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Derivation of the nuclear force

We are interested in nuclear forces rather than in the scattering amplitude
—> can, in general, not use Feynman diagrams. How to derive nuclear forces??

effective Lagrangian & power
counting

5y
29

nuclear forces



Nuclear potentials from
chiral EFT

Energy-dependent potentials

(using old-fashioned pert. theory) Friar & Coon ‘9#
Weinberg '90,'91;

van Kolck et al. '92,’94,'96

Energy-independent potentials

4 ) 4 N

S-matrix based . .
Unitary transformation

Robilotta, da Rocha '97; U

Kaiser et al. '97 - ’01,' E.E. et al. 98, OO, 05

Higa et al. '03,’04
- ) N /

Notice:

<® nuclear potentials are, generally, not unique
<® all schemes rely on perturb. theory (expansion in low momenta & about the y—limit)
«® most methods developed in 1950s: Brueckner & Watson '53; Taketani et al. '52; Okubo '54, ...



Nuclear potentials from field theory: general remarques

Consider mesons interacting . B | ,
with non-relativistic nucleons: 1 — ot Hr= T o T e

It is convenient do decompose the full Fock space as |¥) = |¢) + |¢), where

6) = [N) +|NN) + [NNN) + ... <—— Nno mesons
|¥) = |[Nm) + |[Nam)+...+ |[NN7m) +... <— atleast one meson

Schrodinger equation:
(

nHn nHX\ [ B &) infinite-dimensional equation due
A1 ANHA lv)y ) |2) to nN-coupling => can not solve...

projection operators l

How to reduce this equation to an effective one for |¢), which can be solved
by standard methods?



Method 1:

Tamm 45, Dancoff '50

Idea: use the Schrodinger equation to project out the unwanted Fock-space compo-
nent |v).

nHn nHA @)\ L~ |®) N 1 \
( AHn AHA ) ( w ) =E ) = W= gl
—> (Ho+ Vi (E))|¢) = E|o)

where the effective potential is given by V.[”(E) = nHn+ nH;\ NH m)

E— AHA

Notice:
- V.i” depends on £

>

| . ) i _ 1 - .
<® |©) not orthonormal: (&:[o;) = (W;|W;) — (V|vy) = 65 — (@i H (E - AH,\) Hiloj)

«® reduces to old-fashioned time-ordered perturbation theory:

A A
Hin + nH; Hiy Him + ...

Vi = nH H

E — Hy



Method 2: unitary transformation
Okubo '54, Fukuda et al. ‘54

Idea: use unitary transformation U/ in order to decouple the |¢) and |¢) components!

~( nHn nHA S B nHn 0
H‘(mn AH)\)@H—UHU_ 0 AT\

Advantages:

-® no dependence on energy (per construction),
.® unitary transformation preserves the norm of |¢)

How to compute U ?

It is convenient to parameterize U in terms of the operator A = AAn (Okubo '54):

g [ nHATA)T2 AT (14 AAT) 12
L AQ+ATA)TY2 N1+ AAT) 12

Require that nHA=)\Hn=0 => | A(H —[A, H — AHA)n =0
(decoupling equation)
The major problem is to solve the nonlinear decoupling equation.




Example: expansion in powers of the coupling constant

Hi= _J) g = ansatzz A=AY 4+ A% 4 A® 4+

Recursive solution of the decoupling equation A\ (H — [A, H| — AHA)np =0

H
g': AH—[AY, Hol)p=0 —=> AV = —Aﬁn
n
, oy H; AW
ﬂz C AMH; AWM — [A{z}: Hn])?} =0 —> AR = _AEI—ET?
S Y

In the static approximation, i.e. in the limit » — oo, one has: E, — E), ~ E,. One obtains:

A
Ver = _-’.THIEH!"?
A A A 1 A A 1 A A
—?}H;E—ﬂH;E—ﬂH;E—WIIH} + §?jfffE—ﬂfff?jfff£T$fff?} -+ E?EHJE—;_:HJZ-’}H;E—ﬁHH}' + ...
— 4 — 4 —

_/
~ ~ ~

Ty 1 1

same as in old-fashioned wave-function renormalization
perturbation theory (missing in old-fashioned perturbation theory)



Consider contributions due to one self-energy insertion at each nucleon: ¢ )

Nucleon self-energies lead to wave-function and mass renormalization (i.e. contribute
to the 1N Hamilton operator). Expect no contributions to the 2N Hamilton operator!

<® old-fashioned perturbation theory - ) ' / \ , )

A A A
™D __
Ver W = ”HE_HE_HE—H” 12 12 12 12

1 1
( Wiwa w‘1+w’2) w? (w1 + wa) ’w‘g(w1+w2))

- ( u)luug 2) where w; =+/p;?+ M?

common isospin, spin & momentum structure (depends on the form of H,)

What is wrong ??

«® method of unitary transformation \ \ , ,

Additional contributions
(wave-function renormalization)

~
-~
-
-

1 2 1 2 1 2 1 2
A A 1A A 1 1
B ™ 1 _ TD —
Vg = VP + nH;E HnH, E2H1n+ ?;H;EszHfE Hm = Vg +M (wsz +w1w%) 0



Application to chiral Lagrangians (E.E. etal., '98)

expansion in ¢ Z:> chiral expansion

Power counting

. ___—— count powers of Q using dim. analysis
N /// L .
| v (%) an alternative: count powers of A!

