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QCD on the lattice

Overview:
Understanding lattice QCD
Lattice QCD calculations : Spectroscopy

Lattice QCD calculations : Matrix elements

Open and unsolved problems in Lattice QCD
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Why do | enjoy working in lattice QCD?

Particle/Nuclear Physics

Lattice QCD

Applied High-Performance
Mathematics Computing
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Understanding Lattice QCD

To understand the basic ingredients of lattice QCD calculations, we need

to discuss:
@ The path integral formulation of quantum mechanics
@ Path integral quantum field theory
@ Discretising fields and differential operators
@ Regularisation / renormalisation
@ The symmetries of QCD
@ The Monte Carlo method
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The path integral - reformulating quantum mechanics (1)

o Lattice field theory uses Feynman's path integral description of
quantum mechanics.

@ Quantum mechanical amplitudes can be expressed as a “sum over
histories”.

@ Consider a particle moving in one dimension.
The wave-function a small time in the future x
can be expressed as

Xl, t+€ / /dXO Q/) XO, ﬁ. XO,Xl) /

to t,

X1

with £ the (classical) lagrange density.

@ We have already begun to discretise; we are
defining the states of the system only on
time-slices.
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The path integral - reformulating quantum mechanics (2)

Xl; t+ 6 / /dXO w X07 h XO,Xl)

252 — V(x)
o For time-slices closely separated, define x = *—0 then expanding for
small € and introducing n = x3 — xg gives

¢+e—w \/'m /dne e —lf V(v 778 w+f82w+ )

@ This used a saddle-point expansion around ¢ = 0. Integrating 7 gives

@ The Lagrange density is L’(x X) =

.. 1) satisfies time-dependent Schrodinger’s equation

h? 92

9
|ﬁaz/1 ~om 821/J+ V)
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The path integral - reformulating quantum mechanics (3)

@ Repeating this update many times will define an algorithm to solve

the Schrodinger equation (given an initial wave-function).

@ For finite updates, the corresponding integral expression relating the

final wave-function 1(x¢, tr) to the initial wave-function v (x;, t;) is

Y(xf, tr) :/dxi Y(xi, ti) Z(xi, xr)

Xl
o with Z the path integral X,
L— X%
N—1 .
_ )
B / H Dxa e 4 t &
a=1
. . . X Xn,
@ and S is the classical action, X >/
- X
N1
m. 2
5 Z 262 Xail) Jr V(Xa) tI t1 t2 tN-1 t'
HUGS 2008

Mike Peardon (TCD) QCD on the lattice

7/22



Minkowski, Wick and Euclid

@ Some properties of theories in Minkowski space can be related by

Wick rotation to corresponding theories in Euclidean space.

@ Analytic continuation: t — iT, %5 — %5.

o O o
o O = O
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Correlation functions

@ The path integral defines simple transition amplitudes like
(xf, te]xi, ti) but more complicated matrix elements also have
representations

(x¢, trx(t2)x(t1)|x, ti) —/HDXa to)x(t1)er

@ In the Euclidean metric, the weight for field configurations is Wick
rotated, so en® — e -5
@ This gives correlation functions a useful property:
(Ox(r2)x(m1)[0) = (0]e"™xe” ") xe™H M)

= 3 (xlm{ale™ ) m) ()
= 3 Il e Bl

ThaAan
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Correlation functions

@ Then with A7 =1 — 7,

Euclidean correlation functions

limar—o0 (0|x(2)x(71)|0) = Ze B1AT

At large imaginary-time separations, AT — oo correlation functions fall
exponentially with rate proportional to the energy of the lowest energy
state that is excited.

@ We will see another (even more) crucial property of the Euclidean
metric when we look at studying quantum field theories numerically.
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Path integral quantum field theory

QCD is a relativistic quantum field theory.
Path integral quantisation extends to quantum field theory too:
Theory d.o.f discretise action sum over all
QM x(t) t S[x] paths
QFT o(x,t) x,t S[¢]  field configurations
@ Discretise four-dimensional space-time on a 4d lattice:
x,t — (an1, any, an3, ans), n, € Z, a is distance between sites.
e Matter fields (scalar bosons, quarks, ... ) are represented by
integration variables at all lattice sites, ¢pn; ny.n5,n,-
@ The action is a function of all these variables and the path integral is
the integral over these degrees of freedom.

