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Lecture 1: Chiral Perturbation Theory: the basics

<® Effective (field) theories: basic principles
-® Introduction to Chiral Perturbation Theory
a) Chiral symmetry of QCD
b) Effective chiral Lagrangian
c) Power counting
d) Example: pion scattering
«» Summary

Lecture 2: Inclusion of nucleon(s)

Lecture 3: Chiral EFT & nuclear forces

Lecture 4: Applications




Effective (Field) Theories

An effective (field) theory is an approximate theory whose scope is to describe pheno-
mena which occur at a chosen length (or energy) range.

Examples:

1) Multipole expansion for

charge distribution

electric potentials . observer
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2) Photon-photon scattering at low energy
Euler & Kockel '35; Heisenberg & Euler ‘36

At low energy, E < m,., one cannot

probe details of ye interactions —
—> ¢’s can be integrated out.

This leads to an effective Lagrangian which includes all possible photon interac-
tions consistent with Lorentz & gauge symmetry.

Building blocks:  Fi'" = gt AY — gV A", FM = —1/2"P7F,,
2
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constants higher-order (in 1/m,. and &) terms

Each " generates photon momentum =—> | Amplitude ~ £

For 1-loop analysis based on L.g see J.Halter, PLB 316 (1993) 155.



“Weinberg’'s Theorem”

i o

“if one writes down the most general possible Lagrangian, including all terms
consistent with the assumed symmetry principles, and then calculates S-matrix
elements with this Lagrangian to any order in perturbation theory, the result
will simply be the most general possible S-matrix consistent with analyticity,
perturbative unitarity, cluster decomposition and the assumed symmetry prin-

ciples”

S.Weinberg, Physica A96 (79) 327

)

® identify the symmetries of the underlying theory,

® construct the most general L. in terms of relevant d.o.f. and
consistent with the symmetries,

® do standard quantum field theory with the effective Lagrangian.



Introduction to Chiral Perturbation Theory

What is chiral?

Lord Kelvin, 1904:  “I call any geometrical figure, or group of
points, chiral, and say that it has chirality, if its image in a plane
mirror, ideally realized, cannot be brought to coincide with itself.”

mirror image of object # object
=> object is chiral

Chirality is an important concept in chemistry, biology, etc.
<— E.g. all biological polymers have definite chirality!

P

Some objects in real world
occur with both chiralities...




Chiral symmetry of QCD
ﬁQCD — @(EE’— m)q — %G;H,G”y I
7 mirror 7

Left- and right-handed quark fields: qz.z = (1 % 75)q. e <}ﬁ{> e

(for m = 0: chirality = helicity)

Chiral group is a group of independent rotations of ¢, r in the flavor space.

e
qr — G’i =4grL qL

For 2 flavors: G =SU(2), x SU(2); and { G

; with gr.r € SU(2); 5
dr — 4r = 9r 4R

Chiral SU(2) Lie algebra: [I'}", I‘jﬂ] = ieijply generators of SU(2),
R Ry _ ~H(;
[I i I_j']_?{-’_.i"illﬁ

[I-‘;Jj I'\l.::f] — 0

Or, equivalently: [‘V}, lz:,-] = i €;k Vi where V. = 1‘_;:;"'- + 1‘_{* <«— vector (isospin) generators
(A, Al =ien Vi A; = I”_f?' — If «— axial generators

Vi, Aj] = ieijn Ax



Transformation properties of Lqcp:  G(il) — m)q = Grillqr, + qrildqr — m(Grar + Grar)

chiral invariant not chiral invariant

My.da~5MeV <« M, ~T770 MeV =  Lqcp IS approximately chiral invariant

Notice: SU(2) chiral symmetry is an accurate symmetry of QCD, i.e. M /M? ~ 0.03.
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Wigner-Weyl mode I
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—> degenerate multiplets according
to irred. representations of
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Nambu-Goldstone mode I
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og)
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—> spontaneous symmetry breaking,
massless Goldstone bosons



There is a strong evidence that chiral symmetry is spontaneously broken down to the
isospin group:

