The Monte Carlo Method in Quantum Field Theory

Colin Morningstar

Carnegie Mellon University

HUGS June 2006
Path integrals in quantum mechanics
Monte Carlo integration and Markov chains
Monte Carlo evaluation of path integral in quantum mechanics
Free Klein-Gordon scalar field theory in $2 + 1$ dimensions
Interacting ϕ^4 scalar field theory in $2 + 1$ dimensions
Applications in quantum chromodynamics
Topics for future study
Part I

Path integrals in quantum mechanics
Transition amplitudes in quantum mechanics

- key quantity in quantum mechanics: transition amplitude
 \[Z(b, a) \equiv \langle x_b(t_b) | x_a(t_a) \rangle \]
 - \(Z(b, a) \) is probability amplitude for particle to go from point \(x_a \) at time \(t_a \) to point \(x_b \) at time \(t_b \)
- in this talk, will work in Heisenberg picture
 - state vectors \(|\Psi\rangle \) are stationary
 - operators and their eigenvectors evolve with time
 \[x(t) = e^{iHt/\hbar} x(0) e^{-iHt/\hbar} \]
 \[|x(t)\rangle = e^{iHt/\hbar} |x(0)\rangle \]
- often will shift Hamiltonian so ground state energy is zero
 \[H |\phi_n(t)\rangle = E_n |\phi_n(t)\rangle, \quad E_0 = 0 \]
 \[|\phi_0(t)\rangle = |\phi_0(0)\rangle \equiv |0\rangle \]
Spectral representation of transition amplitude

- Insert complete (discrete) set of Heisenberg-picture eigenstates $|\phi_n(t)\rangle$ of Hamiltonian H into transition amplitude

$$Z(b, a) \equiv \langle x_b(t_b) | x_a(t_a) \rangle = \sum \langle x_b(t_b) | \phi_n(t_a) \rangle \langle \phi_n(t_a) | x_a(t_a) \rangle$$

- Now use $|\phi_n(t)\rangle = e^{iHt/\hbar}|\phi_n(0)\rangle = e^{iE_n t / \hbar}|\phi_n(0)\rangle$ to obtain

$$Z(b, a) = \sum e^{iE_n (t_a - t_b) / \hbar} \langle x_b(t_b) | \phi_n(t_b) \rangle \langle \phi_n(t_a) | x_a(t_a) \rangle$$

- Finally, $\langle x(t) | \phi_n(t) \rangle \equiv \varphi_n(x)$ is the wavefunction in coordinate space, so

$$Z(b, a) = \sum \varphi_n^*(x_b) \varphi_n(x_a) e^{-iE_n (t_b - t_a) / \hbar}$$

- Transition amplitude contains information about all energy levels and all wavefunctions \rightarrow spectral representation
take $t_a = -T$ and $t_b = T$ in the limit $T \to (1 - i\epsilon)\infty$

$$\langle x_b(T)|x_a(-T)\rangle = \langle x_b(0)|e^{-iHT/\hbar} e^{iH(-T)/\hbar}|x_a(0)\rangle$$

$$= \sum_{n=0}^{\infty} \langle x_b(0)|\phi_n(0)\rangle \langle \phi_n(0)|x_a(0)\rangle e^{-2iE_nT/\hbar}$$

$$\to \langle x_b(0)|0\rangle \langle 0|x_a(0)\rangle$$

- insert complete set of energy eigenstates, use $E_{n+1} \geq E_n$, $E_0 = 0$, assume nondegenerate vacuum
- possibility of probing ground state (vacuum) properties
Vacuum expectation values

- now apply limit $T \to (1 - i\epsilon)\infty$ to more complicated amplitude

$$\langle x_b(T)|x(t_2)x(t_1)|x_a(-T)\rangle$$

$$= \langle x_b(0)|e^{-iHT/\hbar}x(t_2)x(t_1)e^{-iHT/\hbar}|x_a(0)\rangle$$

$$= \sum_{n,m} \langle x_b(0)|\phi_n(0)\rangle \langle \phi_n(0)|x(t_2)x(t_1)|\phi_m(0)\rangle \langle \phi_m(0)|x_a(0)\rangle \times e^{-i(E_n+E_m)T/\hbar}$$

$$\to \langle x_b(0)|0\rangle \langle 0|x(t_2)x(t_1)|0\rangle \langle 0|x_a(0)\rangle$$

- hence, vacuum expectation values from

$$\langle 0|x(t_2)x(t_1)|0\rangle = \lim_{T \to (1-i\epsilon)\infty} \frac{\langle x_b(T)|x(t_2)x(t_1)|x_a(-T)\rangle}{\langle x_b(T)|x_a(-T)\rangle}$$

- result generalizes to higher products of position operator
all observables can be extracted from the correlation functions (vacuum expectation values)

e.g., the energy of the stationary states

\[\langle 0 | x(t) x(0) | 0 \rangle = \langle 0 | e^{iHt/\hbar} x(0) e^{-iHt/\hbar} x(0) | 0 \rangle = \sum_n \langle 0 | x(0) e^{-iHt/\hbar} | \phi_n(0) \rangle \langle \phi_n(0) | x(0) | 0 \rangle = \sum_n |\langle 0 | x(0) | \phi_n(0) \rangle|^2 e^{-iE_n t/\hbar} \]

similarly for more complicated correlation functions

\[\langle 0 | x^2(t) x^2(0) | 0 \rangle = \langle 0 | e^{iHt/\hbar} x^2(0) e^{-iHt/\hbar} x^2(0) | 0 \rangle = \sum_n |\langle 0 | x^2(0) | \phi_n(0) \rangle|^2 e^{-iE_n t/\hbar} \]

but difficult to extract energies \(E_n \) from above oscillatory functions

\[\rightarrow \] much easier if we had decaying exponentials
The imaginary time formalism can get decaying exponentials if we rotate from the real to the imaginary axis in time (Wick rotation) $t \rightarrow -i\tau$

$$
\langle 0 | x(t)x(0) | 0 \rangle = \sum_n |\langle 0 | x(0) | \phi_n(0) \rangle|^2 e^{-E_n \tau / \hbar}
$$

$$
\tau \rightarrow \infty \quad |\langle 0 | x(0) | 0 \rangle|^2 + |\langle 0 | x(0) | \phi_1(0) \rangle|^2 e^{-E_1 \tau / \hbar}
$$

later, will see this imaginary time formalism provides another important advantage for Monte Carlo applications
Quantum mechanics and path integrals

- in the 1940s, Feynman developed an alternative formulation of quantum mechanics (his Ph.D. thesis)
 - Richard Feynman, Rev Mod Phys 20, 367 (1948)

- quantum mechanical law of motion:
 - probability amplitude from *sum over histories*
 \[
 Z(b, a) \sim \sum_{\text{all paths } x(t)} \exp \left(\frac{iS[x(t)]}{\hbar} \right)
 \]
 - from \(a \) to \(b \)

 - all paths contribute to probability amplitude, but with different *phases* determined by the *action* \(S[x(t)] \)

 - classical limit: when small changes in path yield changes in action large compared to \(\hbar \), phases cancel out and path of least action \(\delta S = 0 \) dominates sum over histories
Defining the path integral

- action = time integral of Lagrangian (kinetic minus potential energy)
 \[S = \int dt \ L(x, \dot{x}) = \int dt \left(K - U \right) \]
- divide time into steps of width \(\varepsilon \) where \(N\varepsilon = t_b - t_a \)
- path integral is defined as
 \[Z(b, a) = \lim_{\varepsilon \to 0} \frac{1}{A} \int_{-\infty}^{\infty} \frac{dx_1}{A} \frac{dx_2}{A} \ldots \frac{dx_{N-1}}{A} e^{iS[x(t)]/\hbar} \]

where \(A \) is a normalization factor depending on \(\varepsilon \) chosen so path integral well-defined
- in nonrelativistic theory, paths cannot double-back in time
probability amplitude $\psi(x_b, t_b)$ at time t_b given amplitude $\psi(x_a, t_a)$ at earlier time t_a given by

$$\psi(x_b, t_b) = \int Z(b, a) \psi(x_a, t_a) \, dx_a$$

take $t_a = t$ and $t_b = t + \varepsilon$ one time slice away

$$\psi(x_b, t + \varepsilon) = \frac{1}{A} \int_{-\infty}^{\infty} \exp \left[i\frac{\varepsilon}{\hbar} (\frac{x_b + x_a}{2}, \frac{x_b - x_a}{\varepsilon}) \right] \psi(x_a, t) \, dx_a$$

in L, take $\dot{x} = (x_b - x_a)/\varepsilon$ and mid-point prescription $x \to (x_b + x_a)/2$

particle in potential: $L = \frac{1}{2}m\dot{x}^2 - V(x, t)$, write $x_b = x$, $x_a = x + \eta$

$$\psi(x, t + \varepsilon) = \frac{1}{A} \int_{-\infty}^{\infty} e^{i\frac{m\eta^2}{2\hbar\varepsilon}} e^{-i\frac{\varepsilon V(x+\eta/2, t)}{\hbar}} \psi(x + \eta, t) \, d\eta$$
Schrödinger equation (continued)

\[\psi(x, t + \varepsilon) = \frac{1}{A} \int_{-\infty}^{\infty} e^{i m \eta^2 / (2 \hbar \varepsilon)} e^{-i \varepsilon V(x + \eta/2, t) / \hbar} \psi(x + \eta, t) \, d\eta \]

- rapid oscillation of \(e^{i m \eta^2 / (2 \hbar \varepsilon)} \) except when \(\eta \sim O(\sqrt{\varepsilon}) \rightarrow \) integral dominated by contributions from \(\eta \) having values of this order
- expand to \(O(\varepsilon) \) and \(O(\eta^2) \), except \(e^{i m \eta^2 / (2 \hbar \varepsilon)} \) (\(\psi \) refers to \(\psi(x, t) \))

\[
\begin{align*}
\psi + \varepsilon \frac{\partial \psi}{\partial t} &= \frac{1}{A} \int_{-\infty}^{\infty} e^{i m \eta^2 / (2 \hbar \varepsilon)} \left[1 - \frac{i \varepsilon}{\hbar} V(x, t) \right] \left[\psi + \eta \frac{\partial \psi}{\partial x} + \frac{\eta^2}{2} \frac{\partial^2 \psi}{\partial x^2} \right] \, d\eta \\
&= \frac{1}{A} \int_{-\infty}^{\infty} e^{i m \eta^2 / (2 \hbar \varepsilon)} \left[\psi - \frac{i \varepsilon}{\hbar} V(x, t) \psi + \eta \frac{\partial \psi}{\partial x} + \frac{\eta^2}{2} \frac{\partial^2 \psi}{\partial x^2} \right] \, d\eta
\end{align*}
\]
Schrödinger equation (continued)

\[\psi + \varepsilon \frac{\partial \psi}{\partial t} = \frac{1}{A} \int_{-\infty}^{\infty} e^{im\eta^2/(2\hbar\varepsilon)} \left[\psi - \frac{i\varepsilon}{\hbar} V(x, t)\psi + \eta \frac{\partial \psi}{\partial x} + \frac{\eta^2}{2} \frac{\partial^2 \psi}{\partial x^2} \right] d\eta \]

- matching leading terms on both sides determines \(A \) (analytic continuation to evaluate integral)

\[1 = \frac{1}{A} \int_{-\infty}^{\infty} e^{im\eta^2/(2\hbar\varepsilon)} d\eta = \frac{1}{A} \left(\frac{2\pi i\hbar\varepsilon}{m} \right)^{1/2} \Rightarrow A = \left(\frac{2\pi i\hbar\varepsilon}{m} \right)^{1/2} \]

- two more integrals:

\[\frac{1}{A} \int_{-\infty}^{\infty} e^{im\eta^2/(2\hbar\varepsilon)} \eta \, d\eta = 0, \quad \frac{1}{A} \int_{-\infty}^{\infty} e^{im\eta^2/(2\hbar\varepsilon)} \eta^2 \, d\eta = \frac{i\hbar\varepsilon}{m} \]

- \(O(\varepsilon) \) part of equation at top yields

\[-\frac{\hbar}{i} \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} + V(x, t)\psi \]

- the Schrödinger equation!
Free particle in one dimension

- Lagrangian of free particle in one dimension $L = \frac{1}{2}m\dot{x}^2$
- amplitude for particle to travel from x_a at time t_a to location x_b at later time t_b is
 $$\langle x_b(t_b)|x_a(t_a)\rangle = \int_a^b \mathcal{D}x(t) \exp(iS[b, a]/\hbar)$$
 summing over all allowed paths with $x(t_a) = x_a$ and $x(t_b) = x_b$.
- classical path $x_{cl}(t)$ from $\delta S = 0$ and boundary conditions:
 $$\ddot{x}_{cl}(t) = 0, \quad x_{cl}(t) = x_a + (x_b - x_a)\frac{(t - t_a)}{(t_b - t_a)}$$
- classical action is
 $$S_{cl}[b, a] = \int_{t_a}^{t_b} dt \frac{1}{2}m\dot{x}_{cl}^2 = \frac{m(x_b - x_a)^2}{2(t_b - t_a)}$$
- write $x(t) = x_{cl}(t) + \chi(t)$ where $\chi(t_a) = \chi(t_b) = 0$ then
 $$S[b, a] = S_{cl}[b, a] + \int_{t_a}^{t_b} dt \frac{1}{2}m\dot{\chi}^2$$
 where $S_{cl}[b, a]$ is classical action; no terms linear in $\chi(t)$ since S_{cl} is extremum
amplitude becomes

\[Z(b, a) = F(T) \exp(iS_{cl}/\hbar) \]

\[F(T) = \int_0^0 D\chi \exp \left\{ \frac{im}{2\hbar} \int_0^T dt \dot{\chi}^2 \right\} \]

partition time into discrete steps of length \(\varepsilon \), use midpoint prescription, and note that \(\chi_0 = \chi_N = 0 \)

\[\int_0^0 D\chi = \frac{1}{A} \int_{-\infty}^{\infty} \left(\prod_{l=1}^{N-1} d\chi_l \right) A = \left(\frac{2\pi i\hbar\varepsilon}{m} \right)^{1/2} \]

\[\int_0^T dt \dot{\chi}^2 = \frac{1}{\varepsilon} \sum_{j=0}^{N-1} (\chi_{j+1} - \chi_j)^2 \]

\[F(T) = \left(\frac{m}{2\pi i\varepsilon} \right)^{N/2} \int_{-\infty}^{\infty} \left(\prod_{l=1}^{N-1} d\chi_l \right) \exp \left\{ \frac{im}{2\hbar\varepsilon} \chi_j M_{jk} \chi_k \right\} \]
Gaussian integration

- a multivariate Gaussian integral remains

\[F(T) = \left(\frac{m}{2\pi i\hbar\varepsilon}\right)^{N/2} \int_{-\infty}^{\infty} \left(\prod_{l=1}^{N-1} d\chi_l\right) \exp\left\{ \frac{im}{2\hbar\varepsilon} \chi_j M_{jk} \chi_k \right\} \]

where \(M \) is a symmetric \((N - 1) \times (N - 1)\) matrix

\[
M = \begin{bmatrix}
 2 & -1 & 0 & 0 & \cdots \\
 -1 & 2 & -1 & 0 & \cdots \\
 0 & -1 & 2 & -1 & \cdots \\
 \vdots & \vdots & \vdots & \vdots & \ddots
\end{bmatrix}
\]

- Gaussian integrals of symmetric matrix \(A \) easily evaluated

\[
\int_{-\infty}^{\infty} \left(\prod_{i=1}^{n} d\chi_i\right) \exp\left(-\chi_j A_{jk} \chi_k\right) = \left(\frac{\pi^n}{\det A}\right)^{1/2}
\]

- result:

\[
F(T) = \left(\frac{m}{2\pi i\hbar\varepsilon \det M}\right)^{1/2}
\]
now need to compute \(\det(M) \)

consider \(n \times n \) matrix \(B_n \) of form

\[
B_n = \begin{pmatrix}
2b & -b & 0 & 0 & \cdots \\
-b & 2b & -b & 0 & \cdots \\
0 & -b & 2b & -b & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}_{n,n}
\]

notice that

\[
\det B_n = 2b \det B_{n-1} + b \det \begin{pmatrix}
-b & -b & 0 & \cdots \\
0 & -b & 0 & \cdots \\
\vdots & \vdots & \ddots & \ddots
\end{pmatrix}_{n-1,n-1}
= 2b \det B_{n-1} - b^2 \det B_{n-2}
\]

define \(I_n = \det B_n \) then have recursion relation

\[
I_{n+1} = 2bI_n - b^2I_{n-1}, \quad I_{-1} = 0, \quad I_0 = 1, \quad n = 0, 1, 2, \ldots
\]
Transition amplitude for free particle