The scale A may only arise through coupling constants :}

L;=c; (N'(..)N)Z nPi (O, M)" = [ci]| = (mass)™  with ki =d;+35n;+p; —4

Remember: Examples:
t; <0 —relevant (superrenorm.) NiraN . On . Ky =1
k; =0 —marginal (renorm.)
%; > (0 —irrelevant (nonrenorm.) (NTN)(NTN) —— ki =2

<® expansion in coupling constant (#; ~ ¢"') <—— chiral expansion (H; ~ (Q/A)"")
<® perturbation theory works since all x, > 0 (as a consequence of y—symmetry)



Vertices in L.g:

Power counting;:

<D the leading 2N potential arises at order » = 0 from graphs
with two x = 1-vertices or with one x = 2-vertex

k=1 -~
1
~Q
L
,/
K =2 «
Y
N
\\
~ Q?

v=—-2+)> VK

«® no contributions at order v = 1

«® corrections at order v = 2 from graphs with

a) four x = 1-vertices,

b) two k = 1-vertices and one x = 2-vertex,

c) two k = 2-vertices,
d) one k = 4-vertex




Example: chiral 2w-exchange potential proportional to g,*: lvl [l

)t J\ A A A 1 Ji x
Vs }{G’J 5 '

IR RO G R
C2(2F, )t [ (27)% wwd (wi +wo) Tl”(' —4 ) +6(52-[gx1]) (&) [q%1])

where wyq = \/{r,?'j: fjl + 4 M2

The integral has logarithmic and quadratic divergences, which can be removed by the
short-range counter terms:

1«’:..““1 = {”-I + ko ffj} T, T2+ 'fl'.“}(f}*l : fFJ{EE N {F} + If'-\*'-l{f::_:':l ' _*2) '?2

Coordinate space representation: V(r)A

Var (@) — Vi (r)

<Y

The large-r behavior (i.e. the long-range //_
part) of the potential is uniquely deter- Rl

mined and does not depend on regulari- N

zation.

model independent,
constraint by y-symmetry



Few-nucleon forces in chiral EFT (Weinberg s counting)

Two-nucleon force Three-nucleon force i Four-nucleon force

.
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> ) work in progress...

2 nucleon force > 3 nucleonforce > 4 nucleon force ... |




Two-nucleon force

Ordonez et al. '94; Friar & Coon '94; Kaiser et al. '97;

® LO: H ><(_ s E.E. et al. '98, ‘03; Kaiser '99,'00,'01; Higa et al. 03
\ /
~ g
renormalization of Im-exchange 7 LECs lenormalzzanon of contact terms leading 2m-exchange

D N2LO:

i
swo FLR P XXX
¢

{ <«— renormalization of 1r-exchange + ~ +:\ | <«— subleading 2m-exchange

——
renormalization of In-exchange 15 LECs renormalization of contact terms

R P = = A (B

v ~— -

—_——
sub- Subleam-exchange 3r-exchange (small)
<® 1/m - corrections (Friar '99)

<P Isospin-breaking corrections
van Kolck '93, ‘95; van Kolck et al. '96; Friar et al. '99, '03, '04; Niskanen '02; E.E. & Meifsner ‘05



Three-nucleon force

&P LO:

<® NLO:

<® N2LO:

no 3NF

3NF vanishes
(if one uses energy-independent
formulation)

Coon & Friar '94; Eden & Gari '96
Weinberg '91; van Kolck '94, ...

first nonvanishing 3NF
van Kolck '94; E.E. et al. '02

Notice: need two 3N data points
to fix the new LECs D, E

H_/

suppression
due to &’

1

€134

— _/
v g
exact cancellation between different
time orderings

KX

D E




<® N3LO: numerous one-loop corrections
(E.E., Veronique Bernard and UIf-G. Meifsner, work in progress)

<& 21 - exchange

il A8
\ 7’
—I— A il —I— 1 —I— p-@¢---- —|— - -, - —I—
' b/ — - AN

W - P

<® 271 - exchange between all 3 nucleons

I = P

R b -



< contact - 17t - exchange

< contact - 2n - exchange
x:::* = ><::# + ><‘ + ><’ + ><{ + ><1 +

<® one also has to take into account relativistic 1/m - corrections to:

I X

~
Friar & Coon "94 not yet considered

Notice: 3NF at N3LO is parameter-free !!



Four-nucleon force (E.E. '05)

«® first shows up at N3LO | _ .-;7/
«® chiral symmetry plays a crucial role -t
<® parameter-free
| LA g
- / e = -
Notice: P ,
«® disconnected and many connected graphs
lead to vanishing contributions %// %/
o s B
«® reducible-like diagrams contribute even - -~

in the static limit, for example:

v o ] X7 X

F \
O — a1 = PET—— 51 N -
[G7 + MZ] (@35 + MZ)* [qF + MZ] AT %

D attractive contributions to the 4He BE of the ><><

order of few 100 keV (preliminary results by
Rozpedzik, Golak et al., work in progress)




Summary

<® Various methods to derive nuclear potentials from the effective chiral
Lagrangian have been introduced.

<® The structure of 2N, 3N and 4N forces upto N3LO in the chiral expan-
sion has been outlined.

«® Do these novel chiral forces really work ??

Applications of the chiral forces to few-nucleon systems will be consi-
dered in lecture 4 ...



