrix element of the appropriate number operator for
finding a quark.

There is one subtle point. The number operator idea corresponds to a particular gauge
choice, A+ = 0. If we are using any other gauge, we insert the operator

F = P exp

(

−ig
∫ y−

0
dz−A+

a (0, z
−, 0) ta

)

. (79)

The P indicates a path ordering of the operators and color matrices along the path from
(0, 0, 0) to (0, y−, 0). This operator is the identity operator in A+ = 0 gauge and it makes
the definition gauge invariant.

DIS Parton distribution

Figure 28: Deeply inelastic scattering and the parton distribution functions.

The physics of this definition is illustrated in Fig. 28. The first picture (from Fig. 21)
illustrates the amplitude for deeply inelastic scattering. The fast proton moves in the plus
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Illustrates the amplitude associated with 

the quark distribution function 

quark distribution function including a sum over intermediate states |Ni

direction. A virtual photon knocks out a quark, which emerges moving in the minus direction
and develops into a jet of particles. The second picture illustrates the amplitude associated
with the quark distribution function. We express F as F2F1 where

F2 = P̄ exp
(

+ig
∫

∞

y−
dz−A+

a (0, z
−, 0) ta

)

,

F1 = P exp
(

−ig
∫

∞

0
dz−A+

a (0, z
−, 0) ta

)

. (80)

and write the quark distribution function including a sum over intermediate states |N⟩:

fi/h(ξ, µF ) =
1

2

∫ dy−

2π
e−iξp+y−

∑

N

⟨p|ψ̄i(0, y
−, 0)γ+F2|N⟩⟨N |F1ψi(0)|p⟩. (81)

Then the amplitude depicted in the second picture in Fig. 28 is ⟨N |F1ψi(0)|p⟩. The operator
ψ annihilates a quark in the proton. The operator F1 stands in for the quark moving in the
minus direction. The gluon field A evaluated along a lightlike line in the minus direction
absorbs longitudinally polarized gluons from the color field of the proton, just as the real
quark in deeply inelastic scattering can do. Thus the physics of deeply inelastic scattering is
built into the definition of the quark distribution function, albeit in an idealized way. The
idealization is not a problem because the hard scattering function dσ̂ systematically corrects
for the difference between real deeply inelastic scattering and the idealization.

There is one small hitch. If you calculate any Feynman diagrams for fi/h(ξ, µF ), you
are likely to wind up with an ultraviolet-divergent integral. The operator product that is
part of the definition needs renormalization. This hitch is only a small one. We simply
agree to do all of the renormalization using the MS scheme for renormalization. It is this
renormalization that introduces the scale µF into fi/h(ξ, µF ). This role of µF is in accord
with Fig. 26: roughly speaking µF is the upper cutoff for what momenta belong with the
parton distribution function; at the same time it is the lower cutoff for what momenta belong
with the hard scattering function.

What about gluons? The definition of the gluon distribution function is similar to the
definition for quarks. We simply replace the quark field ψ by suitable combinations of the
gluon field Aµ, as described in Refs. [14] and [26].

4.9 Evolution of the parton distributions

Since we introduced a scale µF in the definition of the parton distributions in order to
define their renormalization, there is a renormalization group equation that gives the µF

dependence
d

d lnµF
fa/h(x, µF ) =

∑

b

∫ 1

x

dξ

ξ
Pab(x/ξ,αs(µF )) fb/h(ξ, µF ). (82)

This is variously known as the evolution equation, the Altarelli-Parisi equation, and the
DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation. Note the sum over parton
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Figure 28: Deeply inelastic scattering and the parton distribution functions.

The physics of this definition is illustrated in Fig. 28. The first picture (from Fig. 21)
illustrates the amplitude for deeply inelastic scattering. The fast proton moves in the plus
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where

O0 = P exp

(

ig0
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0
dz− A+

0,a(0, z−, 0⃗T ) ta

)

.(12)

Here P denotes a path-ordered product, while the
ta are the generators for the 3 representation of
SU(3). There is an implied sum over the color
index a.

2.6. Interpretation of the eikonal gauge op-
erator

The appearance of the operator O, Eq. (12), in
the definition (11) seems to be just a technicality.
However, this operator has a physical interpreta-
tion that is of some importance. Let us write this
operator in the form

O0 = P exp

(

−ig0
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0,a(0, z−, 0⃗T ) ta

)

×P exp
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.(13)

Inserting this form in the definition (11), we can
introduce a sum over states |N⟩⟨N | between the
two exponentials in Eq. (13). We take these states
to represent the final states after the quark has
been “measured.”

Consider now a deeply inelastic scattering ex-
periment that is used to determine the quark dis-
tribution. The experiment doesn’t just annihi-
late the quark’s color. In a suitable coordinate
system, a quark moving in the plus direction is
struck and exits to infinity with almost the speed
of light in the minus direction, as illustrated in
Fig. 6. As it goes, the struck quark interacts with
the gluon field of the hadron.

We can now see that the role of the operator O
is to replace the struck quark with a fixed color
charge that moves along a light-like line in the
minus-direction, mimicking the motion of the ac-
tual struck quark in a real experiment.

2.7. Renormalization

We now discuss the renormalization of the op-
erator products in the definition (11). We use
MS renormalized fields ψ(x) and Aµ(x) and we
use the MS renormalized coupling g. The field
operators are evaluated at points separated by
∆x with ∆xµ∆xµ = 0. For this reason, there

Figure 6. Effect of the eikonal gauge operator.

will be ultraviolet divergences from the operator
products. We elect to renormalize the operator
products with the MS scheme.

For instance, Fig. 7 illustrates one of the di-
agrams for the distribution of quarks in a pro-
ton. Before it is measured, the quark emits a
gluon into the final state. There is a loop in-
tegration over the minus and transverse compo-
nents of the measured quark’s momentum. This
loop integration is ultraviolet divergent. To apply
MS renormalization, we perform the integration
in 4−2ϵ dimensions, including a factor (µ2eγ/4π)ϵ

that keeps the dimension constant while supply-
ing some conventional factors. The integral will
consist of a pole term proportional to 1/ϵ plus
terms that are finite as ϵ → 0. We simply sub-
tract the pole term. Notice that MS renormaliza-
tion introduces a scale µ.
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Single hadron matrix elements:
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3. Share the same perturbative collinear divergences with PDFs
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in the Qweak experiment arises from the G

s
M(Q2). A precise estimate of G

s
M(Q2) can lead to

more/higher precision in the estimated value of proton weak charge Q

p = (1 � 4 sin2
�W ) in the

Qweak experiment. It is very important to know the value of Q

p with greater precision because/as

this will constrain the possibility of Beyond Standard Model physics.
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Figure 1: A schematic diagram of the hadron correlation function, where T labels the sink
pion, or kaon, respectively, t the inversion time slice of the currents, and ~pi and ~

p

0 represent
the momenta at source and sink. The propagators joining the two currents J1, J2 can acquire
any momentum dependeing on the available phase space.

The hadronic matrix elements for two currents J1 and J2 separated in a Euclidean direction
by ⇠ is shown in Figure 1. In the case of the pion, and in terms of the quark propagators, D,
Figure 1 can be expressed as

h⇧(�p

0)|OJ1(x0)OJ2(⇠)|⇧(�p

0)i =

=
X

y,z

e

i(p0.z�p.y)hq̄ �⇧ q(z, T ) q̄ J2 q(x0 + ⇠, t) q̄ J1 q(x0, t) q̄ �⇧ q(y, 0)i

=
X

y,z

e

i(p0.z�p.y)tr[J2 D

�1(x0 + ⇠, t; x0, t) J1 D

�1(x0, t; y, 0) �⇧

⇥D

�1(y, 0; z, T )�⇧ D

�1(z, T ; x0 + ⇠, t)],

(5)

where we note that the auxiliary propagator between J1 and J2 can be computed for any
quark mass, including in particular that of a heavy quark. The use of a heavy mass reduces
the size of the phase space which in turn gives a cleaner signal-to-noise ratio in the four-point
correlation-function calculation.

For the case of the pion and kaon, but not for the nucleon, there is a straightforward
implementation of the well-known sequential-source method that enables us to insert spatial
momentum at both the source t = 0 and the sink t = T with a minimal number of propagator
computations. The momentum at the current time slice is then constrained by momentum
conservation. This computational simplicity is a further reason to focus on the pion and kaon
in this proposal. To reduce the cost of the computation, and to simplify the analysis, we place
the currents midway between the source and sink mesons so that T = 2t, but vary the temporal
separation T so as to determine a region over which the ground state meson is dominant. Whilst
it might appear that the kaon would be the computationally more economical system since

5

Example Lattice Setup for Pion Using LCSs  
 Challenges and Questions
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Momentum conservation

Numerical Challenge
• Pion computationally less demanding than nucleon 
• But signal-to-noise ratio is a problem
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High spatial momentum and lattice systematics

Inverse Problem - common to all LQCD approaches
�n(!, ⇠

2
, P

2) =
X

a

Z 1

�1

dx

x

fa(x, µ
2)Ka

n(x!, ⇠
2
, x

2
P

2
, µ

2) +O(⇠2⇤2
QCD)

Calculate on 
Lattice

Calculate in
 PQCD

Extract 
PDF

Boosted interpolating operators
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094515 (2016)



Requires many different LSCs with different currents 
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X

a
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Momentum space matrix elements
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x-dependence of pion valence distribution can be  
 obtained from 

!̃ = 1/x

Low-x is not accessible unless the hadron is moving very fast 
(common problem to all LQCD approach)



Questions: Pion Valence Distribution
Large-x behavior of pion valence distribution an unresolved problem

de Téramond, Liu, RSS,Dosch, Brodsky, Deur
PRL (2018)

Perturbative QCD, Dyson-Schwinger model                 fall-off (1� x)2

Nambu-Jona-Lasino (NJL) model, Duality arguments  (1� x)1 fall-off

Lattice QCD can play vital role in understanding large x-behavior

Light-Front  
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Quasi Parton Distributions on the Lattice
Quasi PDFs (X. Ji, PRL (2013))

large Q2, the Compton amplitude will be dominated by twist-two contributions. Varying Q2 allows
one to test the twist expansion and, in particular, isolate twist-four contributions. Moreover, one can
distinguish between contributions from up, down and strange quarks, connected and disconnected, by
appropriate insertions of the electromagnetic current.