- rewrite \(I_{n+1} = 2bI_n - b^2 I_{n-1}, \quad I_{-1} = 0, \quad I_0 = 1 \) as

\[
\begin{pmatrix}
I_{n+1} \\
I_n
\end{pmatrix} = \begin{pmatrix}
2b & -b^2 \\
1 & 0
\end{pmatrix} \begin{pmatrix}
I_n \\
I_{n-1}
\end{pmatrix} = \begin{pmatrix}
2b & -b^2 \\
1 & 0
\end{pmatrix}^n \begin{pmatrix}
I_1 \\
I_0
\end{pmatrix}
\]

- straightforward to show that

\[
\begin{pmatrix}
2b & -b^2 \\
1 & 0
\end{pmatrix}^n = \begin{pmatrix}
(n+1)b^n & -nb^{n+1} \\
 nb^{n-1} & -(n-1)b^n
\end{pmatrix}
\]

- so that

\[
\begin{pmatrix}
I_{n+1} \\
I_n
\end{pmatrix} = \begin{pmatrix}
(n+1)b^n & -nb^{n+1} \\
 nb^{n-1} & -(n-1)b^n
\end{pmatrix} \begin{pmatrix}
2b \\
1
\end{pmatrix}
\]

- and thus, \(I_n = \text{det} \, B_n = (n+1)b^n \)

- here, \(b = 1 \) and \(n = N - 1 \) so \(\text{det} \, M = N \) and using \(N\varepsilon = t_b - t_a \) obtain

\[
F(t_b, t_a) = \left(\frac{m}{2\pi i\hbar(t_b - t_a)} \right)^{1/2}
\]

- Final result:

\[
\langle x_b(t_b) | x_a(t_a) \rangle = \left(\frac{m}{2\pi i\hbar(t_b - t_a)} \right)^{1/2} \exp \left\{ \frac{im(x_b - x_a)^2}{2\hbar(t_b - t_a)} \right\}
\]
Infinite square well

- one of the first systems usually studied when learning quantum mechanics is the infinite square well
- particle moving in one dimension under influence of potential
 \[V(x) = \begin{cases}
 0 & \text{for } 0 < x < L \\
 \infty & \text{for } x \leq 0 \text{ and } x \geq L
\end{cases} \]
- path integral for transition amplitude given by
 \[Z(b, a) = \lim_{\varepsilon \to 0} \frac{1}{A} \int_{0}^{L} \frac{dx_1}{A} \cdots \int_{0}^{L} \frac{dx_{N-1}}{A} \exp \left\{ \frac{im}{2\varepsilon \hbar} \sum_{j=0}^{N-1} (x_{j+1} - x_j)^2 \right\} \]
 - paths limited to \(0 < x < L \)
 - gaussian integrals over bounded domains produce error functions → direct evaluation difficult in closed form
 - extend regions of integration to \(-\infty < x < \infty\), but subtract off forbidden paths
Path cancellations

- **black** lines: all *unbounded* paths between end points
- **blue** lines: paths between end points that do *not cross* an nL boundary
- no doubling back in time
- **magenta** circle indicates action preserving reflection

end point $-x_b$

end point $2L - x_b$
Path cancellations (continued)

continuing

\[
\text{end point} \quad -2L + x_b \\
\text{end point} \quad 2L + x_b
\]

and so on forever → final result is

\[
\langle x_b, t_b | x_a, t_a \rangle_{\text{well}} = \langle x_b, t_b | x_a, t_a \rangle_{\text{free}} \\
- \langle -x_b, t_b | x_a, t_a \rangle_{\text{free}} - \langle 2L - x_b, t_b | x_a, t_a \rangle_{\text{free}} \\
+ \langle -2L + x_b, t_b | x_a, t_a \rangle_{\text{free}} + \langle 2L + x_b, t_b | x_a, t_a \rangle_{\text{free}} + \cdots
\]

\[
= \sum_{n=-\infty}^{\infty} \left\{ \langle 2nL + x_b, t_b | x_a, t_a \rangle_{\text{free}} - \langle 2nL - x_b, t_b | x_a, t_a \rangle_{\text{free}} \right\}
\]
Transition amplitude for infinite square well

- substitute amplitude for free particle

\[\langle x_b(t_b) | x_a(t_a) \rangle = \left(\frac{m}{2\pi i \hbar (t_b - t_a)} \right)^{1/2} \]

\[\times \sum_{n=-\infty}^{\infty} \left(\exp \left\{ \frac{im(2nL + x_b - x_a)^2}{2\hbar(t_b - t_a)} \right\} - \exp \left\{ \frac{im(2nL - x_b - x_a)^2}{2\hbar(t_b - t_a)} \right\} \right) \]

- apply Poisson summation and integrate the gaussian

\[\sum_{n=-\infty}^{\infty} f(n) = \sum_{j=-\infty}^{\infty} \int_{-\infty}^{\infty} ds \ f(s)e^{2\pi i js} \]

\[\int_{-\infty}^{\infty} ds \ \exp(-i\alpha s^2 \pm i\beta s) = \sqrt{\frac{\pi}{i\alpha}} \ \exp \left(\frac{i\beta^2}{4\alpha} \right) \]

- spectral representation of transition amplitude

\[\langle x_b(t_b) | x_a(t_a) \rangle = \sum_{n=1}^{\infty} \varphi_n(x_b) \varphi_n^*(x_a) e^{-iE_n(t_b - t_a)/\hbar} \]

\[E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2} \quad \varphi_n(x) = \sqrt{\frac{2}{L}} \sin \left(\frac{n\pi x}{L} \right) \]
Free particle in 1D periodic box

- consider particle moving in one-dimension with periodic boundary conditions at $x = 0$ and $x = L$
- enforcing boundary conditions on paths difficult
- use trick similar to that used in infinite square well
- express set of allowed paths in terms of equivalent set of unrestricted paths

\[
\langle x_b, t_b | x_a, t_a \rangle_{\text{periodic}} = \sum_{n=-\infty}^{\infty} \langle x_b + nL, t_b | x_a, t_a \rangle_{\text{free}}
\]

end point $x_b + L$

end point $x_b + 2L$
Transition amplitude for periodic boundary

1. substitute amplitude for free particle
 \[\langle x_b(t_b) | x_a(t_a) \rangle = \left(\frac{m}{2\pi i\hbar(t_b - t_a)} \right)^{1/2} \sum_{n=-\infty}^{\infty} \exp \left\{ \frac{im(nL+x_b-x_a)^2}{2\hbar(t_b - t_a)} \right\} \]

2. apply Poisson summation and integrate the gaussian
 \[\sum_{n=-\infty}^{\infty} f(n) = \sum_{j=-\infty}^{\infty} \int_{-\infty}^{\infty} ds \, f(s)e^{2\pi ijs} \]
 \[\int_{-\infty}^{\infty} ds \exp \left(-i\alpha s^2 \pm i\beta s \right) = \sqrt{\frac{\pi}{i\alpha}} \exp \left(\frac{i\beta^2}{4\alpha} \right) \]

3. spectral representation of transition amplitude
 \[\langle x_b(t_b) | x_a(t_a) \rangle = \sum_{n=-\infty}^{\infty} \varphi_n(x_b)\varphi_n^*(x_a)e^{-iE_n(t_b-t_a)/\hbar} \]
 \[E_n = \frac{p_n^2}{2m} \quad p_n = \frac{2\pi n\hbar}{L} \quad \varphi_n(x) = \frac{1}{\sqrt{L}} e^{i\frac{p_n x}{\hbar}} \]

4. quantization of momenta
The simple harmonic oscillator

- kinetic and potential energy of a simple harmonic oscillator of mass \(m \) and frequency \(\omega \)
 \[K = \frac{1}{2} m \dot{x}^2 \quad U = \frac{1}{2} m \omega^2 x^2 \]

- action is given by
 \[S[x(t)] = \int_{t_a}^{t_b} dt \left(\frac{1}{2} m \dot{x}^2 - \frac{1}{2} m \omega^2 x^2 \right) \]

- classical equations of motion
 \[\delta S = 0 \quad \Rightarrow \quad \ddot{x}_{cl} + \omega^2 x_{cl} = 0 \]

- value of action for the classical path
 \[S_{cl} = \frac{m \omega}{2 \sin(\omega T)} \left[(x_a^2 + x_b^2) \cos(\omega T) - 2 x_a x_b \right] \]

- to calculate, write path as deviation from classical path
 \[x(t) = x_{cl}(t) + \chi(t) \quad \chi(t_a) = \chi(t_b) = 0 \]
Path integral of simple harmonic oscillator

- amplitude can then be written as
 \[Z(b, a) = F(T) \exp(iS_{cl}/\hbar) \]

- \[F(T) = \int_0^0 D\chi \exp \left\{ \frac{im}{2\hbar} \int_0^T dt \left(\dot{\chi}^2 - \omega^2 \chi^2 \right) \right\} \]

- partition time into discrete steps of length \(\varepsilon \) and use midpoint prescription

\[
\int_0^0 D\chi = \frac{1}{A} \int_{-\infty}^{\infty} \left(\prod_{l=1}^{N-1} \frac{d\chi_l}{A} \right) A = \left(\frac{2\pi i\hbar\varepsilon}{m} \right)^{1/2}
\]

\[
\int_0^T dt (\dot{\chi}^2 - \omega^2 \chi^2) = \frac{1}{\varepsilon} \sum_{j=0}^{N-1} \left[(\chi_{j+1} - \chi_j)^2 - \frac{\varepsilon^2 \omega^2}{4} (\chi_{j+1} + \chi_j)^2 \right]
\]

\[
F(T) = \left(\frac{m}{2\pi i\hbar\varepsilon} \right)^{N/2} \int_{-\infty}^{\infty} \left(\prod_{l=1}^{N-1} d\chi_l \right) \exp \left\{ \frac{im}{2\hbar\varepsilon} \chi_j M_{jk} \chi_k \right\}
\]
Gaussian integration

- a multivariate Gaussian integral remains

\[F(T) = \left(\frac{m}{2\pi i\hbar\varepsilon} \right)^{N/2} \int_{-\infty}^{\infty} \prod_{l=1}^{N-1} d\chi_l \exp \left\{ \frac{im}{2\hbar\varepsilon} \chi_j M_{jk} \chi_k \right\} \]

where \(M \) is a symmetric \((N - 1) \times (N - 1)\) matrix

\[
M = \begin{bmatrix}
2 & -1 & 0 & 0 & \cdots \\
-1 & 2 & -1 & 0 & \cdots \\
0 & -1 & 2 & -1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
\end{bmatrix} - \frac{\varepsilon^2 \omega^2}{4} \begin{bmatrix}
2 & 1 & 0 & 0 & \cdots \\
1 & 2 & 1 & 0 & \cdots \\
0 & 1 & 2 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
\end{bmatrix}
\]

- Gaussian integrals are easily evaluated

\[F(T) = \left(\frac{m}{2\pi i\hbar\varepsilon \det M} \right)^{1/2} \]
Evaluating the determinant

- now must compute $\det M$
- consider $\det(B_n)$ where $n \times n$ matrix B_n has form

$$B_n = \begin{pmatrix}
a & b & 0 & 0 & \cdots \\
b & a & b & 0 & \cdots \\
0 & b & a & b & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}_{n,n}$$

- matches M for $n = N - 1$, $a = 2(1 - \epsilon^2 \omega^2 / 4)$, $b = -(1 + \epsilon^2 \omega^2 / 4)$
- notice that

$$\det B_n = a \det B_{n-1} - b \det\begin{pmatrix}b & 0 & \cdots \\
0 & b & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}_{n-1,n-1}$$

$$= a \det B_{n-1} - b^2 \det B_{n-2}$$

- define $I_n = \det B_n$ to obtain recursion relation

$$I_{n+1} = aI_n - b^2I_{n-1}, \quad I_{-1} = 0, \quad I_0 = 1, \quad n = 0, 1, 2, \ldots$$
Evaluating the determinant (continued)

- rewrite recursion relation as
 \[
 \begin{pmatrix}
 I_{n+1} \\
 I_n
 \end{pmatrix}
 =
 \begin{pmatrix}
 a & -b^2 \\
 1 & 0
 \end{pmatrix}
 \begin{pmatrix}
 I_n \\
 I_{n-1}
 \end{pmatrix}
 =
 \begin{pmatrix}
 a & -b^2 \\
 1 & 0
 \end{pmatrix}^n
 \begin{pmatrix}
 I_1 \\
 I_0
 \end{pmatrix}
 \]

- diagonalize
 \[
 \begin{pmatrix}
 a & -b^2 \\
 1 & 0
 \end{pmatrix}
 =
 S
 \begin{pmatrix}
 \lambda_+ & 0 \\
 0 & \lambda_-
 \end{pmatrix}
 S^{-1}
 \]

 \[
 \lambda_\pm = \frac{1}{2}(a \pm \sqrt{a^2 - 4b^2}),
 \]

 \[
 S = \begin{pmatrix}
 \lambda_+ & \lambda_- \\
 1 & 1
 \end{pmatrix}
 \quad
 S^{-1} = \frac{1}{\lambda_+ - \lambda_-}
 \begin{pmatrix}
 1 & -\lambda_- \\
 -1 & \lambda_+
 \end{pmatrix}
 \]

- then we have
 \[
 \begin{pmatrix}
 I_{n+1} \\
 I_n
 \end{pmatrix}
 =
 S
 \begin{pmatrix}
 \lambda_+^n & 0 \\
 0 & \lambda_-^n
 \end{pmatrix}
 S^{-1}
 \begin{pmatrix}
 a \\
 1
 \end{pmatrix}
 \]

- thus
 \[
 I_n = \det B_n = \frac{\lambda_+^{n+1} - \lambda_-^{n+1}}{\lambda_+ - \lambda_-} (\lambda_+ \neq \lambda_-)
 \]
Amplitude for simple harmonic oscillator

- using $\lambda_{\pm} = 1 \pm i\omega\epsilon + O(\epsilon^2)$ yields

$$\lim_{\epsilon \to 0} \lim_{N \to \infty} \epsilon \det M = \lim_{\epsilon \to 0} \lim_{N \to \infty} \epsilon \frac{1}{2i\omega\epsilon} \left((1 + i\omega\epsilon)^N - (1 - i\omega\epsilon)^N\right)$$

$$= \lim_{\epsilon \to 0} \lim_{N \to \infty} \frac{1}{2i\omega} \left((1 + \frac{i\omega T}{N})^N - (1 - \frac{i\omega T}{N})^N\right)$$

$$= \frac{1}{2i\omega} \left(e^{i\omega T} - e^{-i\omega T}\right) = \frac{\sin \omega T}{\omega}.$$

- final result for the path integral

$$S_{cl} = \frac{m\omega}{2 \sin(\omega T)} \left[(x_a^2 + x_b^2) \cos(\omega T) - 2x_a x_b\right]$$
Evolution of gaussian wave packet

- for initial wave packet at time $t_a = 0$ with probability dist.
 $$|\phi(x_a, t_a)|^2 = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(x_a - \bar{x})^2}{2\sigma^2} \right)$$

- probability amplitude at later time
 $$\phi(x_b, t_b) = \int_{-\infty}^{\infty} dx_a \ Z(b, a) \ \phi(x_a, 0)$$
 $$= \left(\frac{-im\omega(2\pi)^{-3/2}}{\hbar\sigma \sin(\omega t_b)} \right)^{1/2} \int_{-\infty}^{\infty} dx_a \ e^{iS_{cl}/\hbar} \ e^{-\frac{(x_a - \bar{x})^2}{4\sigma^2}}$$

- final result for probability distribution: Gaussian with width s
 $$|\phi(x_b, t_b)|^2 = \frac{1}{s \sqrt{2\pi}} \exp \left(-\frac{(x_b - \bar{x} \cos(\omega t_b))^2}{2s^2} \right)$$

- new width given by
 $$s = \sigma \left\{ \cos^2(\omega t_b) + \frac{\hbar^2}{4m^2\omega^2\sigma^4} \sin^2(\omega t_b) \right\}^{1/2}$$
Visualization

- time evolution of a Gaussian wave packet for a simple harmonic oscillator

![Image of time evolution of a Gaussian wave packet](image)

- mass $m = 1 \text{g/mol} = 1.66 \times 10^{-27} \text{kg}$
- frequency $\omega = 3 \times 10^{14} \text{radians/sec}$
- initial wave packet:
 - center at 0.5 au
 - RMS spread 0.14 au
- 1 au (atomic unit) = 0.529 angstrom
- probability distribution shown (in inverse a.u.)

