Compact Stars with Exotic States of Matter
A basic (but hopefully interesting) introduction
to matter under extreme conditions

Hampton University Graduate Studies
Thomas Jefferson National Accelerator Facility
2004 June 3
Mark Paris (JLab)
Outline (I)

• Lect 1 – Neutron stars
 – Introduction to compact stars
 • relevant physics – theorists’ playground
 • relevant scales – get some numbers in your head
 • formation – “Little” Bangs
 • unraveling the “onion” – strange pasta
 • observational data on compact stars
 – Basic equations of structure
 • Newtonian stars – white dwarves
 • Fermi gas equation of state
 • mass vs. radius curve
 • general relativistic equations
 • neutron stars – next lecture
Outline (II)

• Lect 2 – The layers of the “onion” – Exotic states of matter
• EoS of nuclear matter
 – realistic potentials
 – solving the Schrodinger equation variationally
 – cold catalyzed nucleon matter
• Exotic states of matter
 – unpaired quark matter
 – CFL
• Building a “realistic” star
 – equations of state
 – phase transitions in nuclear and quark matter
 – maximum mass limits
References

- S. Reddy and R. Silbar,
 `Neutron stars for undergraduates’, nuc-th/0309041
- S. Weinberg,
 ‘Gravitation and cosmology’
- M. Prakash and J. Lattimer,
- J. Lattimer,
 ‘Stars’, SUNY Stonybrook grad course,
 http://www.ess.sunysb.edu/lattimer/PHY521/index.html
- S. Reddy,
 `Novel phases at high density and their roles in the structure and evolution of neutron stars’ (Zakopane Summer School),
 nucl-th/0211045
- M. Alford,
 `Color superconducting quark matter’, hep-ph/0102047
The Theorist’s Playground & Astrophysical Laboratory

- Relevant Theories
 - general relativity
 - classical electrodynamics
 - quantum field theory
 - Electroweak
 - QCD
 - EFT
 - statistical physics
 - transport phenomena
 - collective phenomena

- Overlapping disciplines
 - nuclear physics
 - particle physics
 - astrophysics
 - condensed matter

HUGS/2004
Scales – Mass & Length

- Fundamental constants

 \(\hbar c \approx 197 \text{ MeV fm} \), \(k_B = 8.62 \times 10^{-11} \text{ MeV/K} \)

- Solar scales

 \(M_\odot = 1.99 \times 10^{30} \text{ kg} \)
 \(= 1.79 \times 10^{54} \text{ erg} \)
 \(R_\odot = 6.96 \times 10^5 \text{ km} \)
 \(\rho_c \approx 160 \text{ g/cc} \approx 20 \rho_{Fe} \)
 \(T_c \approx 1.6 \times 10^7 \text{ K} \)
 \(H \approx 50 \text{ G} \)

- NS scales

 \(M \approx 1.4 M_\odot \)
 \(R \approx 10 - 20 \text{ km} \)
 \(\rho_c \approx 10^{15} \text{ g/cc} \approx 5 - 10n_0, n_0 = 0.16 \text{ fm}^{-3} \)
 \(T_c \approx 10^6 \text{ K} \approx 0 \)
 \(H \approx 10^{12} \text{ G} \)
Formation of neutron stars: supernovae

Main stages:
(I) core collapse
(II) proto-neutron star
(III) ν heating
(IV) ν transparency
(V) photon cooling

Prakash and Lattimer
Formation of proto-neutron stars: Type II Supernova

- **Type II supernova explosion**
 - gravitational collapse massive star’s white dwarf core > 8M-
 - collapse halts @ core density » n₀
 - shock wave dynamics
 - shock wave forms @ outer core radius
 - energy loss ν and nuclear dissociation stalls shock wave 100-200 km
 - shock resuscitation from core ν’s +rotation, convection, magnetic fields, etc.
 - ν-driven explosion expels stellar mantle
 - gravitational binding energy released
 \[\text{BE}_{\text{grav}} = \rho_{\text{avg}} \int d^3r V(r) = \frac{3}{5} (GM^2/R) \quad \frac{1}{4} \times 3 \times 10^{53} \text{ erg} \quad \frac{1}{4} \times 0.1 \text{ M}_{\text{star}} \]
 - kinetic energy mass blow-off 1!2£10^{51} erg
 - Supernova (SN) 1987A in Large Magellanic Cloud
 confirmed release of \(E_\nu = 3 \times 10^{53} \text{ erg} \)
Proto-neutron stars