To compute the Compton amplitude from the Feynman-Hellmann relation, a perturbation to the
QCD Lagrangian is introduced, for example,

L(x) ! L(x) + �J3(x) , J3(x) = Z
V

cos(~q · ~x) e
q

q̄(x)�3q(x) (2.24)

where q is the quark field to which the photon is attached, and e
q

its electric charge. For simplicity, we
consider the local vector current only, so that the renormalization factor Z

V

is known and no further
renormalization is needed. Taking the second derivative of the nucleon two-point function

hN(~p, t)N̄(~p, 0)i
�

' C
�

e�E�(p,q) t (2.25)

with respect to � on both sides, gives

� 2E
�

(p, q)
@2

@�2
E

�

(p, q)
��
�=0

= T33(p, q) . (2.26)

For p3 = q3 = q4 = 0 this leaves us with

T33(p, q) = 4!2

Z 1

0

dx
xF1(x,Q2)

1� (!x)2
. (2.27)

Extracting the polarized structure functions requires insertions of two di↵erent currents with µ 6= ⌫.
The idea is then to solve Eq. (2.27) for F1(x,Q2) numerically. In Refs. [112,116] it was shown that the
unpolarized structure function F1(x,Q2) can be computed from a lattice calculation of the Compton
amplitude, devoid of any renormalization and mixing issues. With the same method, PDFs can be
computed directly without the need to go through the structure functions, provided Q2 is su�ciently
large that power corrections can be neglected.

Quasi-PDFs. Quasi-PDFs provide an alternative approach to determining the x-dependence of PDFs
directly from lattice QCD [117,118]. In the following discussion, we focus on the flavor-nonsinglet quasi-
PDF, for which we can ignore mixing with the gluon quasi-PDF. The unpolarized quark quasi-PDF is
defined as the momentum-dependent nonlocal forward matrix element

eq(x,⇤, p
z

) =

Z
dz

2⇡
e�ixzpzp

z

h(z, p
z

),

h(z, p
z

) =
1

4p
↵

2X

s=1

hp, s|  ̄(z)�
↵

eig
R z
0

Az(z0)dz0 (0) |p, si , (2.28)

where ⇤ is an UV cut-o↵ scale, such as the inverse lattice spacing 1/a. The Lorentz index ↵ of the
matrix �

↵

is generally chosen to be spatial, ↵ = z, but the alternative choice ↵ = 4 is also possible and
removes part of the leading order twist-4 contamination [119, 120]. Because p is finite, the momentum
fraction x can be larger than unity.

The quasi-PDF is defined for nucleon states at finite momentum and must be related to the corre-
sponding light-front PDF5, for which the nucleon momentum is taken to infinity. In the large-momentum

5In this context the term light-front PDF is used to distinguish ordinary PDFs, Eqs. (2.1)–(2.4) from quasi-PDFs,
Eq. (2.28).
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where q is the quark field to which the photon is attached, and e
q

its electric charge. For simplicity, we
consider the local vector current only, so that the renormalization factor Z

V

is known and no further
renormalization is needed. Taking the second derivative of the nucleon two-point function

hN(~p, t)N̄(~p, 0)i
�

' C
�

e�E�(p,q) t (2.25)

with respect to � on both sides, gives

� 2E
�

(p, q)
@2

@�2
E

�

(p, q)
��
�=0

= T33(p, q) . (2.26)

For p3 = q3 = q4 = 0 this leaves us with

T33(p, q) = 4!2

Z 1

0

dx
xF1(x,Q2)

1� (!x)2
. (2.27)

Extracting the polarized structure functions requires insertions of two di↵erent currents with µ 6= ⌫.
The idea is then to solve Eq. (2.27) for F1(x,Q2) numerically. In Refs. [112,116] it was shown that the
unpolarized structure function F1(x,Q2) can be computed from a lattice calculation of the Compton
amplitude, devoid of any renormalization and mixing issues. With the same method, PDFs can be
computed directly without the need to go through the structure functions, provided Q2 is su�ciently
large that power corrections can be neglected.

Quasi-PDFs. Quasi-PDFs provide an alternative approach to determining the x-dependence of PDFs
directly from lattice QCD [117,118]. In the following discussion, we focus on the flavor-nonsinglet quasi-
PDF, for which we can ignore mixing with the gluon quasi-PDF. The unpolarized quark quasi-PDF is
defined as the momentum-dependent nonlocal forward matrix element

eq(x,⇤, p
z

) =

Z
dz

2⇡
e�ixzpzp

z

h(z, p
z

),

h(z, p
z

) =
1

4p
↵

2X

s=1

hp, s|  ̄(z)�
↵

eig
R z
0

Az(z0)dz0 (0) |p, si , (2.28)

where ⇤ is an UV cut-o↵ scale, such as the inverse lattice spacing 1/a. The Lorentz index ↵ of the
matrix �

↵

is generally chosen to be spatial, ↵ = z, but the alternative choice ↵ = 4 is also possible and
removes part of the leading order twist-4 contamination [119, 120]. Because p is finite, the momentum
fraction x can be larger than unity.

The quasi-PDF is defined for nucleon states at finite momentum and must be related to the corre-
sponding light-front PDF5, for which the nucleon momentum is taken to infinity. In the large-momentum

5In this context the term light-front PDF is used to distinguish ordinary PDFs, Eqs. (2.1)–(2.4) from quasi-PDFs,
Eq. (2.28).
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(Convince yourself from the above expression)

Quasi-PDF calculated at finite momentum on the lattice has  
proposed matching 

e↵ective field theory (LaMET) approach, the quasi-PDF eq(x,⇤, p
z

) can be related to the p
z

-independent
light-front PDF q(x,Q2) through [117,118]

eq(x,⇤, p
z

) =

Z 1

�1

dy

|y|Z
✓
x

y
,
µ

p
z

,
⇤

p
z

◆

µ

2=Q

2

q(y,Q2) +O
✓
⇤2

QCD

p2
z

,
M2

p2
z

◆
, (2.29)

where µ is the renormalization scale, Z is a matching kernel and M is the nucleon mass. Here the
O (M2/p2

z

) terms are target-mass corrections and the O �
⇤2

QCD/p
2
z

�
terms are higher-twist e↵ects, both

of which are suppressed at large nucleon momentum. An alternative, but related, construction is
proposed in Refs. [120,121] and explored in Ref. [122].

Preliminary results from lattice calculations of quasi-PDFs have been encouraging [35–38]. However,
there are a number of remaining challenges that must be overcome for an ab initio determination of the
x-dependence of PDFs directly from lattice QCD that incorporates complete control over systematic
uncertainties. Lattice calculations of quasi-PDFs are subject to the same sources of systematic uncer-
tainty that a↵ect all lattice calculations, see Sec. 2.2. Here we focus on systematic uncertainties that
are more specific to quasi-PDFs. These are uncertainties associated with the finite nucleon momentum
of the lattice calculations and to the renormalization of quasi-PDFs.

• Preliminary nonperturbative studies of the quasi-PDF used nucleon momenta in the range p
z

=
2⇡/L to 10⇡/L, where L is the physical extent of the lattice, corresponding to p

z

= 0.5 to
2.5 GeV [35–38]. At such low momenta, higher-twist and target mass corrections are likely to be
considerable.

Target mass corrections can be removed to all orders [37], and twist-4 contributions can be re-
moved in principle [37,120], leaving higher-twist contamination. To reduce these remaining e↵ects
starting at O(⇤2

QCD/p
2
z

), the authors of Refs. [35, 37] extrapolated to infinite nucleon momentum
using the fit ansatz a+ b/p2

z

for each value of x. Although the e↵ects of finite nucleon momentum
can be mitigated, a quark-model study asserts that reducing systematic uncertainties to less than
20% at moderate values of x requires significantly larger values of nucleon momentum [123], and
at larger values of x (roughly x ' 1) requires nucleon momentum as large as p

z

> 4 GeV.

The size of the nucleon momentum is currently limited by the decreasing signal-to-noise ratio at
large momenta, which requires very high statistics to extract a signal. New approaches to high-
momentum nucleons are being investigated, with the most promising an approach that employs
momentum smearing [124]. This method has been applied to quasi-PDFs in Refs. [38, 125],
demonstrating a large improvement in the signal-to-noise ratio by reaching momenta of about
2.5 GeV.

• The leading-twist quasi-PDFs and light-front PDFs are connected through the matching (or factor-
ization) relation, Eq. (2.29). Provided the quasi and light-front PDFs share the same IR behavior,
the matching kernel can be determined in perturbation theory [119]. The one-loop matching ker-
nel including gluon channel has been recently reported [126]. The factorization of the IR structure
of quasi-PDFs into light-front PDFs and an IR-safe matching kernel was claimed to hold to all
orders in Refs. [127–129]. More specifically, Refs. [127,128] claim that the factorization holds to all
orders provided that UV divergences are properly renormalized. However, Ref. [130] asserted that
there might be subtleties beyond leading order in perturbation theory. A distinct, but similar,
issue is the IR structure of extended operators in Euclidean and Minkowski space-time. There
are again subtleties in perturbation theory [131], but arguments based on general field-theoretic
grounds demonstrate that the quasi-PDF extracted from an Euclidean correlation function is ex-
actly the same matrix element as that determined from the LSZ reduction formula in Minkowski
space-time [132].
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FIG. 6: Top: Comparison of unpolarized PDF from the B55
ensemble against phenomenological estimates. Notation as in
Fig. 4. Bottom: Comparison of unpolarized PDF between
results of this work (blue band) and of the B55 ensemble
(orange band) at nucleon momentum ⇠1.4 GeV.

will be pursued in the near future.
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Pseudo-PDFs (A. Radyushkin, PLB (2017))

are encouraging. Here we highlight these results for the x-dependence of the unpolarized and polarized
PDFs extracted from lattice QCD.

Fig. 2.1 shows example results for the renormalized unpolarized PDFs from Ref. [146] and polarized
PDF from Ref. [149]. In both cases, a nonperturbative renormalization procedure is applied to the bare
matrix elements that appeared in earlier work [35–38,151]. For the unpolarized PDF, the calculation is
carried out at a pion mass of 310 MeV, includes one-loop matching and target mass corrections at the
renormalization scale µ2 = 4 GeV2, and the leading higher-twist O(⇤2

QCD/p
2
z

) contributions have been
removed [37]. Multiple source-sink separations are used to take into account the e↵ects of excited-state
contamination, which become more important at large momentum. Mixing under renormalization has
been estimated to be a small e↵ect but is not yet computed explicitly. More recent work at the physical
pion mass [152] uses a di↵erent operator to avoid mixing e↵ects. The polarized PDF has the advantage
that is free from mixing, and is computed in Ref. [149] with fully renormalized matrix element, at a
pion mass of 375 MeV. The matching to MS at µ2 = 4 GeV2 does not include any linearly divergent
term, as the matrix element in coordinate space is renormalized. Note that in both cases, the antiquark
asymmetry is compatible with zero within current uncertainties, contrary to earlier unrenormalized
results [35–37,151]. This is mainly due to the rapid increase of the renormalization factor with Wilson-
line length, which amplifies the finite-volume e↵ect from truncating long-range correlations. Ref. [152]
showed that this truncation causes unphysical oscillations in the sea-flavor asymmetry and proposed
that the oscillations can be removed by either imposing a filter to reduce the weighting of long-range
correlations or by taking the derivative of the matrix element in coordinate space. The e↵ectiveness of
both these two methods is demonstrated in Refs. [152, 153].

