

Compact Stars with Exotic States of Matter A basic (but hopefully interesting) introduction to matter under extreme conditions

Hampton University Graduate Studies Thomas Jefferson National Accelerator Facility 2004 June 3 Mark Paris (JLab)

Outline (I)

- Lect 1 Neutron stars
 - Introduction to compact stars
 - relevant physics theorists' playground
 - relevant scales get some numbers in your head
 - formation "Little" Bangs
 - unraveling the "onion" strange pasta
 - observational data on compact stars
 - Basic equations of structure
 - Newtonian stars white dwarves
 - Fermi gas equation of state
 - mass vs. radius curve
 - general relativistic equations
 - neutron stars next lecture

Outline (II)

- Lect 2 The layers of the "onion" Exotic states of matter
- EoS of nuclear matter
 - realistic potentials
 - solving the Schrodinger equation variationally
 - cold catalyzed nucleon matter
- Exotic states of matter
 - unpaired quark matter
 - CFL
- Building a "realistic" star
 - equations of state
 - phase transitions in nuclear and quark matter
 - maximum mass limits

References

- S. Reddy and R. Silbar,
 `Neutron stars for undergraduates', nuc-th/0309041
- S. Weinberg,
 'Gravitation and cosmology'
- M. Prakash and J. Lattimer,
 'The physics of neutron stars', astro-ph/0405262
- J. Lattimer,

'Stars', SUNY Stonybrook grad course,

http://www.ess.sunysb.edu/lattimer/PHY521/index.html

• S. Reddy,

`Novel phases at high density and their roles in the structure and evolution of neutron stars' (Zakopane Summer School), nucl-th/0211045

• M. Alford,

Color superconducting quark matter', hep-ph/0102047

The Theorist's Playground & Astrophysical Laboratory

- Relevant Theories
 - general relativity
 - classical electrodynamics
 - quantum field theory
 - Electroweak
 - QCD
 - EFT
 - statistical physics
 - transport phenomena
 - collective phenomena

- Overlapping disciplines
 - nuclear physics
 - particle physics
 - astrophysics
 - condensed matter

Scales – Mass & Length

Fundamental constants

 $\hbar c \approx 197 \text{ MeV fm}, k_B = 8.62 \times 10^{-11} \text{ MeV/K}$

- Solar scales $M_{\odot} = 1.99 \times 10^{30}$ kg $= 1.79 \times 10^{54}$ erg $R_{\odot} = 6.96 \times 10^{5}$ km $\rho_c \approx 160$ g/cc $\approx 20\rho_{Fe}$ $T_c \approx 1.6 \times 10^7$ K $H \approx 50$ G
- NS scales $M \approx 1.4 M_{\odot}$ $R \approx 10 - 20 \text{ km}$ $\rho_c \approx 10^{15} \text{ g/cc} \approx 5 - 10 n_0, n_0 = 0.16 \text{ fm}^{-3}$ $T_c \approx 10^6 \text{ K} \approx 0$ thimbleful of NM»10⁹ tons $H \approx 10^{12} \text{ G}$

Formation of neutron stars: supernovae

Main stages: (I) core collapse

- (II) proto-neutron star
- (III) v heating
- (IV) v transparency
- (V) photon cooling

Prakash and Lattimer

Formation of proto-neutron stars: Type II Supernova

- Type II supernova explosion
 - gravitational collapse massive star's white dwarf core > 8M-
 - collapse halts @ core density » n₀
 - shock wave dynamics
 - shock wave forms @ outer core radius
 - energy loss v and nuclear dissociation stalls shock wave 100-200 km
 - shock resuscitation from core v's
 +rotation, convection, magnetic fields, etc.
 - v-driven explosion expels stellar mantle
 - gravitational binding energy released

 $BE_{qrav} = \rho_{av}s d^{3}r V(r) = 3/5(GM^{2}/R) \frac{1}{4} 3\pounds 10^{53} erg \frac{1}{4} 0.1 M_{star}$

- kinetic energy mass blow-off 1!2£10⁵¹ erg
- Supernova (SN) 1987A in Large Magellanic Cloud confirmed release of E_v=3£10⁵³ erg