- proto-neutron star $R \approx 20$ km
 - lepton rich - e^- and ν_e
 - baryon number density $n=2!3n_0$
 - trapped neutrinos $\sigma_{\nu A} \approx 10^{-40}$ cm2
 - $\lambda \approx (\sigma n)^{-1} \approx 10$ cm
 - compare $\sigma_{\nu A}$ to $\sigma_{e A} \approx 10^{-24}$ cm2
 - shrinks due to pressure loss from ν emission at surface
 - escape of ν from interior on diffusion time scale
 $\tau \approx 3R^2/\lambda c \approx 10$ s
 - ν loss $\to e^-$ capture on protons and initially warms the interior as the ν's make their way out; mostly neutrons
 - core temperature $T_c \approx 50$ MeV (6×10^{11} K)
 - cooling starts
 - $\sigma / \lambda^{-1} / h E_{\nu}^2 i \approx \lambda > R$ after ≈ 50s
Peeling the astrophysical onion

- **Atmosphere**
 - neglibile mass

- **Envelope**

- **Crust**
 - nuclear lattice
 - neutron superfluid

- **Transition region**
 - inhomogeneous “pasta” phases

- **Outer core**
 - pion condensation
 - hyperonic matter

- **Inner core**
 - quark matter
 - color superconductors
 - CFL
 - 2SC
Observation of astrophysical objects

- Varieties of astrophysical objects
 - main sequence stars
 - white dwarves
 - pulsars
 - binary systems
 - quasars

- Observational techniques
 - radio astronomy
 - Very Large Array – Socorro, NM
 - Arecibo – Puerto Rico
 - optical telescopes
 - low earth orbit
 - Hubble Space Telescope
 - land based
 - Mauna Kea, Chile, Arizona, etc.
 - x-ray observatories
 - Chandra
 - XMM
Radio binary pulsar data

- Timing observations
 - orbital sizes and periods gives total mass
 - relativistic effects give mass of each component
- NS-NS binaries
 precision $\leq 0.0003M_{\odot}$
- NS-white dwarf binaries
 precision $\leq 0.1M_{\odot}$
- x-ray binaries
 larger errors
- An aside:
 radio observation of ms pulsars and extrasolar planets by A. Wolszczan

Newtonian stars: warm up on white dwarves

• Assume:
 – spherically symmetric, static star
 – uniform (entropy & chemical composition)
 – $E/V \approx \frac{1}{4} m_N N/V$ – neglect general relativistic effects

• Newtonian equation of motion – hydrostatics
 – gravity – F_g
 – degeneracy pressure of electron gas – F_{deg}

\[
\hat{r} \cdot \mathbf{F} = 0
\]

\[-F_g + F_{\text{deg}} = 0\]

\[F_{\text{deg}} = P(r + dr)dA(r + dr) - P(r)dA(r)\]

\[F_g = \frac{GM(r)}{r^2} \rho(r)dV\]

\[\frac{dP(r)}{dr} = -\frac{GM(r) \rho(r)}{r^2}\]

\[\frac{dM(r)}{dr} = 4\pi r^2 \rho(r)\]

\[\frac{d}{dr} \frac{r^2}{\rho(r)} \frac{dp(r)}{dr} = -4\pi G r^2 \rho(r)\]
Stellar structure equation

- **Structure equation**
 - obtain \(p(r), \rho(r) \)
 \[
 \frac{d}{dr} \frac{r^2}{\rho(r)} \frac{dp(r)}{dr} = -4\pi Gr^2 \rho(r)
 \]

- **Boundary condition**
 - \(p_c = p(0), \rho_c = \rho(0) \)

- **Integrate out from central values to** \(p(R) = \rho(R) = 0 \)

- **Requires Equation of State (EoS):** \(p(\rho) \)
 - EoS depends on species present
 - interactions

- **Properties of EoS**
 - “stiffness” \(\frac{1}{4} \) adiabatic compressibility
 - \(\kappa_s = \frac{1}{\rho} \left(\frac{dp}{d\rho} \right)_s \sim \frac{1}{\rho_c^2} \)
 - smaller slope (at fixed \(\rho \)) “harder” EoS
 - “hard” EoS) large wave propagation speed
 - all EoS’s are limited by superluminal wave speed

- **Mass vs. radius** \(M(R) \) curve
 - scan over central density/pressure
 - obtain total mass, \(M \) and radius, \(R \)
 - maximum mass