Pseudo-PDFs. The general dependence of the matrix element h(z, p
z

) of Eq. (2.28) on the hadron
momentum p and the displacement of the quark and antiquark fields z can be expressed as a function
of the Lorentz invariants ⌫ = z · p (Io↵e time [154, 155]) and z2, where z and p are general 4-vectors.
We can thus introduce

h(⌫, z2) ⌘ h(z, p
z

) . (2.31)

The pseudo-PDF is then defined by the Fourier transform

P(x, z2) =

Z
d⌫

2⇡
e�ix⌫h(⌫, z2), (2.32)

which has support only in the physical range x = [�1, 1] [120, 121]. As discussed in Refs. [120, 121],
the pseudo-PDF is directly related to both the PDFs and the transverse-momentum-dependent PDFs
(TMDs). In Ref. [121], using the temporal gamma matrix in the matrix element, an approximate
factorization of the primordial TMD F(x, k2

?) as

F(x, k2
?) ⇡ K(k2

?)q(x) (2.33)

was conjectured. Here k? is the transverse momentum of the quark in the hadron and q(x) is the PDF.
This conjecture implies that the ratio

M(⌫, z2) =
h(⌫, z2)

h(0, z2)
(2.34)

is directly related to the PDFs as

M(⌫, z2) = Q(⌫, µ2) +O(z2) , (2.35)

with µ2 = 1/z2. Here Q(⌫, µ2) is the Io↵e time PDF [154, 155], which is the Fourier transform of the
PDFs,

q(x, µ2) =

Z
d⌫

2⇡
e�ix⌫Q(⌫, µ2). (2.36)
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Abstract. We report an attempt to calculate the deep inelastic scattering structure func-
tions from the hadronic tensor calculated on the lattice. We used the Backus-Gilbert
reconstruction method to address the inverse Laplace transformation for the analytic con-
tinuation from the Euclidean to the Minkowski space.

1 Hadronic tensor on the lattice

There has been a lot of interest and developments in calculating the structure functions and parton
distribution functions on the lattice in recent years [1]. The Euclidean hadronic tensor has been for-
mulated in the path-integral formalism [2–4]. The hadronic tensor in deep inelastic scattering, from
which the parton distribution functions are obtained through the factorization theorem, can be calcu-
lated from its Euclidean counterpart via an inverse Laplace transform [1, 2, 4]. It has been revealed
that, in addition to the valence partons, there are two types of sea partons – connected sea (CS) and
disconnected sea (DS) in three topologically distinct path-integral diagrams. The extended evolution
equations to accommodate both the connected and disconnected sea partons are derived [5]. It is es-
sential to have separately evolved CS and DS partons so that comparison with lattice calculations of
unpolarized and polarized moments of PDF can be made. Only with the extended evolution equations
will the CS and DS partons remain separated at di↵erent Q2 to facilitate global fitting of PDF with
separated CS and DS partons.

The definition of hadronic tensor in the Minkowski space is

Wµ⌫(q2, ⌫) =
1

4⇡

Z
d4zeiq·zhp|J†µ(z)J⌫(0)|pispin ave.

=
1
2

X

n

Z nY

i=1

"
d3 pi

(2⇡)32Epi

#
hN |Jµ(0)|nihn|J⌫(0)|Nispin ave.(2⇡)3�4(pn � p � q). (1)

where |pi is the nucleon state and Jµ is the vector current. In the Euclidean path integral formalism,
the hadronic tensor related nucleon matrix element can be expressed as the ratio of the four-point
function and the two-point function. To be specific, they are

C4(~p, ~q, ⌧) =
X

~x f

e�i~p·~x f
X

~x2~x1

e�i~q·(~x2�~x1)h�N(~x f , t f )Jµ(~x2, t2)J⌫(~x1, t1)�̄N(~0, t0)i, (2)

C2(~p, ⌧) =
X

~x f

e�i~p·~x f h�N(~x f , t f )�̄N(~0, t0)i, (3)
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Euclidean
where �N is the nucleon operator and ⌧ = t2 � t1. The ⌧ dependent Euclidean hadronic tensor is

W̃(~p, ~q, ⌧)
t f�t2,t1�t0
=

ENTr[�eC4(~p, ~q, ⌧)]
mNTr[�eC2(~p, ⌧)]

, (4)

where EN and mN are the energy and mass of the nucleon and �e =
1+�4

2 is the unpolarized spin
projector. After inserting the complete set of intermediate states, we have

W̃µ⌫(q2, ⌧) =
1

4⇡

X

n

 
2mN

2En

!
�~p+~q, ~pnhp|Jµ|nihn|J⌫|pispin ave.e�(En�EN )⌧. (5)

We see that in Eq. (5) there is an exponential dependence on the Euclidean ⌧. It will exponentially
decay when the lowest En is heavier than EN and it will exponentially grow when the lowest En is
lighter than EN . To analytic continue to the Minkowski space, an inverse Laplace transform is needed,
i.e.

Wµ⌫(q2, ⌫) =
1

2mNi

Z c+i1

c�i1
d⌧ e⌫⌧eWµ⌫(~q 2, ⌧), (6)

with c > 0. This is basically doing the anti-Wick rotation back to the Minkowski space to recover the
delta function in energy as shown in Eq. (1).

The topologically distinct insertions are shown in Figure 1. The first three involve leading-twist
contributions from the valence +CS partons in (a), the CS antipartons in (b), and the DS partons in (c).
The last two insertions ((d) and (e)) are higher-twist contributions which are suppressed by O(1/Q2)
and will be ignored.

We will focus on the first two insertions in this work. It has been pointed out that the second
insertion are the connected sea ū and d̄ contribution, which are responsible for the Gottfried sum rule
violation [2, 4].

(a) valence and connected sea parton
q(V+CS)

(b) connected sea anti-parton
q̄(CS)

(c) disconnected sea parton and
anti-parton q(DS) and q̄(DS)

(d) suppressed by O(1/Q2) (e) suppressed by O(1/Q2)

Figure 1. Topologically distinct diagrams in the Euclidean-path integral formulation.
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We report the first lattice QCD calculation of the glue spin in the nucleon. The lattice calculation is
carried out with valence overlap fermions on 2þ 1 flavor domain-wall fermion gauge configurations on
four lattice spacings and four volumes including an ensemble with physical values for the quark masses.
The glue spin SG in the Coulomb gauge in the modified minimal subtraction (MS) scheme is obtained with
one-loop perturbative matching. We find the results fairly insensitive to lattice spacing and quark masses.
We also find that the proton momentum dependence of SG in the range 0 ≤ j~pj < 1.5 GeV is very mild, and
we determine it in the large-momentum limit to be SG ¼ 0.251ð47Þð16Þ at the physical pion mass in the MS
scheme at μ2 ¼ 10 GeV2. If the matching procedure in large-momentum effective theory is neglected, SG is
equal to the glue helicity measured in high-energy scattering experiments.

DOI: 10.1103/PhysRevLett.118.102001

Introduction.—Deep-inelastic scattering experiments
reveal that, contrary to the naive quark model, the quark
spin contribution to the proton spin is quite small, about
30% [1–3]. In an effort to search for the missing proton
spin, recent analyses [4,5] of the high-statistics 2009 STAR
[6] and PHENIX [7] experiments at RHIC showed evi-
dence of nonzero glue helicity ΔG in the proton. For
Q2 ¼ 10 GeV2, the glue helicity distribution Δgðx;Q2Þ is
found to be positive and away from zero in the momentum
fraction region x < 0.05. However, the results are limited
by very large uncertainty in this region.
The recent COMPASS analysis explored ΔgðxÞ from the

scaling violation of ΔqðxÞ, and the highly distinct solutions
of ΔgðxÞ can be obtained with different parametrizations of
ΔqðxÞ [8]. Therefore, it hints that if a high precision ΔgðxÞ
can be obtained directly, it will benefit our understanding of
the parametrizations of ΔqðxÞ and provide more informa-
tion about the role of quark spin in the proton.
Given the importance of ΔgðxÞ to explain the origin of

the proton spin, and the fact that significant efforts are
devoted to its precise experimental determination, a theo-
retical understanding and calculation of ΔG is highly
desired. ΔG is defined as the first moment of the glue
helicity distribution ΔgðxÞ [9],

ΔG ¼
Z

dx
i

2xPþ

Z
dξ−

2π
e−ixP

þξ−

× hPSjFþα
a ðξ−ÞLabðξ−; 0Þ ~Fþ

α;bð0ÞjPSi; ð1Þ

where the light front coordinates are ξ% ¼ ðξ0 % ξ3Þ=
ffiffiffi
2

p
.