® Only isospin but not chiral multiplets are observed /M MeV]

in the particle spectrum (axial charges would lead 300 [ ?%33

to parity doublets) wl §

400: @

® Triplet of unnaturally light pseudoscalar mesons - E

(pions) — natural candidates for Goldstone bosons 20— r 40

0

® Scalar quark condensate:

(0lgq|0)|___ = —(262 4 12 MeV)® (Lattice, quenched, Hasenfratz et al. ‘02)

ME, 2GeV

® Further theoretical arguments given by:
Vafa & Witten '84; ‘t Hooft '80; Coleman & Witten ‘80



Chiral perturbation theory

Goldstone bosons + matter fields

e?] = ]l[DQ][D@][DC;] el id'w Laen[e.4.G: J] oy /[an] el 1@ Lot [ J]

(for details see Leutwyler, Ann. Phys. 235 (1994) 165)

Cannot derive L.r; => write down the most general expression consistent with the
chiral symmetry of QCD, i.e.:

«® Include all possible y-invariant terms,

<® Include all terms that break y-symmetry in the same way as ¢mgq in
Lqcp does.

Consider the pure Goldstone boson sector and neglect the term gmyg.

How to write down most general ¥-invariant L. ?
How do ='s transform under G?

D Isospin subgroup H € G realized linearly (t's build an isospin triplet).

«® Chiral group necessarily realized nonlinearly:
SU(2), x SU(2)y is isomorphic to SO(4) => need at least
4 dimensions to construct a nontrivial linear realization



Infinitesimal SO(4) rotation 7 7\ v o =4 w7
of the 4-vector (., m, 3. o): ( ) - ( ' ) B [l+ﬂ V46" ‘4] ( o )

0 -0y 6y 0 0 0 0 &

coGv.p_| 05 0 -6 0 A r_| 0 0o 0 6
where: ¢v.v = Sy o o and ¢4.4 o o o 6
0 0 0 0 -0 -0 -0 0

Onereads off: #' =7+0" x7#+0%
o =c—0".7

Switch to the nonlinear realization of SO(4):
only 3 out of 4 components of the vector (7, ¢) are independent, i.e. 7° + o = F*
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Notice: it is more convenient to use a 2 x 2 matrix notation:
U=L(ol+i# 7) —p> U=L(IVI-72+i7-7)

realization

SO(4) or chiral rotations:
U—U'=LUR" with L=e /20" 007 gnd R = /207 +07)7



The above realization of G is not unique. How does this non-uniqueness affect S-matrix?

<® All realizations of G are equivalent to each other by means of nonlinear field
redefinitions @ — 7@ = 7 F[7], F[0] =1 (Coleman, Callan, Wess & Zumino '69)

<® Such field redefinitions do not affect S-matrix (Haag '58)

Construction of the ¥- and Lorentz-invariant (=> no terms with odd # of 9,,) L.
«® O derivatives: UU' =U'U =1 — plays no role
qels

<® 2 derivatives: Tr(a,U0*U") == Tr(Ld,URtRO*UTLY) = Tr(0,U0"UT)
<® 4 derivatives: [Tr(d,Uo*UN))?; Tr(0,U8,U") Tr(o*Ud”UT)

Notice: terms with 9,0,U, 9,0,0,U, 0,0,0,0,U can be eliminated via e.o.m. &
partial integration



¢ } .} I'.“‘.E ‘ y .
Log=L2 + LW 4 . where: £ = - T(@,U0"UT)

LY = §L[Te(0,U"UN)?* + 1,Te(9,U8,UT) Te(9" U UT)

low-energy constants

Notice: only derivative couplings allowed (Goldstone bosons do not interact at £ = ()

What is the meaning of F'? o
. P . : ) ) . o — Mmore pion fields
Axial current from L ;0 J)y, = iTr[r (U0, U — U8, U = —Fa,n" + ...

(O}, |7 () = ipuFrd™ => F = Fr =924 MeV

What are the consequences of chiral symmetry?
iT-T 7
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Leading (i.e. ~ @(E?)) contributions to multi-pion scattering:

s\ /0 s\ /o s\ /o
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no free parameters => remarkable predictive power!




So far only tree graphs considered. \What about quantum corrections (loops)?