Proto-neutron stars

- proto-neutron star R ¼ 20 km
 - lepton rich $e^{\scriptscriptstyle -}$ and ν_e
 - baryon number density $n=2!3n_0$
 - trapped neutrinos σ_{vA} ¼ 10⁻⁴⁰ cm²
 - λ¼ (σ n)⁻¹¼ 10 cm
 - shrinks due to pressure loss from v emission at surface
 - escape of v from interior on diffusion time scale τ ¼ 3R²/ λc ¼ 10 s
 - v loss) e⁻ capture on protons and initially warms the interior as the v's make their way out; mostly neutrons
 - core temperature T_c ½ 50 MeV (6£ 10¹¹ K)
 - cooling starts
 - $-\sigma / \lambda^{-1} / h E_v^2 i$) $\lambda > R$ after » 50s

Peeling the astrophysical onion

- Atmosphere
- neglibile mass
- Envelope
- Crust
 - nuclear lattice
 - neutron superfluid
- Transition region
 - inhomogeneous
 "pasta" phases
- Outer core
 - pion condensation
 - hyperonic matter
- Inner core
 - quark matter
 - color superconductors
 - CFL
 - 2SC

Observation of astrophysical objects

- Varieties of astrophysical objects
 - main sequence stars
 - white dwarves
 - pulsars
 - binary systems
 - quasars
- Observational techniques
 - radio astronomy
 - Very Large Array Socorro, NM
 - Arecibo Puerto Rico
 - optical telescopes
 - low earth orbit
 - Hubble Space Telescope
 - land based
 - Mauna Kea, Chile, Arizona, etc.
 - x-ray observatories
 - Chandra
 - XMM

Radio binary pulsar data

Timing observations

- orbital sizes and periods gives total mass
- relativistic effects give mass of each component
- NS-NS binaries precision&0.0003M-
- NS-white dwarf binaries precision&0.1M-
- x-ray binaries larger errors
- An aside:

radio observation of ms pulsars and extrasolar planets by A. Wolszczan

S.E. Thorsett, D. Chakrabarty, Ap. J. 512, 288 (1999)

Newtonian stars: warm up on white dwarves

- Assume:
 - spherically symmetric, static star
 - uniform (entropy & chemical composition)
 - E/V ¼ m_N N/V neglect general relativisitic effects
- Newtonian equation of motion hydrostatics
 - gravity F_g
 - degeneracy pressure of electron gas F_{deg}

$$\hat{\mathbf{r}} \cdot \sum \mathbf{F} = 0$$

$$-F_g + F_{deg} = 0$$

$$F_{deg} = P(r + dr)dA(r + dr) - P(r)dA(r)$$

$$F_g = \frac{GM(r)}{r^2}\rho(r)dV$$

$$\frac{dP(r)}{dr} = -\frac{GM(r)\rho(r)}{r^2}$$

$$\frac{dM(r)}{dr} = 4\pi r^2\rho(r)$$

$$Q = V(r)$$

$$\frac{d}{dr}\frac{r^2}{\rho(r)}\frac{dp(r)}{dr} = -4\pi G r^2 \rho(r)$$

Stellar structure equation

- Structure equation
 - obtain p(r), $\rho(r)$

$$\frac{d}{dr}\frac{r^2}{\rho(r)}\frac{dp(r)}{dr} = -4\pi G r^2 \rho(r)$$

- Boundary condition
 - $p_c = p(0)$, $\rho_c = \rho(0)$
- Integrate out from central values to $p(R) = \rho(R) = 0$
- Requires Equation of State (EoS): p(ρ)
 - EoS depends on species present
 - interactions
- Properties of EoS
 - "stiffness" ¼ adiabatic compressibility $\kappa_s = \frac{1}{\rho} \left(\frac{d\rho}{dp} \right)_s \sim \frac{1}{\rho c^2}$
 - smaller slope (at fixed $\rho)$) "harder" EoS
 - "hard" EoS) large wave propagation speed
 - all EoS's are limited by superluminal wave speed
- Mass vs. radius M(R) curve
 - scan over central density/pressure
 - obtain total mass, M and radius, R
 - maximum mass

Fermi gas model EoS

- Assume cold, relativistic Fermi gas of electrons – all momenta filled to Fermi level, $k_{\rm F}$

$$\begin{split} n(k) &= \left[e^{(\epsilon(k)-\mu)/T} + 1 \right]^{-1} \to \theta(k_F - k), T \to 0 \\ n &= \frac{N}{V} = g \int \frac{d^3k}{(2\pi)^3} \theta(k_F - k) \\ &= \frac{g}{2\pi^2} \int_0^\infty dk k^2 \theta(k_F - k) \\ &= \frac{g}{6\pi^2} k_F^3 \\ \epsilon(k_F) &= \frac{E}{V} = g \int \frac{d^3k}{(2\pi)^3} \theta(k_F - k) \sqrt{k^2 + m^2} \\ &= \frac{g}{2\pi^2} \frac{m^4}{\pi^2} \int_0^{k_F/m} du u^2 (1 + u^2)^{1/2} \\ &= g \frac{\epsilon_0}{2} \left[(2x^3 + x)(1 + x^2)^{1/2} - \sinh^{-1} x \right] \\ \epsilon_0 &= \frac{m^4}{\pi^2}, x = \frac{k_F}{m} \end{split}$$