The proton plane wave state is written as jPSi, with
momentum Pμ ¼ ðP; 0; 0; PÞ and polarization S. The light-
cone gauge-link Lðξ−; 0Þ ¼ P exp½−ig

R ξ−
0 Aþðη−; 0⊥Þdη−'

is defined in the adjoint representation. It connects the
gauge field tensor and its dual, ~Fαβ ¼ 1

2 ϵ
αβμνFμν, to con-

struct a gauge-invariant operator. After integrating over x,
one can define the gauge-invariant gluon helicity operator
in a nonlocal form [10,11],

~Sg ¼
"
~Eað0Þ×

#
~Aað0Þ− 1

∇þ ð ~∇Aþ;bÞLbaðξ−;0Þ
$%

z
; ð2Þ

where ∇þ ¼ ∂=∂ξ−. It is the gauge-invariant extension of
the operator ~E × ~A in the light-cone gauge Aþ ¼ 0, but one
cannot evaluate this expression on the lattice directly due to
its real-time dependence.
On the other hand, ~Sg is equal to the infinite momentum

frame (IMF) limit of a universality class of operators [12]
whose matrix elements can be matched to ΔG through a
factorization formula in large-momentum effective theory
(LMET) [13,14]. The gluon spin operator proposed in
Ref. [15,16] with the non-Abelian transverse condition
belongs to this universality class and has been proven to be
equivalent to the gauge-invariant extension of ~E × ~A in the
Coulomb gauge ~∂ · ~A ¼ 0 [17,18],
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we determine it in the large-momentum limit to be SG ¼ 0.251ð47Þð16Þ at the physical pion mass in the MS
scheme at μ2 ¼ 10 GeV2. If the matching procedure in large-momentum effective theory is neglected, SG is
equal to the glue helicity measured in high-energy scattering experiments.
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Introduction.—Deep-inelastic scattering experiments
reveal that, contrary to the naive quark model, the quark
spin contribution to the proton spin is quite small, about
30% [1–3]. In an effort to search for the missing proton
spin, recent analyses [4,5] of the high-statistics 2009 STAR
[6] and PHENIX [7] experiments at RHIC showed evi-
dence of nonzero glue helicity ΔG in the proton. For
Q2 ¼ 10 GeV2, the glue helicity distribution Δgðx;Q2Þ is
found to be positive and away from zero in the momentum
fraction region x < 0.05. However, the results are limited
by very large uncertainty in this region.
The recent COMPASS analysis explored ΔgðxÞ from the

scaling violation of ΔqðxÞ, and the highly distinct solutions
of ΔgðxÞ can be obtained with different parametrizations of
ΔqðxÞ [8]. Therefore, it hints that if a high precision ΔgðxÞ
can be obtained directly, it will benefit our understanding of
the parametrizations of ΔqðxÞ and provide more informa-
tion about the role of quark spin in the proton.
Given the importance of ΔgðxÞ to explain the origin of

the proton spin, and the fact that significant efforts are
devoted to its precise experimental determination, a theo-
retical understanding and calculation of ΔG is highly
desired. ΔG is defined as the first moment of the glue
helicity distribution ΔgðxÞ [9],

ΔG ¼
Z

dx
i

2xPþ

Z
dξ−

2π
e−ixP

þξ−

× hPSjFþα
a ðξ−ÞLabðξ−; 0Þ ~Fþ

α;bð0ÞjPSi; ð1Þ

where the light front coordinates are ξ% ¼ ðξ0 % ξ3Þ=
ffiffiffi
2

p
.

The proton plane wave state is written as jPSi, with
momentum Pμ ¼ ðP; 0; 0; PÞ and polarization S. The light-
cone gauge-link Lðξ−; 0Þ ¼ P exp½−ig

R ξ−
0 Aþðη−; 0⊥Þdη−'

is defined in the adjoint representation. It connects the
gauge field tensor and its dual, ~Fαβ ¼ 1

2 ϵ
αβμνFμν, to con-

struct a gauge-invariant operator. After integrating over x,
one can define the gauge-invariant gluon helicity operator
in a nonlocal form [10,11],

~Sg ¼
"
~Eað0Þ×

#
~Aað0Þ− 1

∇þ ð ~∇Aþ;bÞLbaðξ−;0Þ
$%

z
; ð2Þ

where ∇þ ¼ ∂=∂ξ−. It is the gauge-invariant extension of
the operator ~E × ~A in the light-cone gauge Aþ ¼ 0, but one
cannot evaluate this expression on the lattice directly due to
its real-time dependence.
On the other hand, ~Sg is equal to the infinite momentum

frame (IMF) limit of a universality class of operators [12]
whose matrix elements can be matched to ΔG through a
factorization formula in large-momentum effective theory
(LMET) [13,14]. The gluon spin operator proposed in
Ref. [15,16] with the non-Abelian transverse condition
belongs to this universality class and has been proven to be
equivalent to the gauge-invariant extension of ~E × ~A in the
Coulomb gauge ~∂ · ~A ¼ 0 [17,18],
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~Sg ¼ 2

Z
d3xTrð~Ec × ~AcÞ; ð3Þ

where the factor 2 is from the normalization of the SU(3)
group generators and ~Ec and ~Ac are the chromoelectric field
and gauge potential in the Coulomb gauge with their lattice
versions to be addressed in the following.

~Sg is not Lorentz covariant and has nontrivial frame
dependence [11]. It is shown in Ref. [12] that when boosted
to the IMF, the Coulomb gauge fixing condition (as well as
the temporal condition A0 ¼ 0) [12] becomes Aþ ¼ 0, and
then the longitudinal component of ~Sg in either gauge is
equivalent to the glue helicity operator ~Sg with a proper

matching to cancel the intrinsic frame dependence of ~Sg.
On the lattice, the Coulomb condition can be obtained
numerically [19] and the glue spin operator ~Sg in the
Coulomb gauge can be calculated without numerical
difficulty.
The major task of this work is calculating the matrix

element of ~Sg in the proton, which will be indicated as SG,
in the rest and moving frames. The results are then
renormalized at one-loop order in lattice perturbation
theory and matched to the modified minimal subtraction
(MS) scheme at μ2 ¼ 10 GeV2, to investigate their frame
dependence and address the matching to the helicity.
Numerical details.—A preliminary attempt [20] to cal-

culate SG was carried out on 2þ 1 flavor dynamical
domain-wall configurations on a 243 × 64 lattice (24I)
with the sea pion mass at 330 MeV and on a 323 × 64
lattice with sea pion mass at 300 MeV [21]. In this work,
we improve the statistics on the ensembles mentioned
above and carry out the calculation on another three
ensembles with different lattice spacings, volumes, and
sea quark masses to check the corrections to the glue spin
from various systematic uncertainties. We use the 2-2-2
smeared stochastic grid source on all the ensembles (except
48I, where the 4-4-4 smeared stochastic grid source
is used), and apply the low-mode substitution [22,23] to
make the signal-to-noise ratio close to that with 8 (64 on
the 48I ensemble) independent smeared point sources.
Furthermore, we loop over all the time slices for the
two-point functions of the nucleon to increase statistics.
The statistics used for this grid source measurement is
roughly equivalent to evaluating a large number of quasi-
independent smeared point source measurements ranging
from 103,936 on the 24I lattice to 497,664 on the 48I
lattice. The parameters of the ensembles used in this work
are listed in Table I, and more details of the simulation
setups can be found in the Supplemental Material [24].
The Coulomb gauge fixing condition used here is

enforced by requiring that the spatial sum of the backward
difference of the hypercubic (HYP)-smeared gauge links
[26] be zero,

X

μ¼x;y;z

½Uc
μðxÞ − Uc

μðx − aμ̂Þ& ¼ 0; ð4Þ

where Uc
μðxÞ is the Coulomb gauge fixed Wilson link from

xþ aμ̂ to x. The gauge fixed potential Ac is defined by

Ac;μ¼
!
Uc

μðxÞ−Uc†
μ ðxÞþUc

μðx−aμ̂Þ−Uc†
μ ðx−aμ̂Þ

4iag

"

traceless
;

ð5Þ

with g as the bare coupling constant, and the chromoelectric
field used in this work is given by the clover definition,

Fc
μν ¼

i
8a2g

ðPμ;ν − Pν;μ þ Pν;−μ − P−μ;ν

þ P−μ;−ν − P−ν;−μ þ P−ν;μ − Pμ;−νÞ; ð6Þ

where Pμ;ν ¼ Uc
μðxÞUc

νðxþ aμ̂ÞUc†
μ ðxþ aν̂ÞUc†

ν ðxÞ.
In order to extract SG, we compute the ratio of the

disconnected three-point function with the gluon operator
insertion to the nucleon propagator with the source and sink
of the nucleon located at 0 and tf, respectively. The glue
spin operator is inserted at the time slice t, which is between
0 and tf. Then the ratio in a moving frame ~p ¼ ð0; 0; p3Þ
along the z direction is

Rðtf; tÞ ¼
h0jΓm

3

R
d3ye−ip3y3χð~y; tfÞS3gðtÞχ̄ð~0; 0Þj0i

h0jΓe
R
d3ye−ip3y3χð~y; tfÞχ̄ð~0; 0Þj0i

; ð7Þ

where χ is the nucleon interpolation field and Γe and Γm
3 are

the unpolarized projection operator of the proton and the
polarized one along the z direction, respectively. When tf is
large enough, Rðtf; tÞ is equal to the proton matrix element
of the longitudinal glue spin operator SG plus t-dependent
corrections,

Rðtf; tÞ ¼ SG þ C1e−ΔEðtf−tÞ þ C2e−ΔEt þ C3e−ΔEtf ; ð8Þ

where ΔE is the energy difference between the first excited
state and the ground state and C1;2;3 are the spectral weights
involving the excited state.

TABLE I. The parameters for the RBC and UKQCD configu-
rations [25]. mðsÞ

π is the pion mass of the light sea quark in the
2þ 1 flavor configuration, and Ncfg is the number of configu-
rations used in the simulation.

Symbol L3 × T a (fm) mðsÞ
π (MeV) Ncfg

32ID 323 × 64 0.1431(7) 170 200
48I 483 × 96 0.1141(2) 140 81
24I 243 × 64 0.1105(3) 330 203
32I 323 × 64 0.0828(3) 300 309
32If 323 × 64 0.0627(3) 370 238
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The glue helicity in the proton ΔG corresponds to the
glue longitudinal spin component SG in the IMF. The
LMET [14] shows a large finite correction at the one-loop
level:

SGðj~pj; μÞ ¼
!
1þ g2CA

16π2

"
7

3
log

ð~pÞ2

μ2
− 10.2098

#$
ΔGðμÞ

þ g2CF

16π2

"
4

3
log

ð~pÞ2

μ2
− 5.2627

#
ΔΣðμÞ

þOðg4Þ þO
"

1

ð~pÞ2

#
: ð10Þ

At μ2 ¼ 10 GeV2 and j~pj ¼ 1.5 GeV, the factor before
ΔG is 0.22, which is much smaller than unity and indicates
a convergence problem for the perturbative series even after
one resums the large logarithms. (The factor is 0.80 if the
finite piece 10.2098 is removed.) On the other hand, the
largest momentum we have on the lattice with acceptable
signal is comparable to the proton mass, so the power
corrections in Eq. (10) cannot be neglected and one cannot
simply apply this matching condition. Nevertheless, the
mild dependence of SG on the proton momentum as in
Fig. 4 leads us to suggest that it could be a small effect to
match to the IMF; i.e., SG ≈ ΔGþO(1=ð~pÞ2).
Therefore, we neglect the one-loop LMET matching and

use the following empirical form to fit our data:

