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• Searches for new phenomena beyond the Standard Model through 
precision measurements or the study of rare processes at low energy 

• (Research area called “Fundamental Symmetries” by nuclear physicists)

Provide an introduction to exciting physics at the Intensity/Precision Frontier
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While remarkably successful in explaining phenomena over a wide range 
of energies,  the SM has major shortcomings                    

No Matter,  no Dark Matter,  no Dark Energy 

New physics: why?
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• Two experimental approaches,  both needed to reconstruct BSM 
dynamics:  structure,  symmetries,  and parameters of LBSM 

- L and B violation 
- CP violation  (w/o flavor)
- Flavor violation: quarks,  leptons
- Heavy mediators: precision tests
- Neutrino properties 
- Dark sectors
- …

- EWSB mechanism
- Direct access to heavy particles 
- ... 
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Nuclear Science Fundamental Symmetry experiments      
play a prominent role at the Precision Frontier

- EWSB mechanism
- Direct access to heavy particles 
- ... 

- L and B violation 
- CP violation  (w/o flavor)
- Flavor violation: quarks,  leptons
- Heavy mediators: precision tests
- Neutrino properties 
- Dark sectors
- …



Plan of the lectures

• Review symmetry and symmetry breaking

• Introduce the Standard Model and its symmetries 

• Beyond the SM:  an effective theory perspective and overview 

• Discuss a number of  “worked examples” 

• Precision measurements:  charged current (beta decays); 
neutral current (Parity Violating Electron Scattering).

• Symmetry tests:  CP (T) violation and EDMs;                       
Lepton Number violation and neutrino-less double beta decay.



Symmetry 
and 

symmetry breaking



What is symmetry?
• “A thing** is symmetrical if there is something we can do to it so 

that after we have done it, it looks the same as it did before”                             
(Feynman paraphrasing Weyl)

**An object or a physical law
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What is symmetry?
• “A thing** is symmetrical if there is something we can do to it so 

that after we have done it, it looks the same as it did before”                             
(Feynman paraphrasing Weyl)

**An object or a physical law

•  “A symmetry transformation is a change in our point of view that does 
not change the results of possible experiments” (Weinberg)

Translational symmetry Rotational symmetry

Images from         
H. Weyl,  

“Symmetry”. 
Princeton 

University Press, 
1952
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What is symmetry?

• Symmetry transformations have mathematical “group” structure:  
existence of identity and inverse transformation, composition rule 

• A transformation of the dynamical variables that leaves the action 
unchanged (equations of motion invariant)
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• Space-time symmetries 

• Continuous (translations, rotations, boosts: Poincare’)

• Discrete (Parity,  Time-reversal)

• Local (general coordinate transformations)
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SU(2) - isospin

(if mn = mp)
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Implications of symmetry
• If a state is realized in nature, its “transformed” is also possible  

• Time evolution and transformation commute:  for a given initial 
state,  transformed of the evolved = evolved of the transformed 



Implications of symmetry
• If a state is realized in nature, its “transformed” is also possible  

• Time evolution and transformation commute:  for a given initial 
state,  transformed of the evolved = evolved of the transformed 

• In Quantum Mechanics

• Symmetries represented by (anti)-unitary operators US (Wigner)

• US commutes with Hamiltonian

• Classification of the states of the system, selection rules, …

[US, H] = 0

|<a |US† US |b> |2 =  |<a|b>|2
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U(1) phase Electric charge

… …
Emmy Noether
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Symmetry Conservation law

Time translation Energy

Space translation Momentum

Rotation Angular momentum

U(1) phase #particles - #anti-particles

… …
Emmy Noether
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Implications of symmetry
• If a state is realized in nature, its “transformed” is also possible  

• Time evolution and transformation commute:  for a given initial 
state,  transformed of the evolved = evolved of the transformed 

• Continuous symmetries imply conservation laws

• Symmetry principles strongly constrain or even dictate the form 
of the laws of physics

• General relativity

• … 

• Gauge theories
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• Implemented by unitary operator 

• If [H,P] = 0,  P cannot change in a reaction;  expectation values of P-odd operators vanish
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• Parity

• Implemented by unitary operator 

• If [H,P] = 0,  P cannot change in a reaction;  expectation values of P-odd operators vanish

 ↑ j

e- 

ν 

DP

Simple problem:  in polarized nuclear beta decay,  which of the 
correlation coefficients  a,b,A,B  signals parity violation?  
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Discrete symmetries in QM 

• Parity

• Implemented by unitary operator 

• If [H,P] = 0,  P cannot change in a reaction;  expectation values of P-odd operators vanish

• Charge conjugation   

• Particles that coincide with antiparticles are eigenstates of C, e.g. 