- completely calculated using path integrals → did not use Schrodinger equation
so path integrals give us simple transition amplitudes

\[
\langle x_b(t_b)|x_a(t_a) \rangle = \int_a^b Dx \exp \left\{ \frac{i}{\hbar} \int_{t_a}^{t_b} dt \ L(x, \dot{x}) \right\}
\]

but this important result generalizes to more complicated amplitudes

\[
\langle x_b(t_b)|x(t_2)\ x(t_1)\ x_a(t_a) \rangle = \int_a^b Dx x(t_2)x(t_1) \exp \left\{ \frac{i}{\hbar} \int_{t_a}^{t_b} dt \ L(x, \dot{x}) \right\}
\]

for \(t_a < t_1 < t_2 < t_b \)
in imaginary time formalism, paths contribute to sum over histories with real exponential weights (not phases)

\[\langle x_b(\tau_b) | x(\tau_2) x(\tau_1) | x_a(\tau_a) \rangle = \int_a^b d\mathcal{D}x \, x(\tau_2) x(\tau_1) \exp \left\{ -\frac{1}{\hbar} \int_{\tau_a}^{\tau_b} d\tau \, L(x, \dot{x}) \right\} \]

classical path gets highest weighting

note that weights are all real and positive since action is real

this fact will be crucial for the Monte Carlo method
Vacuum expectation values from path integrals

- Obtain correlation functions (vacuum expectation values) from ratios of path integrals

\[
\langle 0|x(t_2)x(t_1)|0 \rangle = \lim_{T \to \infty} \frac{\langle x_b(T)|x(t_2)x(t_1)|x_a(-T) \rangle}{\langle x_b(T)|x_a(-T) \rangle}
\]

\[
= \int_a^b \mathcal{D}x \ x(t_2)x(t_1) \exp \left\{ \frac{-1}{\hbar} \int_{-\infty}^{\infty} d\tau L(x, \dot{x}) \right\}
\]

- Generalizes to more complicated correlation functions
 - Any correlation function can be computed using path integrals
Examples for the simple harmonic oscillator

- evaluating path integrals as before, the following correlation functions can be obtained \((\tau_1 \leq \tau_2 \leq \tau_3 \leq \tau_4)\)

\[
\langle 0 | x(\tau_1) | 0 \rangle = 0
\]

\[
\langle 0 | x(\tau_2)x(\tau_1) | 0 \rangle = \frac{\hbar}{2m\omega} e^{-\omega(\tau_2-\tau_1)}
\]

\[
\langle 0 | x(\tau_4)x(\tau_3)x(\tau_2)x(\tau_1) | 0 \rangle = \left(\frac{\hbar}{2m\omega} \right)^2 e^{-\omega(\tau_4-\tau_1)}
\]

\[
\times \left[e^{-\omega(\tau_2-\tau_3)} + 2e^{-\omega(\tau_3-\tau_2)} \right]
\]

- comparison with spectral representation tells us

\[
\langle 0 | x(\tau)x(0) | 0 \rangle = \frac{\hbar}{2m\omega} e^{-\omega\tau}
\]

\[
\Rightarrow E_1 - E_0 = \hbar\omega \quad |\langle 1 | x(0) | 0 \rangle|^2 = \frac{\hbar}{2m\omega}
\]
Another example in SHO

- excite vacuum with $x(\tau)^2$ operator

$$\langle 0 | x^2(\tau)x^2(0) | 0 \rangle = \left(\frac{\hbar}{2m\omega} \right)^2 \left(1 + 2e^{-2\omega \tau} \right)$$

- compare with spectral representation at large time separations

$$\lim_{\tau \to \infty} \langle 0 | x^2(\tau)x^2(0) | 0 \rangle = |\langle 0 | x^2(0) | 0 \rangle|^2$$

$$+ |\langle 2 | x^2(0) | 0 \rangle|^2 e^{-(E_2-E_0)t/\hbar} + \ldots$$

$$= \left(\frac{\hbar}{2m\omega} \right)^2 \left(1 + 2e^{-2\omega \tau} \right)$$

- interpretation:

$$E_2 - E_0 = 2\hbar\omega$$

$$|\langle 0 | x^2(0) | 0 \rangle|^2 = \left(\frac{\hbar}{2m\omega} \right)^2 \quad |\langle 2 | x^2(0) | 0 \rangle|^2 = 2 \left(\frac{\hbar}{2m\omega} \right)^2$$
to determine expectation value of \(x(0)^2 \) in first-excited state

\[
\langle 0| x(\tau) x^2(\frac{1}{2}\tau) x(0)|0 \rangle = 3 \left(\frac{\hbar}{2m\omega} \right)^2 e^{-\omega \tau}
\]

compare with spectral interpretation at large times

\[
\lim_{\tau \to \infty} \langle 0|x(\tau)x^2(\frac{1}{2}\tau)x(0)|0 \rangle = |\langle 0|x(0)|1 \rangle|^2 \langle 1|x^2(0)|1 \rangle e^{-(E_1-E_0)\tau/\hbar} + \ldots
\]

since \(\langle 0|x(0)|0 \rangle = \langle 0|x(\tau)|0 \rangle = 0 \)

by inspection and using previously derived results

\[
\langle 1|x^2(0)|1 \rangle = \frac{3\hbar}{2m\omega}
\]
observables in quantum mechanics can be extracted from the correlation functions (vacuum expectation values)

imaginary time formalism is a great trick for assisting in such extractions

correlation functions can be computed via path integrals

\[
\langle 0 | x(t_2) x(t_1) | 0 \rangle = \frac{\int_a^b \mathcal{D}x \ x(t_2) x(t_1) \exp \left\{ -\frac{1}{\hbar} \int_{-\infty}^{\infty} d\tau L(x, \dot{x}) \right\}}{\int_a^b \mathcal{D}x \ \exp \left\{ -\frac{1}{\hbar} \int_{-\infty}^{\infty} d\tau L(x, \dot{x}) \right\}}
\]
Part II

Monte Carlo integration and Markov chains
in rare situations, the path integrals can be computed exactly

- simple harmonic oscillator, free particle

sometimes the action can be written \(S = S_0 + gS_I \)

- \(S_0 \) describes the free motion of the particles
- path integrals using \(S_0 \) are Gaussian and can be exactly computed
- \(S_I \) describes the interaction of the particles, but the coupling \(g \) is small
- compute in perturbation theory as expansion in \(g \)

however, if interactions are not weak

- usually must resort to Monte Carlo methods
 - for example, quantum chromodynamics (QCD)
Simple Monte Carlo integration

- trapezoidal/Simpson’s rule not feasible for integrals of very large dimension: too many function evaluations
- must start **gambling**!
- basic theorem of Monte Carlo integration

$$\int_V f(\vec{x}) \, d^D x \approx V \langle f \rangle \pm V \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N}}$$

$$\langle f \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f(\vec{x}_i) \quad \langle f^2 \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f(\vec{x}_i)^2$$

- N points $\vec{x}_1, \ldots, \vec{x}_N$ chosen independently and randomly with uniform probability dist. throughout D-dimensional volume V
- justified by the law of large numbers/central limit theorem
- in the limit $N \to \infty$, MC estimate tends to normal distribution, uncertainty tends to standard deviation
consider an experiment whose outcome depends on chance
represent an outcome by X called a random variable
sample space Ω of experiment is set of all possible outcomes
X is discrete if Ω is finite or countably infinite, continuous otherwise
probability distribution for discrete X is real-valued function p_X on domain Ω satisfying $p_X(x) \geq 0$ for all $x \in \Omega$ and $\sum_{x \in \Omega} p_X(x) = 1$
for any subset E of Ω, probability of E is $P(E) = \sum_{x \in E} p_X(x)$
a sequence of random variables X_1, X_2, \ldots, X_N that are mutually independent and have same distribution is called an independent trials process
for continuous real-valued X, real-valued function p_X is a probability density and probability of outcome between real values a and b is $P(a \leq X \leq b) = \int_a^b p_X(s)ds$

cumulative distribution is $F_X(x) = P(X \leq x) = \int_{-\infty}^x p_X(s)ds$

common density: normal $p_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)}$
expected value of X is

$$E(X) = \sum_{x \in \Omega} x \, p_X(x) \quad \left(= \int_{-\infty}^{\infty} s \, p_X(s) ds\right)$$

properties: $E(X + Y) = E(X) + E(Y)$ and $E(cX) = cE(X)$

for independent random variables X, Y have $E(XY) = E(X)E(Y)$

can show $E(X)$ is average of outcomes if repeated many times

for continuous real-valued function f, can show that

$$E(f(X)) = \sum_{x \in \Omega} f(x) \, p_X(x) \quad \left(= \int_{-\infty}^{\infty} f(s) \, p_X(s) \, ds\right)$$

Proof: group together terms in $\sum_x f(x)p_X(x)$ having same $f(x)$ value
denote set of different $f(x)$ values by \mathcal{F}, and subset of Ω leading to
same value of $f(x)$ by $\Omega_{f(x)}$, then

$$\sum_{x \in \Omega} f(x)p_X(x) = \sum_{y \in \mathcal{F}} \sum_{x \in \Omega_{f(x)}} f(x)p_X(x) = \sum_{y \in \mathcal{F}} y \left(\sum_{x \in \Omega_{f(x)}} p_X(x)\right)$$

$$= \sum_{y \in \mathcal{F}} yp(y) = E(f(x))$$
Review: variances

- Variance of X is $V(X) = E((X - E(X))^2)$
- Standard deviation of X is $\sigma(X) = \sqrt{V(X)}$
- Properties: $V(cX) = c^2 V(X)$ and $V(X + c) = V(X)$
- For independent random variables X, Y have $V(X + Y) = V(X) + V(Y)$ (exercise: prove this)
- Let X_1, \ldots, X_N be an independent trials process with $E(X_j) = \mu$ and $V(X_j) = \sigma^2$, and define $A_N = (X_1 + X_2 + \cdots + X_N)/N$, then can show $E(A_N) = \mu$, $V(A_N) = \sigma^2/N$
Chebyshev inequality: Let X be a discrete random variable with $E(X) = \mu$ and let $\epsilon > 0$ be any positive real number, then

$$P(|X - \mu| \geq \epsilon) \leq \frac{V(X)}{\epsilon^2}$$

Proof:

Let $p_x(x)$ denote distribution of X, then probability that X differs from μ by at least ϵ is

$$P(|X - \mu| \geq \epsilon) = \sum_{|x - \mu| \geq \epsilon} p_x(x)$$

considering positive summands and the ranges of summation,

$$V(X) = \sum_x (x - \mu)^2 p_x(x) \geq \sum_{|x - \mu| \geq \epsilon} (x - \mu)^2 p_x(x) \geq \sum_{|x - \mu| \geq \epsilon} \epsilon^2 p_x(x)$$

but rightmost expression is

$$\epsilon^2 \sum_{|x - \mu| \geq \epsilon} p_x(x) = \epsilon^2 P(|X - \mu| \geq \epsilon)$$

thus, have shown $V(x) \geq \epsilon^2 P(|X - \mu| \geq \epsilon)$
Weak law of large numbers: Let X_1, X_2, \ldots, X_N be an independent trials process with $E(X_j) = \mu$ and $V(X_j) = \sigma^2$, where μ, σ are finite, and let $A_N = (X_1 + X_2 + \cdots + X_N)/N$. Then for any $\epsilon > 0$,

$$\lim_{N \to \infty} P(|A_N - \mu| \geq \epsilon) = 0, \quad \lim_{N \to \infty} P(|A_N - \mu| < \epsilon) = 1$$

Proof:

- stated two slides ago that $E(A_N) = \mu$ and $V(A_N) = \sigma^2/N$
- from Chebyshev inequality

$$P(|A_N - \mu| \geq \epsilon) \leq \frac{V(A_N)}{\epsilon^2} = \frac{\sigma^2}{N\epsilon^2} \xrightarrow{N \to \infty} 0$$

also known as the law of averages

also applies to continuous random variables
Strong law of large numbers:

Let X_1, X_2, \ldots, X_N be an independent trials process with $E(X_j) = \mu$ and $E(X_j^4) = K$, where μ, K are finite, then

$$P \left(\lim_{N \to \infty} \frac{X_1 + X_2 + \cdots + X_N}{N} = \mu \right) = 1$$

the finiteness of $E(X_j^4)$ is not needed, but simplifies proof

Proof:

- define $Y_j = X_j - \mu$ so $E(Y_j) = 0$ and set $E(Y_j^4) = C < \infty$
- define $A_N = (Y_1 + Y_2 + \cdots + Y_N)/N$
- given $E(Y_j) = 0$ and all Y_j are independent,

$$N^4 E(A_N^4) = NE(Y_j^4) + 6\binom{n}{2} E(Y_i^2 Y_j^2) = NC + 3N(N-1)E(Y_i^2)^2$$

- since $0 \leq V(Y_j^2) = E(Y_j^4) - E(Y_j^2)^2$ then $E(Y_j^2)^2 \leq E(Y_j^4) = C$
- so $E(A_N^4) \leq C/N^3 + 3C/N^2$ which means

$$E(\sum_{N=1}^{\infty} A_N^4) = \sum_{N=1}^{\infty} E(A_N^4) \leq \sum_{N=1}^{\infty} \left(\frac{C}{N^3} + \frac{3C}{N^2} \right) < \infty$$

- this implies $\sum_{N=1}^{\infty} A_N^4 < \infty$ with unit probability, and convergence of the series implies $\lim_{N \to \infty} A_N^4 = 0 \Rightarrow \lim_{N \to \infty} A_N = 0$

proves $E(X)$ is average of outcomes for many repetitions
if X is a random variable with probability density $p_X(x)$ and f is a well-behaved real-valued function, then $Y = f(X)$ is a random variable

consider uniform density $p_X(x) = \begin{cases} 1/(b-a) & a \leq x \leq b \\ 0 & \text{otherwise} \end{cases}$

use this probability density to obtain N outcomes X_1, X_2, \ldots, X_n

apply function f to obtain random variables $Y_j = f(X_j)$

law of large numbers tell us that

$$\frac{1}{N} \sum_{j=1}^{N} Y_j \xrightarrow{N \to \infty} E(Y) = E(f(X)) = \frac{1}{(b-a)} \int_{a}^{b} f(s)ds$$

define $\langle f \rangle \equiv \frac{1}{N} \sum_{j=1}^{N} f(X_j)$ then $(b-a) \lim_{N \to \infty} \langle f \rangle = \int_{a}^{b} f(s)ds$

straightforward generalization to multiple dimensions

how good is estimate for finite N?
Central limit theorem

- **Central limit theorem**: Let X_1, X_2, \ldots, X_N be independent random variables with common distribution having $E(X_j) = \mu$ and $V(X_j) = \sigma^2$, where μ, σ are finite, and let $A_N = (X_1 + X_2 + \cdots + X_N)/N$. Then for $a < b$,

$$
\lim_{N \to \infty} P \left(\frac{a\sigma}{\sqrt{N}} < (A_N - \mu) < \frac{b\sigma}{\sqrt{N}} \right) = \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{-x^2/2} dx
$$

- alternatively: the distribution of $(X_1 + \cdots + X_N - N\mu)/(\sigma\sqrt{N})$ tends to the standard normal (zero mean, unit variance)

- for proof, consult the literature

- for large N, the central limit theorem tells us that the error one makes in approximating $E(X)$ by A_N is $\sigma/\sqrt{N} = \sqrt{V(X)/N}$

- for $Y = f(X)$ as before, the error in approximating $E(f(X))$ by $\sum_j f(X_j)/N$ is $\sqrt{V(f(X))}/N$