SGðj~pjÞ ¼ SGð∞Þ þ C1

M2 þ ð~pÞ2
þ C2ðm2

π;vv −m2
π;physÞ

þ C3ðm2
π;ss −m2

π;physÞ þ C4a2; ð11Þ

where mπ;phys ¼ 0.139 GeV and M ¼ 0.939 GeV are the
physical pion and proton mass, respectively, and mπ;vv=ss

are the valence and sea pion masses, respectively. The

1=ð~pÞ2 correction in Eq. (10) is replaced by 1=½M2 þ ð~pÞ2&
to include all the data in the fitting. Since all the coefficients
other than SGð∞Þ are small, the cross terms and the higher-
order terms are ignored. The overall χ2=d.o.f. is 1.21 with
110 degrees of freedom. In Fig. 4, the band of the global fit
with the empirical form in Eq. (11) shows that the frame
dependence is mild and the central value is changed by less
than 10% from its value in the rest frame to that at
j~pj ∼ 1.5 GeV; the change is smaller than the statistical
uncertainty.
Since the Coulomb gauge fixing on the lattice has a built-

in OðaÞ correction, we repeated the fit with a linear term in
a. The central value is changed by about 1%, while the
uncertainty is larger. We take the variance of the central
values from two fits as an estimate of this uncertainty.
Similarly, the uncertainty from the volume dependence
e−mπvvL is estimated in the same way and added to the
systematic uncertainties in quadrature. In addition, the
value of the quark spin ΔΣ is varied by 20% to cover
the value∼0.30 [1] and that from Ref. [3]. The final result is
SGð∞; μ2 ¼ 10 GeV2Þ ¼ 0.251ð47Þð16Þ with two errors
from the statistical and systematic uncertainties.
Summary and outlook.—In this work, we calculated the

glue spin in the proton for the first time based on ~E × ~A in
the Coulomb gauge [15,16], with various quark masses,
lattice spacings, volumes, and proton momenta. The results
showmild dependencies on these quantities. After one-loop
perturbative matching from the lattice theory to the con-
tinuum and neglecting the matching effect between the glue
spin and helicity, we conclude that the gluon helicity
ΔGðμ2¼10GeV2Þ≈SGð∞;μ2¼10GeV2Þ¼0.251ð47Þð16Þ,
which is 50(9)(3)% of the total proton spin. The cactus
improvement [28] we used in Eq. (9) indicates that
uncertainties can be considerable in perturbative QCD,
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FIG. 3. The valence pion mass dependence of SG at
μ2 ¼ 10 GeV2, in the rest frame of the proton. These depend-
encies are fairly mild and can be well described with a linear fit.
The gray band shows the result based on the global fit with the
empirical form in Eq. (11).
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FIG. 4. The results extrapolated to the physical pion mass as a
function of the absolute value of ~p ¼ ð0; 0; p3Þ, on all the five
ensembles. All the results have been converted to MS at
μ2 ¼ 10 GeV2. The data on several ensembles are shifted
horizontally to enhance the legibility. The green band shows
the frame dependence of the global fit [with the empirical form in
Eq. (11)] of the results.
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The glue helicity in the proton ΔG corresponds to the
glue longitudinal spin component SG in the IMF. The
LMET [14] shows a large finite correction at the one-loop
level:

SGðj~pj; μÞ ¼
!
1þ g2CA

16π2

"
7

3
log

ð~pÞ2

μ2
− 10.2098

#$
ΔGðμÞ

þ g2CF

16π2

"
4

3
log

ð~pÞ2

μ2
− 5.2627

#
ΔΣðμÞ

þOðg4Þ þO
"

1

ð~pÞ2

#
: ð10Þ

At μ2 ¼ 10 GeV2 and j~pj ¼ 1.5 GeV, the factor before
ΔG is 0.22, which is much smaller than unity and indicates
a convergence problem for the perturbative series even after
one resums the large logarithms. (The factor is 0.80 if the
finite piece 10.2098 is removed.) On the other hand, the
largest momentum we have on the lattice with acceptable
signal is comparable to the proton mass, so the power
corrections in Eq. (10) cannot be neglected and one cannot
simply apply this matching condition. Nevertheless, the
mild dependence of SG on the proton momentum as in
Fig. 4 leads us to suggest that it could be a small effect to
match to the IMF; i.e., SG ≈ ΔGþO(1=ð~pÞ2).
Therefore, we neglect the one-loop LMET matching and

use the following empirical form to fit our data:

SGðj~pjÞ ¼ SGð∞Þ þ C1

M2 þ ð~pÞ2
þ C2ðm2

π;vv −m2
π;physÞ

þ C3ðm2
π;ss −m2

π;physÞ þ C4a2; ð11Þ

where mπ;phys ¼ 0.139 GeV and M ¼ 0.939 GeV are the
physical pion and proton mass, respectively, and mπ;vv=ss

are the valence and sea pion masses, respectively. The

1=ð~pÞ2 correction in Eq. (10) is replaced by 1=½M2 þ ð~pÞ2&
to include all the data in the fitting. Since all the coefficients
other than SGð∞Þ are small, the cross terms and the higher-
order terms are ignored. The overall χ2=d.o.f. is 1.21 with
110 degrees of freedom. In Fig. 4, the band of the global fit
with the empirical form in Eq. (11) shows that the frame
dependence is mild and the central value is changed by less
than 10% from its value in the rest frame to that at
j~pj ∼ 1.5 GeV; the change is smaller than the statistical
uncertainty.
Since the Coulomb gauge fixing on the lattice has a built-

in OðaÞ correction, we repeated the fit with a linear term in
a. The central value is changed by about 1%, while the
uncertainty is larger. We take the variance of the central
values from two fits as an estimate of this uncertainty.
Similarly, the uncertainty from the volume dependence
e−mπvvL is estimated in the same way and added to the
systematic uncertainties in quadrature. In addition, the
value of the quark spin ΔΣ is varied by 20% to cover
the value∼0.30 [1] and that from Ref. [3]. The final result is
SGð∞; μ2 ¼ 10 GeV2Þ ¼ 0.251ð47Þð16Þ with two errors
from the statistical and systematic uncertainties.
Summary and outlook.—In this work, we calculated the

glue spin in the proton for the first time based on ~E × ~A in
the Coulomb gauge [15,16], with various quark masses,
lattice spacings, volumes, and proton momenta. The results
showmild dependencies on these quantities. After one-loop
perturbative matching from the lattice theory to the con-
tinuum and neglecting the matching effect between the glue
spin and helicity, we conclude that the gluon helicity
ΔGðμ2¼10GeV2Þ≈SGð∞;μ2¼10GeV2Þ¼0.251ð47Þð16Þ,
which is 50(9)(3)% of the total proton spin. The cactus
improvement [28] we used in Eq. (9) indicates that
uncertainties can be considerable in perturbative QCD,
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FIG. 3. The valence pion mass dependence of SG at
μ2 ¼ 10 GeV2, in the rest frame of the proton. These depend-
encies are fairly mild and can be well described with a linear fit.
The gray band shows the result based on the global fit with the
empirical form in Eq. (11).
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FIG. 4. The results extrapolated to the physical pion mass as a
function of the absolute value of ~p ¼ ð0; 0; p3Þ, on all the five
ensembles. All the results have been converted to MS at
μ2 ¼ 10 GeV2. The data on several ensembles are shifted
horizontally to enhance the legibility. The green band shows
the frame dependence of the global fit [with the empirical form in
Eq. (11)] of the results.
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Matching to LaMET

The glue helicity in the proton ΔG corresponds to the
glue longitudinal spin component SG in the IMF. The
LMET [14] shows a large finite correction at the one-loop
level:

SGðj~pj; μÞ ¼
!
1þ g2CA

16π2

"
7

3
log

ð~pÞ2

μ2
− 10.2098

#$
ΔGðμÞ

þ g2CF

16π2

"
4

3
log

ð~pÞ2

μ2
− 5.2627

#
ΔΣðμÞ

þOðg4Þ þO
"

1

ð~pÞ2

#
: ð10Þ

At μ2 ¼ 10 GeV2 and j~pj ¼ 1.5 GeV, the factor before
ΔG is 0.22, which is much smaller than unity and indicates
a convergence problem for the perturbative series even after
one resums the large logarithms. (The factor is 0.80 if the
finite piece 10.2098 is removed.) On the other hand, the
largest momentum we have on the lattice with acceptable
signal is comparable to the proton mass, so the power
corrections in Eq. (10) cannot be neglected and one cannot
simply apply this matching condition. Nevertheless, the
mild dependence of SG on the proton momentum as in
Fig. 4 leads us to suggest that it could be a small effect to
match to the IMF; i.e., SG ≈ ΔGþO(1=ð~pÞ2).
Therefore, we neglect the one-loop LMET matching and

use the following empirical form to fit our data:

SGðj~pjÞ ¼ SGð∞Þ þ C1

M2 þ ð~pÞ2
þ C2ðm2

π;vv −m2
π;physÞ

þ C3ðm2
π;ss −m2

π;physÞ þ C4a2; ð11Þ

where mπ;phys ¼ 0.139 GeV and M ¼ 0.939 GeV are the
physical pion and proton mass, respectively, and mπ;vv=ss

are the valence and sea pion masses, respectively. The

1=ð~pÞ2 correction in Eq. (10) is replaced by 1=½M2 þ ð~pÞ2&
to include all the data in the fitting. Since all the coefficients
other than SGð∞Þ are small, the cross terms and the higher-
order terms are ignored. The overall χ2=d.o.f. is 1.21 with
110 degrees of freedom. In Fig. 4, the band of the global fit
with the empirical form in Eq. (11) shows that the frame
dependence is mild and the central value is changed by less
than 10% from its value in the rest frame to that at
j~pj ∼ 1.5 GeV; the change is smaller than the statistical
uncertainty.
Since the Coulomb gauge fixing on the lattice has a built-

in OðaÞ correction, we repeated the fit with a linear term in
a. The central value is changed by about 1%, while the
uncertainty is larger. We take the variance of the central
values from two fits as an estimate of this uncertainty.
Similarly, the uncertainty from the volume dependence
e−mπvvL is estimated in the same way and added to the
systematic uncertainties in quadrature. In addition, the
value of the quark spin ΔΣ is varied by 20% to cover
the value∼0.30 [1] and that from Ref. [3]. The final result is
SGð∞; μ2 ¼ 10 GeV2Þ ¼ 0.251ð47Þð16Þ with two errors
from the statistical and systematic uncertainties.
Summary and outlook.—In this work, we calculated the

glue spin in the proton for the first time based on ~E × ~A in
the Coulomb gauge [15,16], with various quark masses,
lattice spacings, volumes, and proton momenta. The results
showmild dependencies on these quantities. After one-loop
perturbative matching from the lattice theory to the con-
tinuum and neglecting the matching effect between the glue
spin and helicity, we conclude that the gluon helicity
ΔGðμ2¼10GeV2Þ≈SGð∞;μ2¼10GeV2Þ¼0.251ð47Þð16Þ,
which is 50(9)(3)% of the total proton spin. The cactus
improvement [28] we used in Eq. (9) indicates that
uncertainties can be considerable in perturbative QCD,
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FIG. 3. The valence pion mass dependence of SG at
μ2 ¼ 10 GeV2, in the rest frame of the proton. These depend-
encies are fairly mild and can be well described with a linear fit.
The gray band shows the result based on the global fit with the
empirical form in Eq. (11).
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FIG. 4. The results extrapolated to the physical pion mass as a
function of the absolute value of ~p ¼ ð0; 0; p3Þ, on all the five
ensembles. All the results have been converted to MS at
μ2 ¼ 10 GeV2. The data on several ensembles are shifted
horizontally to enhance the legibility. The green band shows
the frame dependence of the global fit [with the empirical form in
Eq. (11)] of the results.
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Singularities and Wilson Lines… 

Figure 5: Correspondence between singularities in momentum space and the development
of the system in space-time.