HUGS/2004
Fermi gas model EoS

- Assume cold, relativistic Fermi gas of electrons – all momenta filled to Fermi level, k_F

\[n(k) = \left[e^{(\epsilon(k)-\mu)/T} + 1 \right]^{-1} \rightarrow \theta(k_F - k), T \to 0 \]

\[n = \frac{N}{V} = g \int \frac{d^3k}{(2\pi)^3} \theta(k_F - k) \]
\[= \frac{g}{2\pi^2} \int_0^{\infty} dk k^2 \theta(k_F - k) \]
\[= \frac{g}{6\pi^2} k_F^3 \]

\[\epsilon(k_F) = \frac{E}{V} = g \int \frac{d^3k}{(2\pi)^3} \theta(k_F - k) \sqrt{k^2 + m^2} \]
\[= \frac{g}{2\pi^2} \frac{m^4}{\pi^2} \int_0^{k_F/m} du u^2 (1 + u^2)^{1/2} \]
\[= g \frac{\epsilon_0}{2} \left[(2x^3 + x)(1 + x^2)^{1/2} - \sinh^{-1} x \right] \]

\[\epsilon_0 = \frac{m^4}{\pi^2}, \quad x = \frac{k_F}{m} \]
Fermi gas EoS (II)

- pressure

\[
p = - \left(\frac{\partial E}{\partial V} \right)_{T=0} = n\mu - \epsilon
\]

\[
= g \int \frac{d^3k}{(2\pi)^3} \left(\mu - \sqrt{k^2 + m^2} \right) \theta(k_F - k)
\]

\[
= g \frac{1}{6\pi^2} \int_0^{k_F} dk k^4 (k^2 + m^2)^{-1/2}, \quad \text{I.B.P.,} \quad \mu = \sqrt{k_F^2 + m^2}
\]

\[
p = g \frac{\epsilon_0}{48} \left[(2x^3 - 3x)(1 + x^2)^{1/2} + 3 \sinh^{-1} x \right]
\]

\[
\epsilon = nm_N A/Z + \epsilon(k_F), \quad \epsilon(k_F) \ll nm_N
\]

\[
\epsilon \approx \rho
\]

- eliminate x to obtain p(\rho)

HUGS/2004
Fermi gas EoS (III)

- Relativistic

\[p(k_F) = g \frac{1}{24\pi^2} k_F^4 \]

\[= K_{rel} g^{-1/3} \epsilon^{4/3}, \quad K_{rel} = \frac{1}{24\pi^2} \left(\frac{6\pi^2 Z}{m_N A} \right)^{4/3} \]

- Non-relativistic

\[p(k_F) = g \frac{1}{2\pi^2} \frac{k_F^5}{15 m_e} \]

\[= K_{nr} g^{-2/3} \epsilon^{5/3}, \quad K_{nr} = \frac{1}{30\pi^2 m_e} \left(\frac{6\pi^2 Z}{m_N A} \right)^{5/3} \]

- Polytropic EoS

\[p = K \epsilon^\gamma \]
Mass vs. radius

- Polytropic EoS – exactly soluble

\[M = 4\pi R^{(3\gamma-4)/(\gamma-2)} \left(\frac{K\gamma}{4\pi G(\gamma - 1)} \right)^{-1/(\gamma-2)} \xi_1^{-(3\gamma-4)/(\gamma-2)} \xi_1^2 |\theta'(\xi_1)| \]

- Lane-Emden function \(\theta(\xi) \)
- \(\gamma > 6/5 \)
- \(\gamma = 4/3 \) \(M \) independent of \(R, \rho(0) \)

- Relativistic EoS and Chandrasekhar limit
 - \(\gamma = 4/3 \)

\[M = 5.87 \left(\frac{Z}{A} \right)^2 M_\odot \approx 1.26 M_\odot, \quad Z/A = 26/56 \]
Neutron stars: General relativistic equation

- Tolman-Oppenheimer-Volkov Equation
 - gravitational and special relativistic corrections increase the strength of gravity relative to Newtonian case
 - neglects rotation

\[
\frac{dP(r)}{dr} = -\frac{G\rho(r)m(r)}{r^2} \times \left[1 + \frac{P}{\rho(r)c^2} \right] \times \left[1 + \frac{4\pi r^3 P}{m(r)c^2} \right] \times \left[1 - \frac{2Gm(r)}{r} \right]^{-1}
\]

\[
\frac{dm(r)}{dr} = 4\pi r^2 \rho(r)
\]
Neutron stars

• For masses, $M > (\sim c^{3/2}/m_N^2G^{3/2})^{1/4} \ 2M_\odot$ (Chandrasekhar mass)
 - electron degeneracy can’t support gravity
 - white dwarf collapses
 • possibly to a black hole
 • or a neutron star

• Similar to white dwarf – now neutron degeneracy
 - reaction: $p+e^- \rightarrow n+\nu$
 - mostly neutrons, some protons – enough to prevent neutron decay
 - central density > white dwarf’s $\sim (m_N/m_e)^3 \sim 10^9$
 - radius < white dwarf’s $\sim m_N/2m_e \sim 10^3$

• Next lecture – neutron stars from “realistic” equations of state; and
• A “realistic” compact object taking into account “exotic matter”