- use Monte Carlo method to estimate $V(f(X))$

$$
V(Y) = E((Y - E(Y))^2) \approx \langle (f - \langle f \rangle)^2 \rangle = \langle f^2 \rangle - \langle f \rangle^2
$$
Monte Carlo integration

- recap of Monte Carlo integration:

\[
\int_V f(\vec{x}) \, d^D x \approx V \langle f \rangle \pm V \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N}}
\]

\[
\langle f \rangle = \frac{1}{N} \sum_{i=1}^{N} f(\vec{x}_i) \quad \langle f^2 \rangle = \frac{1}{N} \sum_{i=1}^{N} f(\vec{x}_i)^2
\]

- \(N \) points \(\vec{x}_1, \ldots, \vec{x}_N \) chosen independently and randomly with uniform probability dist. throughout \(D \)-dimensional volume \(V \)
- law of large numbers justifies correctness of estimate
- central limit theorem gives estimate of statistical uncertainty
- in the limit \(N \to \infty \), MC estimate tends to normal distribution, uncertainty tends to standard deviation
Pseudorandom number generators

- MC integration requires random numbers
- but computers are deterministic!!
- clever algorithms can produce sequences of numbers which appear to be random (pseudorandom)
 - uniform deviates between 0 and 1
- example: the Mersenne twister
 - http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
 - currently holds the record for longest period $2^{19937} - 1$
 - very fast, passes all standard tests (Diehard) for good RNG

- devising good RNGs is a science in itself
 - most utilize modulus function, bit shifting, shuffling
One-dimensional example

- simple example
 \[\int_0^1 x(1-x) \, dx = \frac{1}{6} = 0.166666 \ldots \]

- plot of integrand and some Monte Carlo estimates

- not efficient for 1-dim integrals!
Monte Carlo method works best for flat functions, problems when integrand sharply peaked
importance sampling can greatly improve efficiency of Monte Carlo integration → variance reduction
recall simple integration
\[
\int_a^b f(x) \, dx \approx \frac{b - a}{N} \sum_{j=1}^N f(x_j)
\]
x_j chosen with uniform probability between a and b
choose function \(g(x) > 0 \) with \(\int_a^b g(x) \, dx = 1 \) so \(h(x) = \frac{f(x)}{g(x)} \) is as close as possible to a constant
\[
\int_a^b f(x) \, dx = \int_a^b h(x)g(x) \, dx \approx \frac{b - a}{N} \sum_{j=1}^N h(x_j)
\]
where \(x_j \) now chosen with probability density \(g(x) \)
must be able to sample with probability density \(g(x) \)
how to choose \(g(\vec{x}) \) for complicated multi-dimensional integral?
Sampling non-uniform distributions

- random number generators sample the uniform distribution
- to sample other densities, apply transformation method
- random variable U with uniform density $p_U(u) = 1$ for $0 \leq u \leq 1$
- transform to new random variable $Y = \phi(U)$ where ϕ is a strictly increasing function
 - strictly increasing function ensures inverse function is single-valued
 - also ensures that if $u + du > u$ then $y + dy > y$ for $y = \phi(u)$
- what is density p_Y?
- from conservation of probability
 \[p_Y(y)dy = p_U(u)du \quad p_Y(y) = p_U(u) \frac{du}{dy} = p_U(\phi^{-1}(y)) \frac{d\phi^{-1}(y)}{dy} \]
Sampling non-uniform distributions (continued)

- desired density p_Y is usually known, so must determine ϕ

\[
\int_{0}^{u} du' = \int_{\phi(0)}^{\phi(u)} p_Y(y) dy \implies u = F_Y(\phi(u)) \implies \phi(u) = F_Y^{-1}(u)
\]

- F^{-1} unique since F is strictly increasing function

- summary: random variable Y with density $p_Y(y)$ and cumulative distribution $F_Y(y) = \int_{-\infty}^{y} p_Y(s)ds$ can be sampled by sampling with uniform deviate U then applying transformation

\[
Y = F_Y^{-1}(U)
\]
Exponential density

- Transformation method requires density whose indefinite integral can be obtained and inverted
- Method useful for only a handful of density functions
- One example: the exponential \(p_Y(y) = e^{-y} / (1 - e^{-b}) \) for \(0 \leq y \leq b \)
 - Cumulative distribution \(F_Y(y) = \int_0^y p_Y(s)\,ds = (1 - e^{-y}) / (1 - e^{-b}) \)
 - Inverse \(F_Y^{-1}(u) = -\ln\left(1 - (1 - e^{-b})u\right) \)

Example integral: \(\int_0^3 \frac{e^{-s}}{1 + s/9} \,ds \approx 0.873109 \)

Plot of integrand (left); dramatic improvement using importance sampling (right)
Rejection method

- can sample from probability density whose cumulative distribution is not easily calculable and invertible using the rejection method
- sampling from density $p_X(x)$ for $a \leq x \leq b$
 \Rightarrow equivalent to choosing a random point in two dimensions with uniform probability in the area under curve $p_X(x)$
- simplest method: pick random point with uniform probability in box $a \leq x \leq b$ horizontally and $0 \leq y \leq \max(p_X(x))$ vertically
 - accept if below curve
 - reject if above curve, repeat until acceptance
- if $p_X(x)$ sharply peaked, use a comparison function $f(x)$ satisfying $f(x) \geq p_X(x)$ for all $a \leq x \leq b$ and which can be sampled by transformation method
Integrals of very high dimension

- sampling methods described so far work well in one-dimension
- for multi-dimensional integrals, transformation and rejection methods not feasible
- use of Markov chains to handle highly multi-dimensional integrals

- Markov chains were introduced by the Russian mathematician Andrei Markov (1856-1922) in 1906
Markov chains

- **discrete Markov chain**: stochastic process which generates a sequence of states with probabilities depending only on current state
 - consider a system which can be in one of R states s_1, s_2, \ldots, s_R
 - system moves successively from one state to another
 - each move is called a step (discrete “time”)
 - if current state is s_i, then chain moves to state s_j at next step with probability p_{ij} which does not depend on previous states of chain
 - probabilities p_{ij} are called transition probabilities
 - the square $R \times R$ real-valued matrix P whose elements are p_{ij} is called the transition matrix or the Markov matrix

- time homogeneous if transition probabilities p_{ij} independent of “time” or position in chain
- definition generalizes to continuous set of states
 - leads to matrix of transition densities
- will not deal with continuous-time chains here
transition matrix \mathbf{P} has non-negative entries $p_{ij} \geq 0$

since probability of going from s_i to any state must be unity, then matrix elements must satisfy $\sum_{j=1}^{R} p_{ij} = 1$ (rows sum to unity)

if columns also sum to unity, \mathbf{P} is called doubly stochastic matrix

if \mathbf{P}_1 and \mathbf{P}_2 are Markov matrices, then the matrix product $\mathbf{P}_1 \mathbf{P}_2$ is also a Markov matrix

every eigenvalue λ of a Markov matrix satisfies $|\lambda| \leq 1$

every Markov matrix has at least one eigenvalue equal to unity
Eigenvalues/eigenvectors of real square matrices

- For a square matrix \(P \), a nonzero column vector \(v \) which satisfies \(Pv = \lambda v \) for complex scalar \(\lambda \) is known as a right eigenvector corresponding to eigenvalue \(\lambda \)
 - Often, “right eigenvectors” are simply called “eigenvectors”
- A nonzero vector \(v \) satisfying \(v^T P = \lambda v^T \), where \(T \) indicates transpose, is known as a left eigenvector
- Every square \(R \times R \) matrix has \(R \) complex eigenvalues, counting multiple roots according to their multiplicity
- For a real square matrix, the eigenvalues are either real or come in complex conjugate pairs
- Eigenvectors for distinct eigenvalues are linearly independent
- A degenerate eigenvalue may not have distinct eigenvectors
- \(R \) linearly independent eigenvectors guaranteed only if all \(R \) eigenvalues distinct
- A matrix \(P \) and its transpose \(P^T \) have the same eigenvalues
Properties of Markov matrices (continued)

- every eigenvalue λ of Markov matrix P satisfies $|\lambda| \leq 1$
 - Proof: suppose complex number λ is an eigenvalue of P with corresponding eigenvector v so that $Pv = \lambda v$
 - let k be such that $|v_k| \geq |v_j|$ for all j
 - k-th component of eigenvalue equation gives us $\sum_j p_{kj}v_j = \lambda v_k$
 - use generalized triangle inequality for complex numbers $|\sum_k z_k| \leq \sum_k |z_k|$ to show $|\lambda v_k| = |\sum_j p_{kj}v_j| \leq \sum_j p_{kj}|v_j| \leq \sum_j p_{kj}|v_k| = |v_k|$
 - thus, $|\lambda v_k| = |\lambda||v_k| \leq |v_k|$ \rightarrow $|\lambda| \leq 1$

- every Markov matrix P has a least one eigenvalue equal to unity
 - Proof: let v be a vector satisfying $v_j = 1$ for all j
 - then $\sum_j p_{ij}v_j = \sum_j p_{ij} = 1 = v_i$
 - hence, v is an eigenvector corresponding to eigenvalue 1
Multi-step probabilities

- **n-step transition probability**: \(i_j\)-th element \(p_{ij}^{(n)}\) of matrix \(P^n\) is probability that Markov chain, starting in state \(s_i\), will be in state \(s_j\) after \(n\) steps.
 - Probability to go from \(s_i\) to \(s_j\) in 2 steps is \(\sum_{k=1}^{R} p_{ik} p_{kj}\).
 - Generalizes to \(n\)-steps.

- For starting probability vector \(u\), probability that chain in state \(s_j\) after \(n\) steps is \(u_j^{(n)} = \sum_{i=1}^{R} u_i p_{ij}^{(n)}\).
 - \(u_i\) is probability starting state is \(s_i\), matrix form \(u^{(n)T} = u^T P^n\).

- **First visit probability**: the probability that a Markov chain, starting in state \(s_i\), is found for the first time in state \(s_j\) after \(n\) steps → denoted by \(f_{ij}^{(n)}\).
 - Define \(f_{ij}^{(0)} = 0\) one step, \(f_{ij}^{(1)} = p_{ij}\), two steps, \(f_{ij}^{(2)} = \sum_{k \neq j} p_{ik} p_{kj}\).
 - Generalize \(f_{ij}^{(n)} = \sum_{k \neq j} p_{ik} f_{kj}^{(n-1)}\).
 - Important relation for later user: \(p_{ij}^{(n)} = \sum_{m=1}^{n} f_{ij}^{(m)} p_{jj}^{(n-m)}\).
Mean first passage and mean recurrence times

- **total visit probability**: probability that, starting from state s_i, chain will ever visit state s_j:
 \[
 f_{ij} = \sum_{n=1}^{\infty} f_{ij}^{(n)}
 \]

- **mean first passage time** from s_i to s_j is expected number of steps to reach state s_j in an ergodic Markov chain for the first time, starting from state $s_i \rightarrow$ denoted by m_{ij} (by convention, $m_{ii} = 0$)
 \[
 m_{ij} = \sum_{n=1}^{\infty} n f_{ij}^{(n)}
 \]

- **mean recurrence time** μ_i of state s_i is expected number of steps to return to state s_i for the first time in an ergodic Markov chain starting from s_i
 \[
 \mu_i = \sum_{n=1}^{\infty} n f_{ii}^{(n)}
 \]
Classes

- state \(s_j \) is **accessible** from state \(s_i \) if \(p_{ij}^{(n)} > 0 \) for some finite \(n \)
 - often denoted by \(s_i \rightarrow s_j \)
 - if \(s_i \rightarrow s_j \) and \(s_j \rightarrow s_k \), then \(s_i \rightarrow s_k \)

- states \(s_i \) and \(s_j \) **communicate** if \(s_i \rightarrow s_j \) and \(s_j \rightarrow s_i \)
 - denoted by \(s_i \leftrightarrow s_j \)
 - \(s_i \leftrightarrow s_j \) and \(s_j \leftrightarrow s_k \) implies \(s_i \leftrightarrow s_k \)

- **class** = a set of states that all communicate with one another

- if \(C_1 \) and \(C_2 \) are communicating classes, then either \(C_1 = C_2 \) or \(C_1 \), \(C_2 \) are disjoint
 - if \(C_1 \) and \(C_2 \) have a common state \(s_i \), then \(s_i \leftrightarrow s_{j_1} \) for all \(s_{j_1} \in C_1 \) and \(s_i \leftrightarrow s_{j_2} \) for all \(s_{j_2} \in C_2 \), so \(s_{j_1} \leftrightarrow s_{j_2} \) implying \(C_1 = C_2 \)

- set of all states can be partitioned into separate classes
 - if transition from class \(C_1 \) to different class \(C_2 \) is possible, then transition from \(C_2 \) to \(C_1 \) not possible, otherwise \(C_1 = C_2 \)
a Markov chain is called **irreducible** if the probability to go from every state to every state (not necessarily in one step) is greater than zero

all states in irreducible chain are in one single communicating class
Classification of states in Markov chains

- states in a Markov chain are
 (a) recurrent (persistent) or transient
 - recurrent states are either positive or null
 (b) periodic (cyclic) or aperiodic
- recurrent or persistent state has \(f_{ii} = \sum_{n=1}^{\infty} f_{ii}^{(n)} = 1 \)
 - unit probability of returning to state after a finite length
- transient state has \(f_{ii} = \sum_{n=1}^{\infty} f_{ii}^{(n)} < 1 \)
- recurrent state is positive if mean recurrence time finite \(\mu_i < \infty \)
 otherwise, called null
- the period of a state in a Markov chain is the greatest common divisor of all \(n \geq 0 \) for which \(p_{ii}^{(n)} > 0 \)
 - transition \(s_i \) to \(s_i \) not possible except for multiples of period \(d(i) \)
- periodic state \(s_i \) has period \(d(i) > 1 \)
- aperiodic state \(s_i \) has period \(d(i) = 1 \)
Recurrent and transient states

- for a recurrent state, \(\sum_{n=1}^{\infty} p_{ii}^{(n)} = \infty \), whereas
- for a transient state, \(\sum_{n=1}^{\infty} p_{ii}^{(n)} < \infty \)

proof:

- we start with the following:
 \[
 \sum_{n=1}^{N} p_{ij}^{(n)} = \sum_{n=1}^{N} \sum_{m=1}^{n} f_{ij}^{(m)} p_{jj}^{(n-m)} = \sum_{m=1}^{N} f_{ij}^{(m)} \sum_{n=0}^{N-m} p_{jj}^{(n)} \leq \sum_{m=1}^{N} f_{ij}^{(m)} \sum_{n=0}^{N} p_{jj}^{(n)}
 \]

- but for \(N > N' \) we also have
 \[
 \sum_{n=1}^{N} p_{ij}^{(n)} = \sum_{m=1}^{N} f_{ij}^{(m)} \sum_{n=0}^{N-m} p_{jj}^{(n)} \geq \sum_{m=1}^{N'} f_{ij}^{(m)} \sum_{n=0}^{N-m} p_{jj}^{(n)} \geq \sum_{m=1}^{N'} f_{ij}^{(m)} \sum_{n=0}^{N-N'} p_{jj}^{(n)}
 \]

- putting together above results:
 \[
 \sum_{m=1}^{N'} f_{ij}^{(m)} \sum_{n=0}^{N-N'} p_{jj}^{(n)} \leq \sum_{n=1}^{N} p_{ij}^{(n)} \leq \sum_{m=1}^{N} f_{ij}^{(m)} \sum_{n=0}^{N} p_{jj}^{(n)}
 \]

- take \(N \rightarrow \infty \) first, then \(N' \rightarrow \infty \) to get
 \[
 f_{ij} \sum_{n=0}^{\infty} p_{jj}^{(n)} \leq \sum_{n=1}^{\infty} p_{ij}^{(n)} \leq f_{ij} \sum_{n=0}^{\infty} p_{jj}^{(n)} \Rightarrow f_{ij} \sum_{n=0}^{\infty} p_{jj}^{(n)} = \sum_{n=1}^{\infty} p_{ij}^{(n)}
 \]
for a recurrent state, $\sum_{n=1}^{\infty} p_{ii}^{(n)} = \infty$, whereas for a transient state, $\sum_{n=1}^{\infty} p_{ii}^{(n)} < \infty$

proof (continued):

- so far have shown $f_{ij} \sum_{n=0}^{\infty} p_{jj}^{(n)} = \sum_{n=1}^{\infty} p_{ij}^{(n)}$
- set $i = j$ then $f_{ii}(1 + \sum_{n=1}^{\infty} p_{ii}^{(n)}) = \sum_{n=1}^{\infty} p_{ii}^{(n)}$
- so finally

$$\sum_{n=1}^{\infty} p_{ii}^{(n)} = \frac{f_{ii}}{1 - f_{ii}}$$

- $f_{ii} = 1$ for a recurrent state and $f_{ii} < 1$ for a transient state, which proves the above statements

note that the above results also imply

$$\sum_{n=1}^{\infty} p_{ij}^{(n)} = \frac{f_{ij}}{1 - f_{ii}}$$
Recurrent and transient states (furthermore)

- A Markov chain returns to a **recurrent** state infinitely often and returns to a **transient** state only a finite number of times.