2.4 Space-time picture of the singularities

We now return to the singularity structure of e+e− → qq̄g. Define pµ1 + pµ3 = kµ. Choose
null plane coordinates with k+ large and kT = 0. Then k2 = 2k+k− becomes small when

k− =
p2
3,T

2p+1
+

p2
3,T

2p+3
(26)

becomes small. This happens when p3,T becomes small with fixed p+1 and p+3 , so that the
gluon momentum is nearly collinear with the quark momentum. It also happens when p3,T

and p+3 both become small with p+3 ∝ |p3,T |, so that the gluon momentum is soft. ( It also
happens when the quark becomes soft, but there is a numerator factor that cancels the soft
quark singularity.) Thus the singularities for a soft or collinear gluon correspond to small
k−.

Now consider the Fourier transform to coordinate space. The quark propagator in Fig. 5
is

SF (k) =
∫

dx+dx−dx exp(i[k+x− + k−x+ − k · x]) SF (x). (27)

When k+ is large and k− is small, the contributing values of x have small x− and large x+.
Thus the propagation of the virtual quark can be pictured in space-time as in Fig. 5. The
quark propagates a long distance in the x+ direction before decaying into a quark-gluon pair.
That is, the singularities that can lead to divergent perturbative cross sections arise from
interactions that happen a long time after the creation of the initial quark-antiquark pair.

2.5 Nature of the long-time physics

Imagine dividing the contributions to a scattering cross section into long-time contributions
and short-time contributions. In the long-time contributions, perturbation theory is out
of control, as indicated in Eq. (19). Nevertheless the generic structure of the long-time
contribution is of great interest. This structure is illustrated in Fig. 6. Perturbative diagrams
have big contributions from space-time histories in which partons move in collinear groups
and additional partons are soft and communicate over large distances, while carrying small
momentum.
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Figure 5: Correspondence between singularities in momentum space and the development
of the system in space-time.

2.4 Space-time picture of the singularities
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null plane coordinates with k+ large and kT = 0. Then k2 = 2k+k− becomes small when

k− =
p2
3,T

2p+1
+

p2
3,T

2p+3
(26)

becomes small. This happens when p3,T becomes small with fixed p+1 and p+3 , so that the
gluon momentum is nearly collinear with the quark momentum. It also happens when p3,T

and p+3 both become small with p+3 ∝ |p3,T |, so that the gluon momentum is soft. ( It also
happens when the quark becomes soft, but there is a numerator factor that cancels the soft
quark singularity.) Thus the singularities for a soft or collinear gluon correspond to small
k−.

Now consider the Fourier transform to coordinate space. The quark propagator in Fig. 5
is

SF (k) =
∫

dx+dx−dx exp(i[k+x− + k−x+ − k · x]) SF (x). (27)

When k+ is large and k− is small, the contributing values of x have small x− and large x+.
Thus the propagation of the virtual quark can be pictured in space-time as in Fig. 5. The
quark propagates a long distance in the x+ direction before decaying into a quark-gluon pair.
That is, the singularities that can lead to divergent perturbative cross sections arise from
interactions that happen a long time after the creation of the initial quark-antiquark pair.

2.5 Nature of the long-time physics

Imagine dividing the contributions to a scattering cross section into long-time contributions
and short-time contributions. In the long-time contributions, perturbation theory is out
of control, as indicated in Eq. (19). Nevertheless the generic structure of the long-time
contribution is of great interest. This structure is illustrated in Fig. 6. Perturbative diagrams
have big contributions from space-time histories in which partons move in collinear groups
and additional partons are soft and communicate over large distances, while carrying small
momentum.
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ū(k0)�µu(k)gµ⌫ ū(p
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ū(k0)�µu(k)gµ⌫ ū(p
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also have the advantage of an intuitive physical interpretation, at least in a specific
reference frame in the low-energy limit.

The nucleon vertex factor can be reexpressed in terms of Sachs form factors and
simplified. Substituting (1.6) into (1.8) gives:

�⌫ = F
1

�⌫ +
1

2M
F
2

(2M�⌫ � p0⌫ � p⌫)

�⌫ = (F
1

+ F
2

)�⌫ � 1

2M
F
2

(p0⌫ + p⌫)
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   General definition of the nucleon form factor 

   Sachs Form Factors  

   In One-photon exchange approximation above form factors are 

observables of elastic electron-nucleon scattering 

Nucleon Elastic Form Factors 

gµ⌫ is the Minkowski metric tensor. The de Broglie wavelength of the virtual photon
can be thought of as the resolution with which it “sees” the nucleon structure. This
wavelength is given by � = h̄

Q
, where Q ⌘

p
|q2|. With h̄c ⇡ 197 MeV · fm, it is

found that � ⇡ .2 fm/Q, with Q in GeV/c. The u’s and ū’s are free-particle Dirac
spinors and their adjoints5, respectively. �ie�⌫ is the modified nucleon vertex factor.
In its most general possible form, it is expressed as a linear combination of bilinear
covariants of the Dirac equation6 and the independent four-vectors p⌫ and p0⌫ :

�⌫ = K
1

�⌫ + iK
2

�⌫↵(p0 � p)↵ + iK
3

�⌫↵(p0 + p)↵ +

K
4

(p0 � p)⌫ +K
5

(p0 + p)⌫ (1.4)

where the tensor �µ⌫ ⌘ i
2

[�µ, �⌫ ]. The structure factors Ki are all functions of q2.
Demanding Lorentz invariance of the single photon exchange amplitude requires that
the form factors are functions of only one variable, q2. All other Lorentz scalars
involved in the problem can be expressed in terms of q2 by energy and momentum
conservation. The terms involving �⌫↵ are multiplied by i so that the invariant
amplitude is real-valued7. From (1.4) it appears that there are five independent
form factors; however, not all of the terms are independent. Keeping in mind that
the vertex factor is sandwiched between spinors that obey the Dirac equation, the
number of independent form factors can be reduced to three:

�µ⌫(p0⌫ + p⌫) =
i

2
[�µ( 6 p0+ 6 p)� ( 6 p0+ 6 p)�µ]

=
i

2
[�M�µ + 2p0µ +M�µ �M�µ +M�µ � 2pµ]

= i(p0 � p)µ (1.5)

�µ⌫(p0⌫ � p⌫) =
i

2
[�µ( 6 p0� 6 p)� ( 6 p0� 6 p)�µ]

=
i
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= i(p0µ + pµ � 2M�µ) (1.6)

In equations (1.5)-(1.6), the anticommutation relation for Dirac gamma matrices
{�µ, �⌫} = 2gµ⌫ , the Dirac equation for free-particle spinors ((�µpµ � M)u = 0 and
ū(�µpµ � M) = 0), and the standard notation 6 a ⌘ �µaµ have all been applied.
Equations (1.5)-(1.6) show that the term in (1.4) proportional to p0µ + pµ can be
absorbed into a combination of the terms proportional to �µ and �µ⌫(p0⌫ � p⌫), and
the term proportional to �µ⌫(p0⌫ + p⌫) can be absorbed into the p0µ � pµ term, leaving
just three independent form factors and the following expression for the vertex factor

5
ū = u

†
�

0

6Axial vector terms including �

5 are not allowed, as they would violate parity conservation, which
is known to hold in electromagnetic interactions.

7Because no other diagrams interfere with figure 1.1 at this order in ↵, one is free to choose the
phase of the amplitude (1.3) arbitrarily, since it will not a↵ect any physical observables. However,
once a phase convention is adopted, it must be applied consistently when calculating the contribution
of any higher-order diagrams to the process.
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Term proportional to

gµ⌫ is the Minkowski metric tensor. The de Broglie wavelength of the virtual photon
can be thought of as the resolution with which it “sees” the nucleon structure. This
wavelength is given by � = h̄
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, where Q ⌘
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found that � ⇡ .2 fm/Q, with Q in GeV/c. The u’s and ū’s are free-particle Dirac
spinors and their adjoints5, respectively. �ie�⌫ is the modified nucleon vertex factor.
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where the tensor �µ⌫ ⌘ i
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[�µ, �⌫ ]. The structure factors Ki are all functions of q2.
Demanding Lorentz invariance of the single photon exchange amplitude requires that
the form factors are functions of only one variable, q2. All other Lorentz scalars
involved in the problem can be expressed in terms of q2 by energy and momentum
conservation. The terms involving �⌫↵ are multiplied by i so that the invariant
amplitude is real-valued7. From (1.4) it appears that there are five independent
form factors; however, not all of the terms are independent. Keeping in mind that
the vertex factor is sandwiched between spinors that obey the Dirac equation, the
number of independent form factors can be reduced to three:
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In equations (1.5)-(1.6), the anticommutation relation for Dirac gamma matrices
{�µ, �⌫} = 2gµ⌫ , the Dirac equation for free-particle spinors ((�µpµ � M)u = 0 and
ū(�µpµ � M) = 0), and the standard notation 6 a ⌘ �µaµ have all been applied.
Equations (1.5)-(1.6) show that the term in (1.4) proportional to p0µ + pµ can be
absorbed into a combination of the terms proportional to �µ and �µ⌫(p0⌫ � p⌫), and
the term proportional to �µ⌫(p0⌫ + p⌫) can be absorbed into the p0µ � pµ term, leaving
just three independent form factors and the following expression for the vertex factor

5
ū = u

†
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0

6Axial vector terms including �

5 are not allowed, as they would violate parity conservation, which
is known to hold in electromagnetic interactions.