• C-invariance ([C,H]=0) → C cannot change in a reaction.  From EM decay  π0 →γγ,      
deduce C-transformation of π0

• Time reversal 

• Implemented by anti-unitary operator                                    : U flips the spin 

• If H is real in coordinate representation,  T is a good symmetry ( [T,H]=0 ) 



Discrete symmetries in QFT
• In the free theory:   P,  T and C transformations are symmetries

• They can be implemented by (anti)unitary operators

• On the states: 

ηA= phases

r = spin label

b (d) = (anti)particle
annihilation operator

Srr’  reverses spin



Discrete symmetries in QFT
• In the free theory:   P,  T and C transformations are symmetries

• They can be implemented by (anti)unitary operators

• On the fields: 

Scalar field Vector field

Spin 1/2:  
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• On fermion bilinears: 
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whether they leave action invariant 

• Individual C, P, and T are not necessarily symmetries, but CPT is! 



Discrete symmetries in QFT
• In the free theory:   P,  T and C transformations are symmetries

• They can be implemented by (anti)unitary operators

• In interacting theory one uses the above definitions and checks 
whether they leave action invariant 

• Individual C, P, and T are not necessarily symmetries, but CPT is! 

CPT invariance!   CP violation is equivalent to T violation

CPT theorem: hermitian & Lorentz invariant Lagrangian transforms as  



Symmetry breaking

• Three known mechanisms

• Explicit symmetry breaking

• Symmetry is approximate;  still very useful (e.g. isospin)

• Spontaneous symmetry breaking

• Equations of motion invariant,  but ground state is not

• Anomalous (quantum mechanical) symmetry breaking

• Classical invariance but no symmetry at QM level



Spontaneous symmetry breaking
• Action is invariant, but ground state is not

• Continuous symmetry:  degenerate physically equivalent minima

• Excitations along the valley of minima → massless states in the 
spectrum (Goldstone Bosons)

• Many examples of Goldstone bosons in physics:  phonons 
(sound waves) in solids;  spin waves in magnets;  pions in QCD



• Action is invariant,  but path-integral measure is not!  

Anomalous symmetry breaking



• Action is invariant,  but path-integral measure is not!  

Anomalous symmetry breaking

• Important example:  Baryon (B) and Lepton (L) number in the SM 

• Only B-L is conserved;  B+L is violated;  negligible at zero temperature  



Symmetry breaking and the 
origin of matter 

1.  B (baryon number) violation

• To depart from initial (post inflation) B=0 

2.  C and CP violation

• To distinguish baryon and                    
anti-baryon production 

3.  Departure from thermal equilibrium                                   

• <B(t)>=<B(0)>=0 in equilibrium

• The dynamical generation of net baryon number during cosmic 
evolution requires the concurrence of three conditions: 

Sakharov ‘67
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Symmetry breaking and the 
origin of matter 

1. B (baryon number) violation  —  anomalous 

2. C and CP violation — explicit

3. Departure from thermal equilibrium — spontaneous 
(symmetry restoration at hight T: 1st order phase 
transition?)                                   

• The dynamical generation of net baryon number during cosmic 
evolution requires the concurrence of three conditions: 

• In weak-scale baryogenesis scenarios (T~100 GeV),  the ingredients 
are tied to all known mechanisms of symmetry breaking:

Sakharov ‘67

<ϕ> ≠ 0  ⇒  SU(2)L×U(1)Y → U(1)EM 



More on gauge symmetry
• Classical electrodynamics:  Aμ→Aμ +∂μφ does not change E and B

E.Wigner



More on gauge symmetry
• Classical electrodynamics:  Aμ→Aμ +∂μφ does not change E and B

E.Wigner

• Dramatic paradigm shift in the 60’s and 70’s:  gauge invariance    
requires the existence of spin-1 particles (the gauge bosons) 

• Successful description of strong and electroweak interactions

C. N. Yang
“Symmetry dictates dynamics”



Non abelian gauge symmetry
• Recall U(1) (abelian) example

• Form of the interaction: 

conserved current associated with global U(1) 
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Non abelian gauge symmetry
• Generalize to non-abelian group G (e.g. SU(2), SU(3), …). 

• Invariant dynamics if introduce new vector fields 
transforming as 

• Form of the interaction: 

conserved currents associated with global G symmetry  



Spontaneously broken           
gauge symmetry

• Abelian Higgs model: complex scalar field coupled to EM field

0 QED of charged scalar boson

U(1) spontaneously broken



• Expand around minimum of the potential (in polar representation)

• β(x) describes massive scalar field                     (radial mode)

• α(x) (Goldstone) can be removed by a gauge transformation



• Expand around minimum of the potential (in polar representation)

• Photon has acquired mass

• β(x) describes massive scalar field                     (radial mode)

• α(x) (Goldstone) can be removed by a gauge transformation



• Count degrees of freedom:  

• Massless vector (2)  + complex scalar (2)  = 4

• Massive vector (3) + real scalar (1) = 4

• Expand around minimum of the potential (in polar representation)



• Higgs phenomenon holds beyond U(1) 
model:  in a gauge theory with SSB,  
Goldstone modes appear as longitudinal 
polarization of massive spin-1 gauge bosons

• Expand around minimum of the potential (in polar representation)



Additional material



Lorentz transformation

Spin 0

Spin 1/2

Spin 1

Six anti-symmetric 
generators ωμν: real parameters