Proof:
- Let $g_{ij}(m)$ denote probability that chain enters state s_j at least m times, starting from s_i.
- Clearly $g_{ij}(1) = f_{ij}$.
- One also sees $g_{ij}(m + 1) = f_{ij}g_{jj}(m)$ so $g_{ij}(m) = (f_{ij})^m$.
- Probability of entering s_j infinitely many times is $g_{ij} = \lim_{m \to \infty} g_{ij}(m) = \lim_{m \to \infty} (f_{ij})^m$.
- So starting in s_j then

$$g_{ij} = \lim_{m \to \infty} (f_{ij})^m = \begin{cases} 1 & \text{for recurrent state } f_{jj} = 1 \\ 0 & \text{for transient state } f_{jj} < 1 \end{cases}$$
A crucial theorem about two sequences

Important theorem: (the **basic limit theorem**)

given a sequence \(f_0, f_1, f_2, \ldots \) such that

\[
f_0 = 0, \quad f_n \geq 0, \quad \sum_{n=0}^{\infty} f_n = 1
\]

and greatest common divisor of those \(n \) for which \(f_n > 0 \) is \(d \geq 1 \)

and another sequence \(u_0, u_1, u_2, \ldots \) defined by

\[
u_0 = 1, \quad u_n = \sum_{m=1}^{n} f_m u_{n-m} \quad (n \geq 1)
\]

then

\[
\lim_{n \to \infty} u_{nd} = \begin{cases}
 d\mu^{-1} & \text{if } \mu = \sum_{n=1}^{\infty} nf_n < \infty \\
 0 & \text{if } \mu = \infty
\end{cases}
\]

Proof:

- that will cost extra! please upgrade to the premium lectures
Asymptotic behavior of $p_{jj}^{(n)}$

- Asymptotic behavior of $p_{jj}^{(n)}$ can be summarized as

$$\lim_{n \to \infty} p_{jj}^{(dn)} = \begin{cases}
0 & s_j \text{ transient or null recurrent} \\
\mu_j^{-1} & s_j \text{ aperiodic positive recurrent} \\
d\mu_j^{-1} & s_j \text{ positive recurrent with period } d
\end{cases}$$

- Proof:
 - If s_j transient, $\sum_n p_{jj}^{(n)}$ finite (converges) requiring $p_{jj}^{(n)} \to 0$
 - For recurrent s_j, let $f_n = f_{jj}^{(n)}$ and $u_n = p_{jj}^{(n)}$
 - Sequences f_n, u_n so defined satisfy conditions of basic limit theorem
 - Basic limit theorem gives $p_{jj}^{(dn)} \to d\mu_j^{-1}$ where $\mu_j = \sum_n n f_{jj}^{(n)}$ is mean recurrence time
 - Aperiodic case when $d = 1$
 - Null recurrent s_j has $\mu_j = \infty$ so $p_{jj}^{(n)} \to \mu_j^{-1} = 0$
Asymptotic behavior of \(p_{ij}^{(n)} \)

- asymptotic behavior of \(p_{ij}^{(n)} \) can be summarized as
 \[
 \lim_{n \to \infty} p_{ij}^{(n)} = \begin{cases}
 0 & s_j \text{ transient or null recurrent} \\
 f_{ij} \mu_j^{-1} & s_j \text{ aperiodic positive recurrent}
 \end{cases}
 \]
- ignore periodic case here
- proof:
 \[
 p_{ij}^{(n)} = \sum_{m=1}^{n} f_{ij}^{(m)} p_{jj}^{(n-m)} = \sum_{m=1}^{n'} f_{ij}^{(m)} p_{jj}^{(n-m)} + \sum_{m=n'+1}^{n} f_{ij}^{(m)} p_{jj}^{(n-m)} \quad (n' < n)
 \]
 since \(0 \leq \sum_{m=n'+1}^{n} f_{ij}^{(m)} p_{jj}^{(n-m)} \leq \sum_{m=n'+1}^{n} f_{ij}^{(m)} \) then
 \[
 0 \leq \left(p_{ij}^{(n)} - \sum_{m=1}^{n'} f_{ij}^{(m)} p_{jj}^{(n-m)} \right) \leq \sum_{m=n'+1}^{n} f_{ij}^{(m)} \quad (n' < n)
 \]
- take \(n \to \infty \), then \(n' \to \infty \) above, denote \(p_{ij} = \lim_{n \to \infty} p_{ij}^{(n)} \)
 \[
 0 \leq \left(\lim_{n \to \infty} p_{ij}^{(n)} - p_{jj} f_{ij} \right) \leq 0 \quad \Rightarrow \quad \lim_{n \to \infty} p_{ij}^{(n)} = p_{jj} f_{ij}
 \]
 for \(s_j \) transient or null recurrent, \(p_{jj} = 0 \) and \(f_{ij} \) finite, so
 \[\lim_{n \to \infty} p_{ij}^{(n)} = 0 \]
 for \(s_j \) aperiod positive recurrent, \(p_{jj} = \mu_j^{-1} \) so \(p_{ij}^{(n)} \to f_{ij} \mu_j^{-1} \)
Important result for recurrent states

- if s_i is recurrent and $s_i \rightarrow s_j$, then $f_{ji} = 1$
- proof:
 - let $\alpha > 0$ denote probability to reach s_j from s_i without previously returning to s_i
 - probability of never returning to s_i from s_j is $1 - f_{ji}$
 - probability of never returning to s_i from s_i is at least $\alpha(1 - f_{ji})$
 - but s_i is recurrent so probability of no return is zero
 - thus, $f_{ji} = 1$
- for two communicating states $s_i \leftrightarrow s_j$ that are each recurrent, it follows that $f_{ij} = f_{ji} = 1$
all states in a class of a Markov chain are of the same type, and
if periodic, all have the same period

proof:

for any two states \(s_i \) and \(s_j \) in a class, there exists integers \(r \) and \(s \)
such that \(p_{ij}^{(r)} = \alpha > 0 \) and \(p_{ji}^{(s)} = \beta > 0 \) so

\[
p_{ii}^{(n+r+s)} = \sum_{kl} p_{ik}^{(r)} p_{kl}^{(n)} p_{li}^{(s)} \geq \sum_{k} p_{ik}^{(r)} p_{kk}^{(n)} p_{ki}^{(s)} \geq p_{ij}^{(r)} p_{jj}^{(n)} p_{ji}^{(s)} = \alpha \beta p_{jj}^{(n)}
\]

suppose \(s_i \) has period \(t \), then for \(n = 0 \), the right-hand side is
positive, so \(p_{ii}^{(r+s)} > 0 \) which means that \(r + s \) must be a multiple of \(t \)
hence, left-hand side vanishes unless \(n \) is multiple of \(t \), so \(p_{jj}^{(n)} \) can
be nonzero only if \(n \) is multiple of \(t \), so \(s_i \) and \(s_j \) have same period
if \(s_i \) is transient, then left-hand side is a term of a convergent series,
so the same is true for \(p_{jj}^{(n)} \), and if \(p_{ii}^{(n)} \to 0 \), then \(p_{jj}^{(n)} \to 0 \)
the same statements remain true if the roles of \(i \) and \(j \) are reversed,
so either both \(s_i \) and \(s_j \) are transient, or neither is; also, if one is a
null state, then so is the other

chain aperiodic if \(p_{ii} > 0 \) for at least one \(s_i \)
in an irreducible chain having finite number R of states, there are no null states and it is impossible that all states are transient

proof:
- all rows of the matrix P^n must add to unity
- since each row contains finite number of non-negative elements, it is impossible that $p_{ij}^{(n)} \to 0$ for all i,j pairs
- thus, impossible that all states are transient
- so at least one state must be non-null
- but since irreducible (one class), all states must be non-null

in an R-state irreducible Markov chain, it is possible to go from any state to any other state in at most $R - 1$ steps
a probability vector \mathbf{w} is called **stationary or invariant or a fixed-point** if $\mathbf{w}^T = \mathbf{w}^T \mathbf{P}$

- clearly, one also has $\mathbf{w}^T = \mathbf{w}^T \mathbf{P}^n$
- the probability vector is always the same (stationary) for the chain
- when this occurs, the Markov chain is said to be in **equilibrium**
Fatou’s lemma

Lemma: let \(a_n(t) \) for \(n = 1, 2, \ldots \) be a function on a discrete set \(T = \{1, 2, \ldots \} \), assume \(\lim_{n \to \infty} a_n(t) \) exists for each \(t \) in \(T \), and suppose \(a_n(t) \geq 0 \) for all \(t, n \), then

\[
\sum_{t \in T} \left(\lim_{n \to \infty} a_n(t) \right) \leq \lim_{n \to \infty} \sum_{t \in T} a_n(t)
\]

Proof:

- for any integer \(M \)

\[
\sum_{t=1}^{M} \left(\lim_{n \to \infty} a_n(t) \right) = \lim_{n \to \infty} \sum_{t=1}^{M} a_n(t) \leq \lim_{n \to \infty} \sum_{t=1}^{\infty} a_n(t)
\]

since all \(a_n(t) \geq 0 \)

- take limit \(M \to \infty \) to obtain required result

Example: \(a_n(t) = \frac{n}{n^2 + t^2} \)

- for \(n > t \) then \(\lim_{n \to \infty} a_n(t) = 0 \) so

\[
\sum_{t=1}^{\infty} \left(\lim_{n \to \infty} a_n(t) \right) = 0
\]

- \(\sum_{t=1}^{\infty} a_n(t) = \frac{\pi}{2} \coth(n\pi) - \frac{1}{2n} \) so

\[
\lim_{n \to \infty} \sum_{t=1}^{\infty} a_n(t) = \frac{\pi}{2}
\]
Dominated convergence theorem

- **Theorem:** Let $a_n(t)$ for $n = 1, 2, \ldots$ be a function on a discrete set $T = \{1, 2, \ldots\}$, assume $\lim_{n \to \infty} a_n(t)$ exists for each t in T, and suppose a function $B(t)$ exists such that $|a_n(t)| \leq B(t)$ for all t, n and $\sum_{t \in T} B(t) < \infty$, then

$$\sum_{t \in T} \left(\lim_{n \to \infty} a_n(t) \right) = \lim_{n \to \infty} \sum_{t \in T} a_n(t)$$

- **Proof:**
 - Let $a(t) = \lim_{n \to \infty} a_n(t)$ and since $|a(t)| \leq B(t)$ then $\sum_{t=1}^\infty a(t)$ converges
 - For any integer M
 $$\left| \sum_{t=1}^\infty a_n(t) - \sum_{t=1}^\infty a(t) \right| \leq \sum_{t=1}^M \left| a_n(t) - a(t) \right| + \sum_{t=M+1}^\infty \left(|a_n(t)| + |a(t)| \right)$$
 - Now
 $$\lim_{n \to \infty} \sum_{t=1}^M \left| a_n(t) - a(t) \right| = \sum_{t=1}^M \left(\lim_{n \to \infty} |a_n(t) - a(t)| \right) = 0$$
 $$\sum_{t=M+1}^\infty \left(|a_n(t)| + |a(t)| \right) \leq 2 \sum_{t=M+1}^\infty B(t)$$
 - So for any integer M
 $$\left| \lim_{n \to \infty} \sum_{t=1}^\infty a_n(t) - \sum_{t=1}^\infty \lim_{n \to \infty} a_n(t) \right| \leq 2 \sum_{t=M+1}^\infty B(t)$$
 - Right-hand side is remainder of convergent series so equals zero in $M \to \infty$ limit
Theorem: an irreducible aperiodic Markov chain with transition matrix P has a stationary distribution w satisfying $w_j > 0$, $\sum_j w_j = 1$, and $w^T = w^T P$ if, and only if, all its states are positive recurrent, and this stationary distribution is unique and identical to the limiting distribution $w_j = \lim_{n \to \infty} p_{ij}^{(n)}$ independent of initial state s_i

Proof:

for irreducible aperiodic chain, the following possibilities exist:

(a) all states are positive recurrent
(b) all states are null recurrent
(c) all states are transient

if all states transient or null recurrent, $\lim_{n \to \infty} p_{ij}^{(n)} = 0$

if all states positive recurrent, then since all states communicate, $f_{ij} = 1$ for all i, j and previous result becomes $\lim_{n \to \infty} p_{ij}^{(n)} = \mu_j^{-1}$

can define $w_j = \lim_{n \to \infty} p_{ij}^{(n)}$ which is independent of initial state s_i

for all states positive recurrent, then $0 < \mu_j < \infty$ so $w_j > 0$ for all j
Theorem: an irreducible aperiodic Markov chain with transition matrix P has a stationary distribution w satisfying $w_j > 0$, $\sum_j w_j = 1$, and $w^T = w^T P$ if, and only if, all its states are positive recurrent, and this stationary distribution is unique and identical to the limiting distribution $w_j = \lim_{n \to \infty} p_{ij}^{(n)}$ independent of initial state s_i

Proof (continued):

- we have $p_{ij}^{(m+n)} = \sum_{k=1}^{\infty} p_{ik}^{(n)} p_{kj}^{(m)}$ so using Fatou’s lemma:
 \[
 \lim_{n \to \infty} p_{ij}^{(m+n)} = \lim_{n \to \infty} \sum_{k=1}^{\infty} p_{ik}^{(n)} p_{kj}^{(m)} \geq \sum_{k=1}^{\infty} \lim_{n \to \infty} p_{ik}^{(n)} p_{kj}^{(m)}
 \]
- taking the limit $n \to \infty$ yields $w_j \geq \sum_{k=1}^{\infty} w_k p_{kj}^{(m)}$
- define $s \equiv \sum_{k=1}^{\infty} w_k$ then sum above equation over j:
 \[
 s = \sum_{j=1}^{\infty} w_j \geq \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} w_k p_{kj}^{(m)} = \sum_{k=1}^{\infty} w_k \sum_{j=1}^{\infty} p_{kj}^{(m)} = \sum_{k=1}^{\infty} w_k = s
 \]
 interchanging order of the two infinite summations is possible since all summands non-negative (Fubini’s theorem)
- since $s \geq s$, equality must hold for all j:
 \[
 w_j = \sum_{k=1}^{\infty} w_k p_{kj}^{(m)}
 \]
Theorem: an irreducible aperiodic Markov chain with transition matrix P has a stationary distribution w satisfying $w_j > 0$, $\sum_j w_j = 1$, and $w^T = w^T P$ if, and only if, all its states are positive recurrent, and this stationary distribution is unique and identical to the limiting distribution $w_j = \lim_{n \to \infty} p_{ij}^{(n)}$ independent of initial state s_i.