7Because no other diagrams interfere with figure 1.1 at this order in ↵, one is free to choose the
phase of the amplitude (1.3) arbitrarily, since it will not a↵ect any physical observables. However,
once a phase convention is adopted, it must be applied consistently when calculating the contribution
of any higher-order diagrams to the process.
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gµ⌫ is the Minkowski metric tensor. The de Broglie wavelength of the virtual photon
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wavelength is given by � = h̄
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, where Q ⌘
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found that � ⇡ .2 fm/Q, with Q in GeV/c. The u’s and ū’s are free-particle Dirac
spinors and their adjoints5, respectively. �ie�⌫ is the modified nucleon vertex factor.
In its most general possible form, it is expressed as a linear combination of bilinear
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where the tensor �µ⌫ ⌘ i
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[�µ, �⌫ ]. The structure factors Ki are all functions of q2.
Demanding Lorentz invariance of the single photon exchange amplitude requires that
the form factors are functions of only one variable, q2. All other Lorentz scalars
involved in the problem can be expressed in terms of q2 by energy and momentum
conservation. The terms involving �⌫↵ are multiplied by i so that the invariant
amplitude is real-valued7. From (1.4) it appears that there are five independent
form factors; however, not all of the terms are independent. Keeping in mind that
the vertex factor is sandwiched between spinors that obey the Dirac equation, the
number of independent form factors can be reduced to three:
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=
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2
[�M�µ + 2p0µ �M�µ �M�µ �M�µ + 2pµ]

= i(p0µ + pµ � 2M�µ) (1.6)

In equations (1.5)-(1.6), the anticommutation relation for Dirac gamma matrices
{�µ, �⌫} = 2gµ⌫ , the Dirac equation for free-particle spinors ((�µpµ � M)u = 0 and
ū(�µpµ � M) = 0), and the standard notation 6 a ⌘ �µaµ have all been applied.
Equations (1.5)-(1.6) show that the term in (1.4) proportional to p0µ + pµ can be
absorbed into a combination of the terms proportional to �µ and �µ⌫(p0⌫ � p⌫), and
the term proportional to �µ⌫(p0⌫ + p⌫) can be absorbed into the p0µ � pµ term, leaving
just three independent form factors and the following expression for the vertex factor

5
ū = u

†
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0

6Axial vector terms including �

5 are not allowed, as they would violate parity conservation, which
is known to hold in electromagnetic interactions.

7Because no other diagrams interfere with figure 1.1 at this order in ↵, one is free to choose the
phase of the amplitude (1.3) arbitrarily, since it will not a↵ect any physical observables. However,
once a phase convention is adopted, it must be applied consistently when calculating the contribution
of any higher-order diagrams to the process.

32

gµ⌫ is the Minkowski metric tensor. The de Broglie wavelength of the virtual photon
can be thought of as the resolution with which it “sees” the nucleon structure. This
wavelength is given by � = h̄
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, where Q ⌘
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|q2|. With h̄c ⇡ 197 MeV · fm, it is

found that � ⇡ .2 fm/Q, with Q in GeV/c. The u’s and ū’s are free-particle Dirac
spinors and their adjoints5, respectively. �ie�⌫ is the modified nucleon vertex factor.
In its most general possible form, it is expressed as a linear combination of bilinear
covariants of the Dirac equation6 and the independent four-vectors p⌫ and p0⌫ :
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where the tensor �µ⌫ ⌘ i
2

[�µ, �⌫ ]. The structure factors Ki are all functions of q2.
Demanding Lorentz invariance of the single photon exchange amplitude requires that
the form factors are functions of only one variable, q2. All other Lorentz scalars
involved in the problem can be expressed in terms of q2 by energy and momentum
conservation. The terms involving �⌫↵ are multiplied by i so that the invariant
amplitude is real-valued7. From (1.4) it appears that there are five independent
form factors; however, not all of the terms are independent. Keeping in mind that
the vertex factor is sandwiched between spinors that obey the Dirac equation, the
number of independent form factors can be reduced to three:

�µ⌫(p0⌫ + p⌫) =
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2
[�µ( 6 p0+ 6 p)� ( 6 p0+ 6 p)�µ]

=
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2
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= i(p0 � p)µ (1.5)
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=
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[�M�µ + 2p0µ �M�µ �M�µ �M�µ + 2pµ]

= i(p0µ + pµ � 2M�µ) (1.6)

In equations (1.5)-(1.6), the anticommutation relation for Dirac gamma matrices
{�µ, �⌫} = 2gµ⌫ , the Dirac equation for free-particle spinors ((�µpµ � M)u = 0 and
ū(�µpµ � M) = 0), and the standard notation 6 a ⌘ �µaµ have all been applied.
Equations (1.5)-(1.6) show that the term in (1.4) proportional to p0µ + pµ can be
absorbed into a combination of the terms proportional to �µ and �µ⌫(p0⌫ � p⌫), and
the term proportional to �µ⌫(p0⌫ + p⌫) can be absorbed into the p0µ � pµ term, leaving
just three independent form factors and the following expression for the vertex factor

5
ū = u

†
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0

6Axial vector terms including �

5 are not allowed, as they would violate parity conservation, which
is known to hold in electromagnetic interactions.

7Because no other diagrams interfere with figure 1.1 at this order in ↵, one is free to choose the
phase of the amplitude (1.3) arbitrarily, since it will not a↵ect any physical observables. However,
once a phase convention is adopted, it must be applied consistently when calculating the contribution
of any higher-order diagrams to the process.
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gµ⌫ is the Minkowski metric tensor. The de Broglie wavelength of the virtual photon
can be thought of as the resolution with which it “sees” the nucleon structure. This
wavelength is given by � = h̄
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, where Q ⌘

p
|q2|. With h̄c ⇡ 197 MeV · fm, it is

found that � ⇡ .2 fm/Q, with Q in GeV/c. The u’s and ū’s are free-particle Dirac
spinors and their adjoints5, respectively. �ie�⌫ is the modified nucleon vertex factor.
In its most general possible form, it is expressed as a linear combination of bilinear
covariants of the Dirac equation6 and the independent four-vectors p⌫ and p0⌫ :
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where the tensor �µ⌫ ⌘ i
2

[�µ, �⌫ ]. The structure factors Ki are all functions of q2.
Demanding Lorentz invariance of the single photon exchange amplitude requires that
the form factors are functions of only one variable, q2. All other Lorentz scalars
involved in the problem can be expressed in terms of q2 by energy and momentum
conservation. The terms involving �⌫↵ are multiplied by i so that the invariant
amplitude is real-valued7. From (1.4) it appears that there are five independent
form factors; however, not all of the terms are independent. Keeping in mind that
the vertex factor is sandwiched between spinors that obey the Dirac equation, the
number of independent form factors can be reduced to three:
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=
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In equations (1.5)-(1.6), the anticommutation relation for Dirac gamma matrices
{�µ, �⌫} = 2gµ⌫ , the Dirac equation for free-particle spinors ((�µpµ � M)u = 0 and
ū(�µpµ � M) = 0), and the standard notation 6 a ⌘ �µaµ have all been applied.
Equations (1.5)-(1.6) show that the term in (1.4) proportional to p0µ + pµ can be
absorbed into a combination of the terms proportional to �µ and �µ⌫(p0⌫ � p⌫), and
the term proportional to �µ⌫(p0⌫ + p⌫) can be absorbed into the p0µ � pµ term, leaving
just three independent form factors and the following expression for the vertex factor
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6Axial vector terms including �

5 are not allowed, as they would violate parity conservation, which
is known to hold in electromagnetic interactions.

7Because no other diagrams interfere with figure 1.1 at this order in ↵, one is free to choose the
phase of the amplitude (1.3) arbitrarily, since it will not a↵ect any physical observables. However,
once a phase convention is adopted, it must be applied consistently when calculating the contribution
of any higher-order diagrams to the process.
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gµ⌫ is the Minkowski metric tensor. The de Broglie wavelength of the virtual photon
can be thought of as the resolution with which it “sees” the nucleon structure. This
wavelength is given by � = h̄
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, where Q ⌘
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|q2|. With h̄c ⇡ 197 MeV · fm, it is

found that � ⇡ .2 fm/Q, with Q in GeV/c. The u’s and ū’s are free-particle Dirac
spinors and their adjoints5, respectively. �ie�⌫ is the modified nucleon vertex factor.
In its most general possible form, it is expressed as a linear combination of bilinear
covariants of the Dirac equation6 and the independent four-vectors p⌫ and p0⌫ :
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where the tensor �µ⌫ ⌘ i
2

[�µ, �⌫ ]. The structure factors Ki are all functions of q2.
Demanding Lorentz invariance of the single photon exchange amplitude requires that
the form factors are functions of only one variable, q2. All other Lorentz scalars
involved in the problem can be expressed in terms of q2 by energy and momentum
conservation. The terms involving �⌫↵ are multiplied by i so that the invariant
amplitude is real-valued7. From (1.4) it appears that there are five independent
form factors; however, not all of the terms are independent. Keeping in mind that
the vertex factor is sandwiched between spinors that obey the Dirac equation, the
number of independent form factors can be reduced to three:
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=
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= i(p0µ + pµ � 2M�µ) (1.6)

In equations (1.5)-(1.6), the anticommutation relation for Dirac gamma matrices
{�µ, �⌫} = 2gµ⌫ , the Dirac equation for free-particle spinors ((�µpµ � M)u = 0 and
ū(�µpµ � M) = 0), and the standard notation 6 a ⌘ �µaµ have all been applied.
Equations (1.5)-(1.6) show that the term in (1.4) proportional to p0µ + pµ can be
absorbed into a combination of the terms proportional to �µ and �µ⌫(p0⌫ � p⌫), and
the term proportional to �µ⌫(p0⌫ + p⌫) can be absorbed into the p0µ � pµ term, leaving
just three independent form factors and the following expression for the vertex factor
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5 are not allowed, as they would violate parity conservation, which
is known to hold in electromagnetic interactions.
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phase of the amplitude (1.3) arbitrarily, since it will not a↵ect any physical observables. However,
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(with q = p0 � p by 4-momentum conservation):

�⌫ = F
1

�⌫ + i
F
2

2M
�⌫↵q↵ + F

3

p0⌫ � p⌫

M

Finally, current conservation at the nucleon vertex requires that qµJµ = 0, which
implies:

qµJ
µ = ū(p0)