MNGEAGE D N A p=1l+ps+ps
\\ '/ \ //
» 14 P2 P3P
P ,’(\ — / AL 3 1 33 SRRy
0 \‘J» IO N J (2m)d [I2 + i€] [(I + p3 + pa)? + €]
—> suppressed compared to the L.O. contribution
UV divergences removed e.g. using DR, [ d'l — p“~* [ dl , and redefining the

LECs I; from £* (need only local y-invariant counter terms of the order ~ E*)

General observation:  Nn-loop diagrams are suppressed by the factor E*"
compared to the tree ones ~ E*




Power counting (Weinberg '79)

amplitude ~ — phase space factors

Consider S-matrix element: S =§'(p; +po+ ... +py) M1l

. , . E
The amplitude can be rewritten as: M = M(E, u, g") = EY f (—._ _r;’)

i
combination of LECS/
Dimensional analysis:
— pion propagators: 1/(p* — M2) ~1/Q?
— momentum integrations: 4% ~ @Q*
— delta functions: 5(p —p') ~ 1/Q*
— derivatives: 4, ~Q
For a Feynman gra.ph with .L I(?ops D=24+9+ Z Ny(d - 2)
and N, vertices with d derivatives: J
Examples: < , =N N e
\N 7 . ] \ N\ -7 S
W< I I IO ,
// \\ __\_\.'il__ '// \\.'\\



Example: nr scattering
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Amplitude is obtained via expansion in E/A, . What is the value of A,?

<® Chiral expansion breaks down for E ~ A, = A, ~ M, =770 MeV
«® Consistency arguments yield: A, < 47 F, = 1.2 GeV (Manohar & Georgi '84)



So far assumed exact y—symmetry. How to account for explicit y—symmetry breaking?

- _ _ Ty, — 1

Of,.;;g(-]) = —qmq = —my q(l + € ?‘;1){; where my = _{m“ + ’-’”d] and € = i d
/ \ 2 My + My

4™ comp. of SO(4)-vector 3 comp. of SO(4)-vector

—> include in L. all possible 3@ and 4" components of SO(4) tensors of rank

n multiplied by (em,)" and m; (assuming m, can be treated perturbatively).

external hermitian field ~

More convenient: method of external sources dLgcp = —qg Mg
M=m

The term —gMq = —q. Mqr — g My is Y—invariant if: M M = gpMyg L =g Mgy

—> write down all possible ¥—invariant terms with M and then set M =m

The leading (i.e. no d, and o« M) SBtermin L. ;s:
BF*?

Lgp = 5

Tr[(U + UT)M]‘ = 2BF*my — Bmg@* 4+ O(7') = M2 =2m,B + O(m})

LEC B is related to the scalar quark condensate via (0[uau|0) = (0]dd|0) = —BF? + O(M)

Notice: the generalized scenario (Stern et al. '91) in which 2m,B < M: is ruled out
by recent data on mrt scatt. length.



CHPT = simultaneous expansion in energy and about the ¥—limit keeping £ ~ Q ~ M,

<® Write down the most general L .;; consistent with the ¥-symmetry of QCD,
<® Calculate S-matrix in perturbation theory (based on chiral expansion),
«® Fix the unknown LECs from some data and make predictions.

Predictive power? Log =L2 + £W 4 20
2 7 53 low-energy constants

. : =0 =2
Example: S-wave nn scattering lengths a5~ and q
LO: (Iﬂ = (.16 (Weinberg ’66) e :rjglevte1rg?.il6?a3r?eloop(1983) two loops (2000) /- 3 _/’IF'\-H |
002 Prediction (yPT + dispersion theory, 2001)  / N 3 ~
== Descotes et al. (2002) Aans -
NLO: dj—020 (GL 83 e “

—— DIRAC (2005)
-—- NA48 (2005)

NNLO: «j = 0.217 (Bijnens et al. '95) 2

=0.04

NNLO + dispersion relations:
aﬂ = 0.220 £ 0.005
(Colangelo et al. ’01) 006

-0.05

(from Caprini et al. hep-ph/0509266)




Summary

® Effective (field) theory is a powerful method to study phenomena which
occur in a certain energy range.

® The principles of Chiral Perturbation Theory, the EFT of the Standard
Model, have been introduced.

® How to include nucleons ?7??

Some ideas will be discussed in lecture 2 ...