Fermi gas EoS (II)

• pressure

$$p = -\frac{\partial E}{\partial V}\Big|_{T=0} = n\mu - \epsilon$$

= $g \int \frac{d^3k}{(2\pi)^3} \left(\mu - \sqrt{k^2 + m^2}\right) \theta(k_F - k)$
= $g \frac{1}{6\pi^2} \int_0^{k_F} dk k^4 (k^2 + m^2)^{-1/2}$, I.B.P., $\mu = \sqrt{k_F^2 + m^2}$
 $p = g \frac{\epsilon_0}{48} \left[(2x^3 - 3x)(1 + x^2)^{1/2} + 3\sinh^{-1}x \right]$
 $\epsilon = nm_N A/Z + \epsilon(k_F)$, $\epsilon(k_F) \ll nm_N$
 $\epsilon \approx \rho$

• eliminate x to obtain $p(\rho)$

Fermi gas EoS (III)

• Relativistic

$$p(k_F) = g \frac{1}{24\pi^2} k_F^4$$

= $K_{rel} g^{-1/3} \epsilon^{4/3}$, $K_{rel} = \frac{1}{24\pi^2} \left(\frac{6\pi^2 Z}{m_N A}\right)^{4/3}$

• Non-relativistic

$$p(k_F) = g \frac{1}{2\pi^2} \frac{k_F^5}{15m_e}$$

= $K_{nr}g^{-2/3}\epsilon^{5/3}$, $K_{nr} = \frac{1}{30\pi^2 m_e} \left(\frac{6\pi^2 Z}{m_N A}\right)^{5/3}$

• Polytropic EoS

 $p = K \epsilon^{\gamma}$

Mass vs. radius

• Polytropic EoS – exactly soluble

$$M = 4\pi R^{(3\gamma-4)/(\gamma-2)} \left(\frac{K\gamma}{4\pi G(\gamma-1)}\right)^{-1/(\gamma-2)} \xi_1^{-(3\gamma-4)/(\gamma-2)} \xi_1^2 |\theta'(\xi_1)|$$

- Lane-Emden function $\theta(\xi)$
- $\gamma > 6/5$
- $\gamma = 4/3$) M independent of R, $\rho(0)$
- Relativistic EoS and Chandrasekhar limit

$$-\gamma = 4/3$$

$$M = 5.87 \left(\frac{Z}{A}\right)^2 M_{\odot} \approx 1.26 M_{\odot}, \quad Z/A = 26/56$$

Neutron stars: General relativistic equation

- Tolman-Oppenheimer-Volkov Equation
 - gravitational and special relativistic corrections increase the strength of gravity relative to Newtonian case
 - neglects rotation

$$\frac{dP(r)}{dr} = -\frac{G\rho(r)m(r)}{r^2} \times \left[1 + \frac{P}{\rho(r)c^2}\right] \times \left[1 + \frac{4\pi r^3 P}{m(r)c^2}\right] \times \left[1 - \frac{2Gm(r)}{r}\right]^{-1}$$

special relativistic mass-energy corrections

gravitational length contraction

$$\frac{dm(r)}{dr} = 4\pi r^2 \rho(r)$$

Neutron stars

- For masses, $M > ((\sim c)^{3/2}/m_N^2 G^{3/2})^{1/4} 2M_-$ (Chandrasekhar mass)
 - electron degeneracy can't support gravity
 - white dwarf collapses
 - possibly to a black hole
 - or a neutron star
- Similar to white dwarf now neutron degeneracy
 - reaction: $p+e^{-1} n+v$
 - mostly neutrons, some protons enough to prevent neutron decay
 - central density > white dwarf's $(m_N/m_e)^3 \approx 10^9$
 - radius < white dwarf's $m_N/2m_e \approx 10^3$
- Next lecture neutron stars from "realistic" equations of state; and
- A "realistic" compact object taking into account "exotic matter"