F
1

6 q + i
1

2M
F
2

qµ�
µ⌫q⌫ + q2F

3

�
u(p) = 0

) F
3

= 0 (1.7)

The first term can be shown to vanish by applying the Dirac equation to the spinors
sandwiching 6 q. The second term is zero because �µ⌫ is totally antisymmetric, while
qµq⌫ is symmetric, leaving q2F

3

= 0. So in the one photon exchange approximation,
the nucleon current is characterized by just two independent form factors, which are
functions of q2:

�⌫ = F
1

(q2)�⌫ + F
2

(q2)i�⌫↵ q↵
2M

(1.8)

Substituting (1.8) into (1.3) for the scattering amplitude gives:

M =
e2

q2
ū(k0)�µu(k)gµ⌫ ū(p

0)
h
F
1

(q2)�⌫ + F
2

(q2)i�⌫↵ q↵
2M

i
u(p) (1.9)

The convention (1.8) for the nucleon vertex factor is commonly used in the literature
on nucleon form factors; F

1

and F
2

are known as the Dirac and Pauli form factors,
respectively. Another commonly used choice of the form factors uses the linear com-
binations

GE(q
2) ⌘ F

1

(q2)� ⌧F
2

(q2) (1.10)

GM(q2) ⌘ F
1

(q2) + F
2

(q2) (1.11)

⌧ ⌘ Q2

4M2

=
�q2

4M2

(1.12)

which are known as the Sachs electric and magnetic form factors, respectively. These
form factors have the advantage that the scattering cross section has only terms pro-
portional to G2

E and G2

M , and no terms proportional to GEGM , making an extraction
of GE and GM separately from a cross section measurement that much simpler. They
also have the advantage of an intuitive physical interpretation, at least in a specific
reference frame in the low-energy limit.

The nucleon vertex factor can be reexpressed in terms of Sachs form factors and
simplified. Substituting (1.6) into (1.8) gives:
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�⌫ +
1

2M
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(2M�⌫ � p0⌫ � p⌫)

�⌫ = (F
1

+ F
2

)�⌫ � 1

2M
F
2

(p0⌫ + p⌫)
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QCD Beta Function

perturbatively defined coping diverges at this scale



1 Light Cone Coordinates: Definitions, Identities

A four-vector is not bold-faced (e.g. p, k), a three-vector is bold-faced
with a vector symbol (e.g. ~p, ~k), and a transverse two-vector is bold-faced
without a vector symbol (e.g. p, k). Minkowski four-vectors are written
with parentheses, (); light-cone four-vectors with brackets, [].

p = (p0
, p

z

,p) = [p+
, p

�
,p]. (1)

We will use non-symmetrized lightcone coordinates:

p

+ = p

0 + p

z (2)

p

� = p

0 � p

z (3)
p = p. (4)

The inverse transformation is then

p

0 =
1
2
(p+ + p

�) (5)

p

z =
1
2
(p+ � p

�) (6)

p = p. (7)

The Minkowski dot product in lightcone coordinates is:

p · k = p

0
k

0 � p

z

k

z � p · k =
1
2
(p+

k

� + p

�
k

+)� p · k. (8)

The length of a vector using lightcone coordinates is then:

p · p = p

+
p

� � p · p (9)

.

2 Derivation of WHDG Kinematic Limits

First, see Fig. 1 for notation. For a massless parent parton of momentum
P , a massless radiated gluon of momentum k, and a final massless parent
parton momentum of p we have that

P = (E,E, 0, 0) = [E+
, 0, 0], (10)

1



The probability for an initial state splitting is proportional to αs. 

Figure 4: Null plane axes in momentum space.

For a particle with large momentum in the +z direction and limited transverse momentum,
p+ is large and p− is small. Often one chooses the plus axis so that a particle or group of
particles of interest have large p+ and small p− and pT .

Using null plane components, the covariant square of pµ is

p2 = 2p+p− − p2
T . (21)

Thus, for a particle on its mass shell, p− is

p− =
p2
T +m2

2p+
. (22)

Note also that, for a particle on its mass shell,
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We also use the plus/minus components to describe a space-time point xµ: x± = (x0±
x3)/

√
2. In describing a system of particles moving with large momentum in the plus direc-

tion, we are invited to think of x+ as “time.” Classically, the particles in our system follow
paths nearly parallel to the x+ axis, evolving slowly as it moves from one x+ = const. plane
to another.

We relate momentum space to position space for a quantum system by Fourier trans-
forming. In doing so, we have a factor exp(ip · x), which has the form

p · x = p+x− + p−x+ − pT · xT . (25)

Thus x− is conjugate to p+ and x+ is conjugate to p−. That is a little confusing, but it is
simple enough.
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Figure 5: Correspondence between singularities in momentum space and the development
of the system in space-time.

2.4 Space-time picture of the singularities

We now return to the singularity structure of e+e− → qq̄g. Define pµ1 + pµ3 = kµ. Choose
null plane coordinates with k+ large and kT = 0. Then k2 = 2k+k− becomes small when

k− =
p2
3,T

2p+1
+

p2
3,T

2p+3
(26)

becomes small. This happens when p3,T becomes small with fixed p+1 and p+3 , so that the
gluon momentum is nearly collinear with the quark momentum. It also happens when p3,T

and p+3 both become small with p+3 ∝ |p3,T |, so that the gluon momentum is soft. ( It also
happens when the quark becomes soft, but there is a numerator factor that cancels the soft
quark singularity.) Thus the singularities for a soft or collinear gluon correspond to small
k−.

Now consider the Fourier transform to coordinate space. The quark propagator in Fig. 5
is

SF (k) =
∫

dx+dx−dx exp(i[k+x− + k−x+ − k · x]) SF (x). (27)

When k+ is large and k− is small, the contributing values of x have small x− and large x+.
Thus the propagation of the virtual quark can be pictured in space-time as in Fig. 5. The
quark propagates a long distance in the x+ direction before decaying into a quark-gluon pair.
That is, the singularities that can lead to divergent perturbative cross sections arise from
interactions that happen a long time after the creation of the initial quark-antiquark pair.

2.5 Nature of the long-time physics

Imagine dividing the contributions to a scattering cross section into long-time contributions
and short-time contributions. In the long-time contributions, perturbation theory is out
of control, as indicated in Eq. (19). Nevertheless the generic structure of the long-time
contribution is of great interest. This structure is illustrated in Fig. 6. Perturbative diagrams
have big contributions from space-time histories in which partons move in collinear groups
and additional partons are soft and communicate over large distances, while carrying small
momentum.
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of order 1/
√
s. Now replacing

∑

|N⟩⟨N | by the unit operator and using the unitarity of the
evolution operators U , we obtain

∑

N

⟨0|J(t′)U(t′,∞)|N⟩⟨N |U(∞, t)J(t)|0⟩ (28)

= ⟨0|J(t′)U(t′,∞)U(∞, t)J(t)|0⟩ = ⟨0|J(t′)U(t′, t)J(t)|0⟩.

Because of unitarity, the long-time evolution has canceled out of the cross section, and we
have only evolution from t to t′.

There are three ways to view this result. First, we have the formal argument given
above. Second, we have the intuitive understanding that after the initial quarks and gluons
are created in a time ∆t of order 1/

√
s, something will happen with probability 1. Exactly

what happens is long-time physics, but we don’t care about it since we sum over all the
possibilities |N⟩. Third, we can calculate at some finite order of perturbation theory. Then
we see infrared infinities at various stages of the calculations, but we find that the infinities
cancel between real gluon emission graphs and virtual gluon graphs. An example is shown
in Fig. 7.

Figure 7: Cancellation between real and virtual gluon graphs. If we integrate the real gluon
graph on the left times the complex conjugate of the similar graph with the gluon attached
to the antiquark, we will get an infrared infinity. However the virtual gluon graph on the
right times the complex conjugate of the Born graph is also divergent, as is the Born graph
times the complex conjugate of the virtual gluon graph. Adding everything together, the
infrared infinities cancel.

We see that the total cross section is free of sensitivity to long-time physics. If the total
cross section were all you could look at, QCD physics would be a little boring. Fortunately,
there are other quantities that are not sensitive to infrared effects. They are called infrared
safe quantities.

To formulate the concept of infrared safety, consider a measured quantity that is con-
structed from the cross sections,

dσ[n]

dΩ2dE3dΩ3 · · · dEndΩn
, (29)

to make n hadrons in e+e− annihilation. Here Ej is the energy of the jth hadron and
Ωj = (θj ,φj) describes its direction. We treat the hadrons as effectively massless and do not
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distinguish the hadron flavors. Following the notation of Ref. [11], let us specify functions
Sn that describe the measurement we want, so that the measured quantity is

I =
1

2!

∫

dΩ2
dσ[2]

dΩ2
S2(p

µ
1 , p

µ
2 )

+
1

3!

∫

dΩ2dE3dΩ3
dσ[3]

dΩ2dE3dΩ3
S3(p

µ
1 , p

µ
2 , p

µ
3 )

+
1

4!

∫

dΩ2dE3dΩ3dE4dΩ4

×
dσ[4]

dΩ2dE3dΩ3dE4dΩ4
S4(p

µ
1 , p

µ
2 , p

µ
3 , p

µ
4 )

+ · · · . (30)

The functions S are symmetric functions of their arguments. In order for our measurement
to be infrared safe, we need

Sn+1(p
µ
1 , . . . , (1− λ)pµn,λp

µ
n) = Sn(p

µ
1 , . . . , p

µ
n) (31)

for 0 ≤ λ ≤ 1.

Figure 8: Infrared safety. In an infrared safe measurement, the three jet event shown on the
left should be (approximately) equivalent to an ideal three jet event shown on the right.

What does this mean? The physical meaning is that the functions Sn and Sn−1 are
related in such a way that the cross section is not sensitive to whether or not a mother
particle divides into two collinear daughter particles that share its momentum. The cross
section is also not sensitive to whether or not a mother particle decays to a daughter particle
carrying all of its momentum and a soft daughter particle carrying no momentum. The
cross section is also not sensitive to whether or not two collinear particles combine, or a
soft particle is absorbed by a fast particle. All of these decay and recombination processes
can happen with large probability in the final state long after the hard interaction. But,
by construction, they don’t matter as long as the sum of the probabilities for something to
happen or not to happen is one.

Another version of the physical meaning is that for an IR-safe quantity a physical event
with hadron jets should give approximately the same measurement as a parton event with
each jet replaced by a parton, as illustrated in Fig. 8. To see this, we simply have to delete
soft particles and combine collinear particles until three jets have become three particles.
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