Proof (continued):

- have shown $w_j = \sum_{k=1}^{\infty} w_k p_{kj}^{(m)}$.
- for $m = 1$, we see the limiting vector w is stationary!!
- next, from $\sum_{j=1}^{\infty} p_{ij}^{(n)} = 1$ then use Fatou:
 \[1 = \lim_{n \to \infty} \sum_{j=1}^{\infty} p_{ij}^{(n)} \geq \sum_{j=1}^{\infty} \lim_{n \to \infty} p_{ij}^{(n)} = \sum_{j=1}^{\infty} w_j \]
- given $\sum_j w_j \leq 1$ then consider the limit $m \to \infty$ of
 \[w_j = \lim_{m \to \infty} \sum_{k=1}^{\infty} w_k p_{kj}^{(m)} \]
- since $0 \leq p_{kj}^{(m)} \leq 1$ then $|w_k p_{kj}^{(m)}| \leq w_k$ and $\sum_{k=1}^{\infty} w_k < \infty$ so the dominated convergence theorem can be applied
 \[w_j = \lim_{m \to \infty} \sum_{k=1}^{\infty} w_k p_{kj}^{(m)} = \sum_{k=1}^{\infty} w_k \lim_{m \to \infty} p_{kj}^{(m)} = \left(\sum_{k=1}^{\infty} w_k \right) w_j \]
- can at last conclude $\sum_{j=1}^{\infty} w_j = 1$.
Theorem: an irreducible aperiodic Markov chain with transition matrix P has a stationary distribution w satisfying $w_j > 0$, $\sum_j w_j = 1$, and $w^T = w^T P$ if, and only if, all its states are positive recurrent, and this stationary distribution is unique and identical to the limiting distribution $w_j = \lim_{n \to \infty} p_{ij}^{(n)}$ independent of initial state s_i.

Proof (continued):

- only uniqueness of stationary state to show
- if another stationary vector v existed, it would have to satisfy $v_j > 0$, $\sum_j v_j = 1$, and $v_j = \sum_{i=1}^{\infty} v_i p_{ij}^{(n)}$
- conditions for dominated convergence theorem again apply, so taking $n \to \infty$ limit gives
 \[
 v_j = \lim_{n \to \infty} \sum_{i=1}^{\infty} v_i p_{ij}^{(n)} = \sum_{i=1}^{\infty} v_i \lim_{n \to \infty} p_{ij}^{(n)} = \left(\sum_{i=1}^{\infty} v_i\right) w_j = w_j
 \]
- since $v = w$, then w is unique
An example

Consider the following transition matrix $P = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} & 0 \\ 0 & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \end{bmatrix}$.

P^2 all positive entries, so chain is irreducible.

Eigenvalues are $1, \frac{1}{2}, \frac{5}{12}$.

Right and left eigenvectors (unnormalized) are

right: $\begin{bmatrix} 1 \\ \frac{1}{2} \\ \frac{5}{12} \end{bmatrix}$

left: $\begin{bmatrix} 1 \\ \frac{1}{2} \\ \frac{5}{12} \end{bmatrix}$

Left fixed-point probability vector

$w = \frac{1}{7} \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$

$\lim_{n \to \infty} P^n = W = \frac{1}{7} \begin{bmatrix} 2 & 3 & 2 \\ 2 & 3 & 2 \\ 2 & 3 & 2 \end{bmatrix}$
Summary of results

- positive recurrent chain guarantees existence of at least one invariant probability vector
- irreducibility guarantees uniqueness of invariant probability vector
- aperiodicity guarantees limit distribution coincides with invariant distribution
suppose a Markov chain is started with probability vector given by w, the left fixed-point vector of the transition matrix P

this means the probability of starting in state s_i is w_i

the probability of being in state s_j after n steps is $(w^T P^n)_j$, but $w^T P^n = w^T$, so this probability is w_j

thus, the probability vector is always the same, that is, it is stationary or invariant

when this occurs, the Markov chain is said to be in equilibrium

recall that an ergodic Markov chain which starts in any probability vector y eventually tends to equilibrium

the process of bringing the chain into equilibrium from a random starting probability vector in known as thermalization
Reversibility in Markov chains

- an ergodic Markov chain is **reversible** if the probability of going from state \(s_i \) to \(s_j \) is the same as that for going from state \(s_j \) to \(s_i \) once the chain is in equilibrium.
- the probability that a transition from \(s_i \) to \(s_j \) occurs is the probability \(w_i \) of finding the chain in state \(s_i \) in equilibrium times the transition probability \(p_{ij} \).
- reversibility occurs when \(w_i p_{ij} = w_j p_{ji} \).
- the above condition is often referred to as **detailed balance**.
- note that detailed balance guarantees the fixed-point condition:

 \[
 \sum_j w_j p_{ji} = \sum_j w_i p_{ij} = w_i
 \]
Law of large numbers for Markov chains

- consider an \(R \)-state ergodic Markov chain which starts in state \(s_i \)
- define \(X_j^{(m)} = \begin{cases} 1 & \text{if chain in state } s_j \text{ after } m \text{ steps} \\ 0 & \text{otherwise} \end{cases} \)
- define \(N_j^{(n)} \) as number of times chain in state \(s_j \) in first \(n \) steps
 \[N_j^{(n)} = X_j^{(1)} + X_j^{(2)} + \cdots + X_j^{(n)} \]
- often called occupation times
- expected value \(E(X_j^{(m)}) = p_{ij}^{(m)} \) so
 \[E(N_j^{(n)}) = \sum_{h=1}^{n} p_{ij}^{(h)} \]
- it can be shown that
 \[\lim_{n \to \infty} E(N_j^{(n)})/n = w_j \]
- can show law of large numbers for ergodic Markov chain:
 \[P\left(|N_j^{(n)}/n - w_j| > \varepsilon \right) \to 0 \text{ as } n \to \infty \]
- also require
 \[\sum_{n=1}^{\infty} n^2 p_{ii}^{(n)} < \infty \]
can show a central limit holds
\[
\lim_{n \to \infty} P \left(\frac{a \sigma_j}{\sqrt{n}} < \left(\frac{N_j^{(n)}}{n} - w_j \right) < \frac{b \sigma_j}{\sqrt{n}} \right) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} \, dx
\]
where \(\sigma_j \) depends on \(w_j \)
distributions of random variables \(N_j^{(n)} \) tend to normal distributions
let \(X_1, X_2, \ldots, X_n \) be the actual outcomes that make up an ergodic \(R \)-state Markov chain
from the definition of \(X_j^{(n)} \), it follows that \(\sum_{j=1}^R X_j^{(n)} = 1 \) so
\[
\frac{1}{n} \sum_{h=0}^{n-1} f(X_h) = \frac{1}{n} \sum_{h=0}^{n-1} \sum_{j=1}^R X_j^{(h)} f(s_j) = \sum_{j=1}^R N_j^{(n)} f(s_j) \to \sum_{j=1}^R w_j f(s_j)
\]
Markov-chain “time”-average approaches required ensemble average!!
Monte Carlo integration

- recap of Markov-chain Monte Carlo integration:
 \[\int_V f(\vec{x}) \, d^D x \approx V \langle f \rangle \pm V \sqrt{\frac{\langle f^2 \rangle - \langle f \rangle^2}{N}} \]
 \[\langle f \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f(\vec{x}_i) \]
 \[\langle f^2 \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} f(\vec{x}_i)^2 \]
- each point in \(D \)-dimensional volume \(V \) is a state of a Markov chain
- \(N \) points \(\vec{x}_1, \ldots, \vec{x}_N \) are elements in an ergodic Markov chain
- law of large numbers justifies correctness of estimate
- central limit theorem gives estimate of statistical uncertainty
 - above formula for error assumes the \(\vec{x}_j \) are statistically independent
Monte Carlo estimates require statistically independent random configurations.

Configurations generated by Markov process depend on previous elements in the chain.

This dependence is known as autocorrelation.

This autocorrelation can actually be measured.

For any observable (integrand) \(O_i \), autocorrelation \(\varrho(\tau) \) defined by

\[
\varrho(\tau) = \frac{\langle O_i O_{i+\tau} \rangle - \langle O_i \rangle^2}{\langle O_i^2 \rangle - \langle O_i \rangle^2}
\]

- Highly correlated \(\rightarrow \) value near 1
- Independent \(\rightarrow \) value near 0

Dependence decreases as distance between elements in the chain increases.

Do not use every element in the chain for “measurements”.

Skip some number of elements between measurements.
Constructing the transition probability

- generally know probability density $\pi(\phi)$ we need to sample
- for our path integrals, we need to generate paths with probability distribution
 \[
 \pi(\phi) = \frac{e^{-S[\phi]/\hbar}}{\int_a^b D\phi' \ e^{-S[\phi']/\hbar}}
 \]
- in imaginary time formalism, path integral weight is real and positive \rightarrow probability interpretation for Monte Carlo
- how do we construct the Markov transition matrix $P(\tilde{\phi} \leftarrow \phi)$?
 - change to quantum mechanical notation of putting earlier states on right, later states on left
- simplest answer to this question is
 - the Metropolis-Hastings method
- useful for local updating so changes to action are small
- probability normalization never enters in the calculation!
The Metropolis-Hastings algorithm

- this method uses an auxiliary proposal density \(R(\tilde{\phi} \leftarrow \phi) \) which
 - must be normalized
 - can be evaluated for all \(\phi, \tilde{\phi} \)
 - can be easily sampled
 - no relationship to the fixed-point probability density \(\pi(\phi) \) needed

- given this proposal density, the Metropolis-Hastings method updates \(\phi \rightarrow \tilde{\phi} \) as follows:
 1. use \(R(\tilde{\phi} \leftarrow \phi) \) to propose new value \(\tilde{\phi} \) from current value \(\phi \)
 2. accept the new value with probability

\[
P_{\text{acc}}(\tilde{\phi} \leftarrow \phi) = \min \left(1, \frac{R(\phi \leftarrow \tilde{\phi}) \pi(\tilde{\phi})}{R(\tilde{\phi} \leftarrow \phi) \pi(\phi)} \right)
\]

 - if rejected, the original value \(\phi \) is retained

- if proposal density satisfies reversibility \(R(\tilde{\phi} \leftarrow \phi) = R(\phi \leftarrow \tilde{\phi}) \),
 then acceptance probability reduces to \(\min(1, \pi(\tilde{\phi}) / \pi(\phi)) \)
 - original Metropolis method
• Metropolis-Hastings satisfies detailed balance

proof:

• (normalized) transition probability density is

\[W(\phi' \leftrightarrow \phi) = P_{\text{acc}}(\phi' \leftrightarrow \phi) R(\phi' \leftrightarrow \phi) \]

\[+ \delta(\phi' - \phi) \left(1 - \int \mathcal{D}\phi \, P_{\text{acc}}(\phi \leftarrow \phi) R(\phi \leftarrow \phi) \right) \]

• define

\[A(\phi' \leftrightarrow \phi) \equiv P_{\text{acc}}(\phi' \leftarrow \phi) R(\phi' \leftarrow \phi) \pi(\phi) \]

\[= \min \left(1, \frac{R(\phi' \leftarrow \phi) \pi(\phi)}{R(\phi \leftarrow \phi) \pi(\phi)} \right) R(\phi' \leftarrow \phi) \pi(\phi) \]

\[= \min \left(R(\phi' \leftarrow \phi) \pi(\phi), R(\phi \leftarrow \phi) \pi(\phi) \right) \]

where last line follows from \(R(\phi' \leftarrow \phi) \pi(\phi) \geq 0 \)

• symmetric: \(A(\phi' \leftarrow \phi) = A(\phi \leftarrow \phi) \).
so we have

\[W(\tilde{\phi} \leftarrow \phi)\pi(\phi) = P_{\text{acc}}(\tilde{\phi} \leftarrow \phi)R(\tilde{\phi} \leftarrow \phi)\pi(\phi) \]

\[+ \quad \delta(\tilde{\phi} - \phi) \left(1 - \int \mathcal{D}\phi \ P_{\text{acc}}(\phi \leftarrow \phi)R(\phi \leftarrow \phi) \right) \pi(\phi) \]

\[= \quad A(\tilde{\phi} \leftarrow \phi) + \delta(\tilde{\phi} - \phi) \left(\pi(\phi) - \int \mathcal{D}\phi \ A(\phi \leftarrow \phi) \right) \]

\[= \quad A(\tilde{\phi} \leftarrow \phi) + \delta(\tilde{\phi} - \phi) K(\phi) \]

where

\[K(\phi) = \pi(\phi) - \int \mathcal{D}\phi A(\phi \leftarrow \phi) \]

given symmetry of \(A \) and Dirac \(\delta \)-function, then detailed balance holds

\[W(\tilde{\phi} \leftarrow \phi)\pi(\phi) = W(\phi \leftarrow \tilde{\phi})\pi(\tilde{\phi}) \]
A one dimensional example

- does this really work?
- let \(g(x) = \cos(\sqrt{1 + x^2}) \) and \(h(x) = e^{-x^2} / (x^2 + 2) \)
- \(g(x) \) changes sign, \(h(x) \geq 0 \)
- consider ratio of integrals \(I = \frac{\int_{-\infty}^{\infty} g(x)h(x)dx}{\int_{-\infty}^{\infty} h(x)dx} = 0.3987452 \)
- sampling density \(\pi(x) = Z^{-1}h(x) \) where \(Z = \int_{-\infty}^{\infty} h(x)dx \)

algorithm:
- choose \(\delta \) uniform probability for \(-\Delta \leq \delta \leq \Delta\)
- propose \(\tilde{x} = x + \delta\)
- acceptance probability \(\min(1, \pi(\tilde{x})/\pi(x)) = \min(1, h(\tilde{x})/h(x)) \)
- \(\Delta = 1.5 \) for acceptance \(\sim 50\% \)
- never needed \(Z \)
Part III

Monte Carlo study of the simple harmonic oscillator
Discretization of SHO action

- action of harmonic oscillator (imaginary time formalism)

 \[
 S[x(\tau)] = \int_{\tau_a}^{\tau_b} d\tau \left(\frac{1}{2} m \dot{x}^2 + \frac{1}{2} m \omega^2 x^2 \right)
 \]

- discretize time \(N \varepsilon = \tau_b - \tau_a \) for Monte Carlo evaluation

 \[
 S = \frac{m \varepsilon}{2 \hbar} \sum_{j=0}^{N-1} \left[\left(\frac{x_{j+1} - x_j}{\varepsilon} \right)^2 + \omega^2 \left(\frac{x_{j+1} + x_j}{2} \right)^2 \right]
 \]

- choose \(\varepsilon \) so discretization errors sufficiently small

- introduce dimensionless parameters

 \[
 x_k = d_k \sqrt{\frac{\varepsilon \hbar}{m}}, \quad \kappa = \frac{1}{4} \varepsilon^2 \omega^2
 \]

 \[
 S = \frac{1}{2} \sum_{j=0}^{N-1} \left[(d_{j+1} - d_j)^2 + \kappa (d_{j+1} + d_j)^2 \right]
 \]
a few more manipulations produce

\[
\frac{S}{\hbar} = \frac{1}{2} (1 + \kappa)(d_0^2 + d_N^2) + (1+\kappa) \left[\sum_{j=1}^{N-1} d_j^2 \right] - (1-\kappa) \left[\sum_{j=0}^{N-1} d_j d_{j+1} \right]
\]

first constant irrelevant (set to zero), then one last rescaling

\[
u_j = d_j \sqrt{1 + \kappa} \quad g = \frac{1 - \kappa}{1 + \kappa} \quad d_0 = d_N = 0
\]

final result for action

\[
\frac{S}{\hbar} = \left[\sum_{j=1}^{N-1} u_j^2 \right] - g \left[\sum_{j=0}^{N-1} u_j u_{j+1} \right]
\]
to update location (at a single time)
- propose random shift \(-\Delta \leq \delta \leq \Delta\) with uniform probability
- calculate change to the action

\[
\delta S/\hbar = \delta \left(\delta + 2u_j - g(u_{j-1} + u_{j+1}) \right)
\]
- accept \(u_j^{\text{new}} = u_j + \delta\) with probability \(\min(1, e^{-\delta S/\hbar})\)
- rule of thumb: fix \(\Delta\) for about 50% acceptance rate
 - lower rate = wasting too much time with rejections
 - higher rate = moving through phase space too slowly

repeat for each \(u_j\) for \(j = 1, \ldots, N - 1\) (this is called one sweep)
repeat for certain number of sweeps
 - until autocorrelations sufficiently small
Here is actual C++ code which does the updating:

```cpp
void markov::update()
{
    double shift, deltaS;
    for (int i=1; i<=Nsweeps; i++)
        for (int t=1; t<Ntimesteps; t++) {
            // propose shift in location[t]
            shift = 2.0 * max_shift_per_instance * (rng.generate() - 0.5);

            // compute change in action
            deltaS = shift * (shift + 2.0 * locations[t] - hop_param * (locations[t-1] + locations[t+1]));

            // Metropolis accept or reject
            if (deltaS < 0.0) accept = 1;
            else accept = (rng.generate() <= exp(-deltaS));
            if (accept) locations[t] += shift;
        }
}
```
Simulation guidelines

- to start Markov chain
 - choose a random path (hot start)
 - or choose $u_j = 0$ for all j (cold start)
 - update N_{therm} sweeps until fixed point of chain achieved (thermalization) → check some simple observable

- once thermalized, begin “measurements”
- must choose
 - ϵ so discretization errors sufficiently small
 - Δ for adequate acceptance rate
 - N_{sweeps} for sufficiently small autocorrelations
 - N_{meas} for desired precision of results
Path animation

- animation of first 100 time slices of u_j path
Acceptance rate and autocorrelations

- choose Δ so acceptance rate near 0.5
- choose N_{sweeps} so autocorrelations near 0.1
Correlation function

- comparison of final Monte Carlo estimates with exact results
- exact result shown as curve
- Monte Carlo estimates shown by circles (statistical uncertainties too small to see)
Part IV

Monte Carlo calculations in real scalar field theory in 2+1 dimensions
Action in continuous space-time

- action in continuous Euclidean D-dimensional space-time (imaginary time formalism) given by

$$S = \int d^D x \left(\frac{1}{2} \partial_\mu \varphi(x) \partial_\mu \varphi(x) + \frac{1}{2} m^2 \varphi(x)^2 + \frac{g}{4!} \varphi(x)^4 \right).$$

- action must be dimensionless (natural units $\hbar = c = 1$)
- m has units of a derivative ∂_μ, that is, of a mass
- units of field $[\varphi] = [m]^{1/2 - 1}$
- coupling g has units $[g] = [m]^{4-D}$
 - coupling dimensionless in 4 space-time dimensions
 - has units of mass in 3 space-time dimensions so g/m dimensionless
Quantization

- quantization using path integrals
- generalize notion of “path”: a path here is a field configuration
- path integral is now integrations over all field configurations
- for real scalar field, integral $-\infty \leq \phi(x) \leq \infty$ at every space-time point x
- time-ordered two-point function given by

$$\langle T\phi(x_1)\phi(x_2) \rangle = \frac{\int \mathcal{D}\phi \, \phi(x_1)\phi(x_2) \exp(-S[\phi])}{\int \mathcal{D}\phi \, \exp(-S[\phi])}.$$

- generalizes to n-point functions: time-ordered product of n fields
Monte Carlo study requires action on a space-time lattice

use anisotropic cubic lattice with temporal lattice spacing a_t and spatial lattice spacing a_s

use simplest finite difference for the field derivatives

action is given by

$$S = a_s^{D-1} a_t \sum_x \left(\sum_\mu \frac{(\varphi(x + a_\mu \hat{\mu}) - \varphi(x))^2}{2 a_\mu^2} + \frac{1}{2} m^2 \varphi(x)^2 + \frac{g}{4!} \varphi(x)^4 \right)$$

$$= a_s^{D-1} a_t \sum_x \left(-\sum_\mu \frac{\varphi(x + a_\mu \hat{\mu}) \varphi(x)}{a_\mu^2} + \frac{1}{2} \left(m^2 + \sum_\nu \frac{2}{a_\nu^2} \right) \varphi(x)^2 + \frac{g}{4!} \varphi(x)^4 \right)$$

redefine the field: \(\sqrt{a_s^{D-3} a_t} \varphi(x) = \sqrt{2} \kappa_s \phi(x) \)

where κ_s is dimensionless number, new field $\phi(x)$ is dimensionless
Action on lattice

- a few more dimensionless parameters:

\[a_s/a_t = \zeta, \quad \lambda = \frac{g\zeta \kappa_s^2}{6a_s^{D-4}}, \]

\[\kappa_s(a_s^2m^2 + 2\zeta^2 + 2D - 2) = 1 - 2\lambda, \quad \kappa = \zeta \kappa_s, \]

- final form for lattice action

\[S = \sum_x \left(-\frac{2\kappa}{\zeta} \sum_{j=1}^{D-1} \phi(x)\phi(x+a_s\hat{j}) - 2\kappa\zeta \phi(x)\phi(x+a_t\hat{i}) \right. \]

\[\left. + (1 - 2\lambda)\phi(x)^2 + \lambda\phi(x)^4 \right) \]

- hopping parameter \(\kappa \) essentially sets mass parameter, \(\lambda \) is interaction coupling
the free field theory $\lambda = 0$ is exactly solvable
path integrals are multivariate gaussians
free action can be written in form
\[S[\phi] = \frac{1}{2} \sum_{x,y} \phi(x)M(x,y)\phi(y) \]
for N lattice sites, M is real and symmetric $N \times N$ matrix having positive eigenvalues
this matrix given by
\[
M(x, y) = -\frac{2\kappa}{\zeta} \sum_{j=1}^{D-1} \left(\delta(y, x+a_s\hat{j}) + \delta(x, y+a_s\hat{j}) \right) \\
-2\kappa\zeta \left(\delta(y, x+a_t\hat{i}) + \delta(x, y+a_t\hat{i}) \right) + 2\delta(x, y)
\]
Gaussian integrals in free theory

- **N-dimensional multivariate Gaussian integral of form**

\[
\prod_{i=1}^{N} \left(\int_{-\infty}^{\infty} d\phi_i \right) \exp(-\frac{1}{2} \phi_j M_{jk} \phi_k + J_n \phi_n)
\]

\[
= \left(\det \left(\frac{M}{2\pi} \right) \right)^{-1/2} \exp \left(\frac{1}{2} J_j M_{jk}^{-1} J_k \right)
\]

- **J-trick**: use derivatives wrt to J_k, followed by $J_k \rightarrow 0$ to evaluate all integrals involving any number of products of the fields

\[
\prod_{i=1}^{N} \left(\int_{-\infty}^{\infty} d\phi_i \right) \phi_{m_1} \phi_{m_2} \cdots \phi_{m_r} \exp(-\frac{1}{2} \phi_j M_{jk} \phi_k)
\]

\[
= \frac{\delta}{\delta J_{m_1}} \cdots \frac{\delta}{\delta J_{m_r}} \prod_{i=1}^{N} \left(\int_{-\infty}^{\infty} d\phi_i \right) \exp(-\frac{1}{2} \phi_j M_{jk} \phi_k + J_n \phi_n)
\]

- does Wick contractions automagically!
two-point function given by $\langle T\phi(x_1)\phi(x_2) \rangle = M^{-1}(x_1, x_2)$

invert M by method of Green functions and use Fourier series

for $L_x \times L_y \times L_t$ lattice, result is

$$M^{-1}(x, y) = \frac{\zeta}{2\kappa L_x L_y L_t} \sum_{k_{\mu}} \frac{\cos(k \cdot (x - y))}{(a_s^2m^2 + 4 \sum_{j=1}^{2} \sin^2(\frac{1}{2}k_j) + 4\zeta^2 \sin^2(\frac{1}{2}k_t))}$$

where $k_{\mu} = 2\pi n_{\mu}/L_{\mu}$ for $n_{\mu} = 0, 1, 2, \ldots, L_{\mu} - 1$

pole gives energy a_tE_p of single particle of momentum $a_s p$

$$a_tE_p = 2 \sinh^{-1}\left(\frac{1}{2\zeta} \sqrt{a_s^2m^2 + 4 \sin^2(\frac{1}{2}a_s p_x) + 4 \sin^2(\frac{1}{2}a_s p_y)}\right)$$

for small a_t, a_s this becomes $E_p = \sqrt{m^2 + p_x^2 + p_y^2}$

spectrum is sum of free particle energies
Single-site Monte Carlo updating

- Metropolis-Hastings method needs acceptable acceptance rate.
- Changing all field values at once generally leads to large changes in action → near zero acceptance rate.
- Reasonable acceptance rate achieved by updating field at a single lattice site at any given time.
- Ergodicity ensured by sweeping through lattice, updating each and every site one at a time.
- In battle against autocorrelations, expect:
 - Small wavelength modes updated well.
 - Long wavelength modes updated not so well.
recall action is

\[
S = \sum_{x} \left(-\frac{2\kappa}{\zeta} \sum_{j=1}^{D-1} \phi(x)\phi(x+a_s^j) - 2\kappa\zeta \phi(x)\phi(x+a_t^j) \right.
\]
\[
+ (1 - 2\lambda)\phi(x)^2 + \lambda\phi(x)^4 \right)
\]

for \(\tilde{\phi} \leftarrow \phi \), change in action is \(\delta S = S[\tilde{\phi}] - S[\phi] \)

define neighborhood

\[
N(x) = -\frac{2\kappa}{\zeta} \sum_{j=1}^{D-1} \left(\phi(x+a_s^j) + \phi(x-a_s^j) \right) - 2\kappa\zeta \left(\phi(x+a_t^j) + \phi(x-a_t^j) \right)
\]

if field at one site \(x \) changed \(\phi(x) \rightarrow \phi(x) + \Delta \), then

\[
\delta S = \Delta \left(N(x) + (\Delta + 2\phi(x)) \left(1 + \lambda \left((\Delta + 2\phi(x))\Delta + 2(\phi(x)^2 - 1) \right) \right) \right)
\]
\[\delta S \] for single-site update (continued)

• change in action can also be written

\[
\begin{align*}
\delta S &= \Delta (a_0 + a_1 \Delta + a_2 \Delta^2 + a_3 \Delta^3), \\
a_0 &= N(x) + 2\phi(x)(1 + 2\lambda(\phi(x)^2 - 1)) \\
a_1 &= 1 + 2\lambda(3\phi(x)^2 - 1) \\
a_2 &= 4\lambda\phi(x) \\
a_3 &= \lambda
\end{align*}
\]
single-site updates involve a single continuous real variable ϕ

use simplest proposal density

$$R(\tilde{\phi} \leftarrow \phi) = \begin{cases} \frac{1}{\Delta_0} & -\frac{1}{2} \Delta_0 \leq (\tilde{\phi} - \phi) \leq \frac{1}{2} \Delta_0 \\ 0 & |\tilde{\phi} - \phi| > \frac{1}{2} \Delta_0 \end{cases}$$

width Δ_0 chosen for acceptance probability around 50%

proposed new value accepted with probability $\min(1, \exp(-\delta S))$

if rejected, keep current field value

sweeping through lattice ensures ergodicity

in sweeping through the lattice in predetermined order, detailed balance no longer holds

- not a problem since the fixed-point stability condition still holds
- detailed balance maintained by updating sites in random order
Battling autocorrelations

- when the single particle mass $a_t m_{\text{gap}}$ is small, the coherence length $\xi = 1/(a_t m_{\text{gap}})$ becomes large
- $\xi \to \infty$ signals continuum limit
- $\xi \to \infty$ occurs near critical point (2nd order phase transition)
- we will see that autocorrelations with Metropolis updating become long ranged as ξ becomes large
 \[\to \text{known as critical slowing down} \]
- autocorrelations problematic even for $\xi \approx 5$ with Metropolis
- need help to better update long wavelength modes
Microcanonical updating

- Long wavelength modes are associated with lower frequencies, lower energies.
- In other words, long-wavelength modes associated with very small changes to the action.
- Possible way to improve autocorrelations:
 - Make large but action preserving $\delta S = 0$ changes to field at one site.
- Call this a microcanonical update.
 - Often referred to as overrelaxation.
- Local updating is so easy, don’t want to give up on it yet!
- Must still update in such a way to satisfy detailed balance.
- Not ergodic, so microcanonical sweeps must be used in combination with ergodic scheme, such as Metropolis sweeps.
we know Metropolis-Hasting method satisfies detailed balance
choose proposal density strongly peaked about
action-preserving value of field, then carefully take δ-function limit
revisit Metropolis-Hastings with sharply-peaked Breit-Wigner proposal probability density

$$R_f(\tilde{\phi} \leftarrow \phi) = \frac{1}{\pi} \frac{\varepsilon}{\left(\tilde{\phi} - f(\phi)\right)^2 + \varepsilon^2}$$

where ε is a constant and $f(\phi)$ is well-behaved, single-valued, invertible function

acceptance probability

$$P_{\text{acc}}(\tilde{\phi} \leftarrow \phi) = \min\left(1, \frac{R_f(\phi \leftarrow \tilde{\phi})\pi(\tilde{\phi})}{R_f(\tilde{\phi} \leftarrow \phi)\pi(\phi)}\right) = \min\left(1, \frac{\left((\tilde{\phi} - f(\phi))^2 + \varepsilon^2\right)\pi(\tilde{\phi})}{\left((\phi - f(\tilde{\phi}))^2 + \varepsilon^2\right)\pi(\phi)}\right)$$
Microcanonical updating (3)

- carefully take $\varepsilon \to 0$ limit: $R_f(\tilde{\phi} \leftarrow \phi) \to \delta(\tilde{\phi} - f(\phi))$
- determining acceptance probability is tricky
- probability of proposing a value between $f(\phi) - \sqrt{\varepsilon} \leq \tilde{\phi} \leq f(\phi) + \sqrt{\varepsilon}$ is
 \[
 \int_{f(\phi) - \sqrt{\varepsilon}}^{f(\phi) + \sqrt{\varepsilon}} d\tilde{\phi} R_f(\tilde{\phi} \leftarrow \phi) = \frac{2}{\pi} \tan^{-1} \left(\frac{1}{\sqrt{\varepsilon}} \right)
 \]
 which does tends to unity as $\varepsilon \to 0$
- if $f(\phi)$ more than $\sqrt{\varepsilon}$ away from ϕ, probability transition is actually made is
 \[
 \int_{f(\phi) - \sqrt{\varepsilon}}^{f(\phi) + \sqrt{\varepsilon}} d\tilde{\phi} W_f(\tilde{\phi} \leftarrow \phi) = \int_{f(\phi) - \sqrt{\varepsilon}}^{f(\phi) + \sqrt{\varepsilon}} d\tilde{\phi} P_{\text{acc}}(\tilde{\phi} \leftarrow \phi) R_f(\tilde{\phi} \leftarrow \phi)
 \]
 \[
 = \min \left(\frac{2}{\pi} \tan^{-1} \left(\frac{1}{\sqrt{\varepsilon}} \right) , \frac{1}{\pi} \int_{f(\phi) - \sqrt{\varepsilon}}^{f(\phi) + \sqrt{\varepsilon}} d\phi \frac{\varepsilon \pi(\tilde{\phi})}{\left((\phi - f(\tilde{\phi}))^2 + \varepsilon^2 \right) \pi(\phi)} \right)
 \]
write $\tilde{\phi} = f(\phi) + y$, then remaining integral becomes

$$\frac{1}{\pi} \int_{-\sqrt{\varepsilon}}^{\sqrt{\varepsilon}} dy \frac{\varepsilon \pi (f(\phi) + y)}{(\phi - f(f(\phi) + y))^2 + \varepsilon^2) \pi(\phi)}$$

if $f(f(\phi)) \neq \phi$, can show this integral goes to zero as $\varepsilon \to 0$

for self-inverse function $f(f(\phi)) = \phi$, expansion about $y = 0$ must be carefully done, integral has form

$$\frac{\varepsilon}{\pi} \int_{-\sqrt{\varepsilon}}^{\sqrt{\varepsilon}} dy \frac{(a_0 + a_1 y + a_2 y^2 + \ldots)}{(\varepsilon^2 + b_2 y^2 + b_3 y^3 + b_4 y^4 \ldots)}$$

must retain $b_2 y^2$ in denominator, expand rest about $y = 0$:

$$\frac{\varepsilon}{\pi} \int_{-\sqrt{\varepsilon}}^{\sqrt{\varepsilon}} dy \frac{a_0}{(\varepsilon^2 + b_2 y^2)} \left\{ 1 + \frac{a_1}{a_0} y + \frac{a_2}{a_0} y^2 + \left(\frac{a_3}{a_0} - \frac{b_3}{\varepsilon^2} \right) y^3 \ldots \right\}$$

for $b_2 > 0$, result of integration is

$$\frac{2a_0}{\pi \sqrt{b_2}} \tan^{-1} \left(\sqrt{\frac{b_2}{\varepsilon}} \right) \left\{ 1 + d_1 \sqrt{\varepsilon} + d_2 \varepsilon + d_3 \varepsilon^{3/2} + \ldots \right\}$$
Microcanonical updating (5)

- acceptance probability in limit $\varepsilon \to 0$ given by

$$P_{\text{acc}} = \min \left(1, \frac{a_0}{\sqrt{b_2}} \right)$$

- here $a_0 = \pi(f(\phi))/\pi(\phi)$ and $b_2 = (f'(f(\phi)))^2$

- differentiate both sides of $f(f(\phi)) = \phi$ with respect to ϕ, so for self-inverse function

$$1 = \frac{d}{d\phi} \left(f(f(\phi)) \right) = f'(f(\phi)) f'(\phi)$$

$$\frac{1}{(f'(f(\phi)))^2} = \left| \frac{f'(\phi)}{f'(f(\phi))} \right| \quad \text{(self-inverse function)}$$

- take limit $\varepsilon \to 0$ acceptance probability goes to

$$P_{\text{acc}}(\tilde{\phi} \leftarrow \phi) = \min \left(1, \frac{\sqrt{|f'(\phi)|}}{\sqrt{|f'(\tilde{\phi})|}} \frac{\pi(\tilde{\phi})}{\pi(\phi)} \right)$$
specialize to action preserving function \(f(\phi) \)

for infinitesimal change \(\phi \rightarrow \phi + \delta \phi \)

\[
S(\phi + \delta \phi) = S(f(\phi + \delta \phi))
\]

expand both sides

\[
S(\phi) + S'(\phi)\delta \phi + O(\delta \phi^2) = S(f(\phi) + f'(\phi)\delta \phi + O(\delta \phi^2))
\]

\[
= S(f(\phi)) + S'(f(\phi)) f'(\phi)\delta \phi + O(\delta \phi^2)
\]

\[
= S(\phi) + S'(f(\phi)) f'(\phi)\delta \phi + O(\delta \phi^2).
\]

solve order by order in \(\delta \phi \)

\[
S'(\phi) = S'(f(\phi)) f'(\phi) \quad \rightarrow \quad f'(\phi) = \frac{S'(\phi)}{S'(f(\phi))}, \quad f'(f(\phi)) = \frac{S'(f(\phi))}{S'(f(\phi))}
\]

proposal and acceptance probability densities are

\[
R_f(\tilde{\phi} \leftarrow \phi) = \delta \left(\tilde{\phi} - f(\phi) \right), \quad f(f(\phi)) = \phi, \quad S(f(\phi)) = S(\phi),
\]

\[
P_{\text{acc}}(\tilde{\phi} \leftarrow \phi) = \min \left(1, \left| \frac{S'(\phi)}{S'(f(\phi))} \right| \right), \quad \pi(\phi) = \frac{\exp(-S[\phi])}{\int \mathcal{D}\tilde{\phi} \exp(-S[\tilde{\phi}])}
\]
Microcanonical updating (7)

- generalize to multiple self-inverse functions
 - for \(\phi^4 \) at most four field values with same local action
- generalize to probability \(\mu \) of proposing a change
 - sometimes need \(\mu < 1 \) to prevent (damped) oscillations in autocorrelation function

Summary of microcanonical updating process:

1. decide to propose new field value with probability \(\mu \) (skip steps below if no proposal)
2. solve \(\delta S(\phi) = 0 \), let \(\phi_j \) denote real solutions different from \(\phi \)
 - these are roots of a cubic polynomial
3. randomly choose one of the \(\phi_j \) with equal probability, let \(\tilde{\phi} \) denote the chosen value
4. accept with probability
 \[
 P_{\text{acc}}(\tilde{\phi} \leftarrow \phi) = \min \left(1, \frac{|S'(\phi)|}{|S'(\tilde{\phi})|} \right)
 \]
 if rejected, original value \(\phi \) retained
Autocorrelations

- studied autocorrelation function $\rho(\tau)$ of $\langle \Phi(t)\Phi(0) \rangle$ for $t = 1/(2a_sm)$ and $\Phi(t) = \sum_{xy} \phi(x, y, t)$
- τ is number of Metropolis sweeps in plots below
- $a_sm = 0.10, 0.25, 0.50$ for $\lambda = 0$ on 24^3 isotropic lattice
- 2200 sweeps to reduce autocorrelations to 0.1 for $a_sm = 0.10$
Autocorrelations

- autocorrelations $\rho(\tau)$ of $\langle \Phi(t)\Phi(0) \rangle$ for $t = 1/(2a_sm)$
- τ is number of compound sweeps,
- compound sweep $= 1$ Metropolis $+ 1$ microcanonical sweep
- μ is probability of proposing change in microcanonical updates
- $a_sm = 0.10, 0.25, 0.50$ for $\lambda = 0$ on 24^3 isotropic lattice
- undesirable oscillations on left removed using $\mu = 0.98$ or updating sites in random order
Autocorrelations

- Autocorrelations $\rho(\tau)$ of $\langle \Phi(t)\Phi(0) \rangle$ for $t = 1/(2a_sm)$
- τ is number of compound sweeps
- Compound sweep = 1 Metropolis + N_μ microcanonical sweeps
- μ is probability of proposing change in microcanonical updates
- $a_sm = 0.10$ for $\lambda = 0$ on 24^3 isotropic lattice
- Left-hand plot, $N_\mu = 1$ and μ is varied
- Right-hand plot, $\mu = 0.98$ and N_μ is varied
Autocorrelations

- Autocorrelations $\rho(\tau)$ of $\langle \Phi(t)\Phi(0) \rangle$ for $t = 1/(2a_s m)$
- τ is number of compound sweeps
- Compound sweep = 1 Metropolis + N_μ microcanonical sweeps
- $\mu = 0.98$ probability of proposing change in microcanonical
- $a_s m = 0.25, 0.50$ for $\lambda = 0$ on 24^3 isotropic lattice
Calculating the spectrum

- stationary-state energies extracted from asymptotic decay rates of temporal correlations of the fields
- temporal evolution of field as Heisenberg-picture quantum operator
 \[\phi(t) = e^{Ht} \phi(0) e^{-Ht} \]
- under certain general assumptions and ignoring temporal boundary conditions, then for \(t \geq 0 \)
 \[
 \langle 0 | \phi(t) \phi(0) | 0 \rangle = \sum \langle 0 | e^{Ht} \phi(0) e^{-Ht} | n \rangle \langle n | \phi(0) | 0 \rangle,
 \]
 \[
 = \sum |\langle n | \phi(0) | 0 \rangle|^2 e^{-(E_n - E_0)t} = \sum A_n e^{-(E_n - E_0)t},
 \]
 where complete set of (discrete) eigenstates of \(H \) satisfying \(H|n\rangle = E_n |n\rangle \) inserted
- if \(\langle 1 | \phi(0) | 0 \rangle \neq 0 \), then \(A_1 \) and \(E_1 - E_0 \) can be extracted as \(t \) becomes large, assuming \(\langle 0 | \phi(0) | 0 \rangle = 0 \)
- can use any operator \(O(t) \) which is a function of the field \(\phi(t) \) only on a time slice \(t \)
Calculating the spectrum (2)

- extraction of A_1 and $E_1 - E_0$ done using correlated $-\chi^2$

\[
\chi^2 = \sum_{tt'} \left(C(t) - M(t, \alpha) \right) \sigma_{tt'}^{-1} \left(C(t') - M(t', \alpha) \right)
\]

where $C(t)$ represents Monte Carlo estimates of correlation function with covariance matrix $\sigma_{tt'}$ and model function is $M(t, \alpha) = \alpha_1 e^{-\alpha_0 t}$.

- minimize expression with respect to the model parameters α_0, α_1
- uncertainties in the best-fit parameters $\alpha_0 = E_1 - E_0$ and $\alpha_1 = A_1$ are obtained by a jackknife or bootstrap procedure
- fit must be done for a time range $t_{\text{min}} \leq t \leq t_{\text{max}}$ such that an acceptable fit quality is obtained, that is, $\chi^2 / \text{dof} \approx 1$
- sum of two-exponentials as model function can be used to minimize sensitivity to t_{min}
 - but fit parameters associated with faster-decaying exponential generally not good estimates of gap to next energy level and should be discarded
Jackknife resampling

- return to independent trials process X_1, X_2, \ldots, X_N
- expected value $E(f(X))$ estimated using $\langle f \rangle = \frac{1}{N} \sum_{k=1}^{N} f(X_k)$
- sometimes f is a very complicated function, or it could be a function of the expected value!
- propagation of errors often not possible \rightarrow resampling schemes
- let $\langle f \rangle$ denote Monte Carlo estimate of some quantity f using all X_k for $k = 1, 2, \ldots, N$
- let $\langle f \rangle_J$ denote Monte Carlo estimate of f omitting X_J (so use the other $N-1$ values X_k)
- jackknife error estimate given by

$$
\sigma^{(J)} = \left(\frac{N-1}{N} \sum_{J=1}^{N} (\langle f \rangle_J - \langle f \rangle)^2 \right)^{1/2}
$$

- Monte Carlo error formula can be used to determine covariance matrix $\sigma_{tt'}$ for correlation function itself in χ^2
- jackknife gives errors in model fit parameters
another resampling scheme is the bootstrap

again, let $\langle f \rangle$ denote Monte Carlo estimate of some quantity f using all X_k for $k = 1, 2, \ldots, N$

let $\langle f \rangle_b$ denote Monte Carlo estimate of f using a new set \hat{X}_k for $k = 1, 2, \ldots, N$ where each \hat{X}_k is one of the original X_j chosen randomly with equal probability (a bootstrap sample)

a given X_j can occur multiple times in the bootstrap sample

obtain large number B of such estimates

let $\hat{\langle f \rangle} = (1/B) \sum_{b=1}^{B} \langle f \rangle_b$

bootstrap error given by

$$\sigma^{(B)} = \left(\frac{1}{B - 1} \sum_{b=1}^{B} (\langle f \rangle_b - \hat{\langle f \rangle})^2 \right)^{1/2}$$

plot of probability distribution from bootstrap estimates
The effective mass

- particularly good visual tool to see how well energy extracted is
 so-called effective mass
- for correlator $C(t)$, effective mass defined by
 \[m_{\text{eff}}(t) = \ln \left(\frac{C(t)}{C(t+a_t)} \right) \]
- function which tends to $E_1 - E_0$ as t becomes large
 \[\lim_{t \to \infty} m_{\text{eff}}(t) = \lim_{t \to \infty} \ln \left(\frac{A_1 e^{-(E_1-E_0)t} \left(1 + (A_2/A_1)e^{-(E_2-E_1)t} + \ldots \right)}{A_1 e^{-(E_1-E_0)(t+a_t)} \left(1 + (A_2/A_1)e^{-(E_2-E_1)(t+a_t)} + \ldots \right)} \right) \]
 \[= \ln \left(e^{(E_1-E_0)a_t} \right) = a_t(E_1 - E_0). \]
- value $E_1 - E_0$ seen as large-time plateau in effective mass
- contributions from faster-decaying exponentials seen as deviations of the effective mass from its asymptotic plateau value
- “good” operator with little coupling to higher-lying states = rapid onset of plateau
- statistically noise generally grows with t
The effective mass (continued)

- two examples of effective masses
- left: static quark-antiquark potential for separation 0.5 fm
- right: nucleon

![Graph showing static potential](image-url)
Excited states from correlation matrices

- Extracting more than just the lowest energy in a symmetry channel requires a hermitian matrix of correlation functions \(C_{ij}(t) \)
- Let \(\lambda_n(t, t_0) \) denote eigenvalues of \(C(t_0)^{-1/2} C(t) C(t_0)^{-1/2} \), for \(t_0 \) some fixed reference time
- These eigenvalues can be viewed as principal correlators
- Ordered such that \(\lambda_0 \geq \lambda_1 \geq \cdots \) as \(t \) becomes large
- Can show that

\[
\lim_{t \to \infty} \lambda_n(t, t_0) = e^{-E_n(t-t_0)} \left(1 + O(e^{-\Delta_n(t-t_0)})\right),
\]

\[
\Delta_n = \min_{k \neq n} |E_k - E_n|.
\]
- Principal effective masses associated with principal correlators

\[
m_{\text{eff}}^{(n)}(t) = \ln \left(\frac{\lambda_n(t, t_0)}{\lambda_n(t + a, t_0)} \right)
\]
- For \(N \times N \) correlation matrix, these functions plateau to \(N \) lowest lying energies
Principal effective masses

- LHPC currently holds world record for most energy levels extracted in any lattice QCD computation: 9 in nucleon channel.
for free-field case on $N_x \times N_y \times N_t$ lattice, define

$$\Phi(t, n_x, n_y) = \sum_{x,y} \phi(x, y, t) e^{2\pi i n_x/N_x + 2\pi i n_y/N_y}$$

lowest six levels having total zero momentum can be extracted using the following set of six operators:

$$O_0(t) = \Phi(t, 0, 0)$$
$$O_1(t) = \Phi(t, 0, 0) \Phi(t, 0, 0)$$
$$O_2(t) = \Phi(t, 1, 0) \Phi(t, -1, 0)$$
$$O_3(t) = \Phi(t, 0, 1) \Phi(t, 0, -1)$$
$$O_4(t) = \Phi(t, 1, 1) \Phi(t, -1, -1)$$
$$O_5(t) = \Phi(t, 1, -1) \Phi(t, -1, 1)$$
extracted six lowest-lying levels in $\lambda = 0$ scalar field theory

- $24^2 \times 48$ isotropic lattice with $a_s m = 0.25$

- exact results: 0.24935 for the mass, 0.49871 for twice the mass, 0.71903 for the two states having minimal relative momenta, and 0.88451 for the next two states
Autocorrelations in the interacting theory

- Autocorrelations $\rho(\tau)$ of $\langle \Phi(t)\Phi(0) \rangle$ for $t \sim 1/(2a_s m_{\text{gap}})$
- Compound sweep = 1 Metropolis + N_{μ} microcanonical sweep
- $\mu = 1$ is probability of proposing change in microcanonical
- Left plot: $t = 2a_t$ used with $\kappa = 0.1930$ and $\lambda = 0.300$ on $24^2 \times 48$ isotropic lattice and $a_s m_{\text{gap}} \sim 0.25$
- Right plot: $t = 5a_t$ used with $\kappa = 0.1970$ and $\lambda = 0.300$ on $32^2 \times 96$ isotropic lattice and $a_s m_{\text{gap}} \sim 0.10$
- Microcanonical acceptance rate about 80% in both cases
Mass gaps

- various single particle masses on 24^3 isotropic lattice
Phase structure

- theory has two phases separated by a line of critical points
- for each value of λ, there exists a critical value $\kappa_c(\lambda)$ at which mass gap goes to zero
- symmetric phase for $\kappa < \kappa_c(\lambda)$
 - $\phi \rightarrow -\phi$ symmetry holds, $\langle \phi \rangle = 0$
- broken phase for $\kappa > \kappa_c(\lambda)$
 - $\phi \rightarrow -\phi$ spontaneously broken, $\langle \phi \rangle \neq 0$
Part V

Monte Carlo calculations in lattice Quantum Chromodynamics
Lattice QCD

- hypercubic space-time lattice
- quarks reside on sites, gluons reside on links between sites
- for gluons, 8 dimensional integral on each link

- path integral has dimension $32N_xN_yN_zN_t$
 - 10.6 million for 24^4 lattice
- more sophisticated updating algorithms
- systematic errors
 - discretization
 - finite volume
Glueball spectrum in pure gauge theory

- Gluons can bind to form glueballs
 - E.M. analogue: massive globules of pure light!
- States labeled by J^{PC}
- Scale set by $r_0^{-1} = 410(20)$ MeV
- Computed using pseudo-heatbath and microcanonical
- 24×24 correlation matrix in each symmetry channel
- Spin identification
- Mass gap with a bounty
 - Clay mathematics institute will pay 1 million

observables in quantum mechanical systems can be extracted from the correlation functions of the theory

- correlation functions can be computed using path integrals
- path integrals in the imaginary time formalism can be evaluated using the Monte Carlo method
- importance sampling from Markov chains
- Metropolis-Hastings method
- microcanonical updating
- 1-dimensional simple harmonic oscillator was first example
- calculations in real scalar ϕ^4 theory in $2 + 1$ dimensions
For Further Reading

- C.M. Grinstead and J.L. Snell, *Introduction to Probability*