QFT lattice path integral

Z:/Hd¢n1,n2,n3,n4 e—S(qS)

/J‘vn,u
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Path integral quantum field theory

Comparing Minkowski and Euclid

‘ Minkowski Euclidean
Weight of a field configuration er’ e nS
Describes QFT Statistical mechanics
Parameter h temperature, T
Numerical approach? Not easy! Monte Carlo

@ Statistical mechanical systems often exhibit interesting phase
transitions.

@ “Bare” lattice couplings in the action describe “theory space”

@ Correlation lengths of the lattice statistical mechanical system can
diverge (in units of a) at certain points or sub-spaces of “theory
space”.

@ Continuum field theories can live at second-order phase transition
points.
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Regularising path integrals

@ Path integrals have continuum representation too!

@ When path integrals are expanded in the continuum in powers of the
coupling constant (perturbation theory), we often encounter apparent
divergences.

N 11
7 \q P~ d4k o7 o
----- 9--"'.\\ | — / k?(q — k)

~. -

@ These can usually be regulated by a (perturbative) renormalisation
procedure.

@ In a finite volume, lattice path integrals are certain to be (UV) finite -
the divergences are cut-off automatically.

@ The lattice provides a cut-off outside perturbation theory. This is a
crucial property for QCD.
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First lattice field theory: scalar bosons

@ The action in Euclidean space for a (real) scalar field ¢(x) is
Stol = [d*x o(-D+ m)s
with O = Z/L ldx2

e m is the (bare) boson mass.

@ This action is invariant under SO(4) the Euclidean rotation group in
four dimensions (the equivalent of Lorentz group), so theory is one of
relativistic bosons.

@ A lattice version would define scalar fields that take values on lattice
sites only.

@ Define a to be the lattice spacing - the distance between adjacent
sites.
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First lattice field theory: scalar bosons (2)

@ To represent the differential operator [J, we can take linear
combinations of the nearest neighbours of a site. A Taylor-series in a
would give

0
d)(nl + a, np, n3, n4) = ¢(n1, np, n3, n4) + aa—quﬁ(nl, np, n3, n4)
2 2
+772¢(n17 n27 n3) n4) + 0(33)

@ So the linear combination of nearest neighbours

1
2 (¢(m + a, n2, n3, ng) + ¢(n1 — a, 2, n3, ng) — 2¢(ny, na, n3, ny))
0? 5
= Wﬂnl, nz, n3, ng) + O(a*)
X1
gives a suitable representation of one term in [
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First lattice field theory: scalar bosons (3)

@ The lattice action is then

4 4

Sl =5 324 (2 +8)0(x)2 = > 6(x)é(x+ )

X pn=1

@ The path integral is gaussian and it can be computed analytically.

The propagator (in momentum space) for the theory is then

1
/ — 5 ,

@ As a — 0 the propagator for a scalar boson in the (Euclidean)
continuum is recovered.

p s 1
(o(P)o(p)) = 0pp 2121 P2+ m?
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First lattice field theory: scalar bosons (4)

Local interactions can be added easily, for example define

S[¢] = So[#] + Sint[¢]
with

Sol#] + Sincld] = Aa" > ¢*(x)

and we are simulating a Higgs field.

For finite a, the lattice theory differs from the continuum by terms
proportional to a°.

These extra terms lead to /lattice artefacts. Computing properties of
the continuum theory will require extrapolation to a = 0.

The lattice action is not unique: we could have used

o 3
2 (0 +2)+0(x=2))+(1-a)((x+1)+ap(x~1))=2(1 - a)d(x)
for any value of «

The influence of these artefacts can be reduced by improvement.
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Improvement

@ The freedom to employ different representations of the lattice action
with a common continuum limit is exploited to reduce discretisation
artefacts.

o Classically, an improved version of the second-order derivative is

A b1+ b1 20) - (¢2 + -2 — 2¢0) + O(a*)

1
1222

@ The more complete procedure in a quantum field theory is the
Symanzik improvement programme

@ Symanzik improvement accounts for relative renormalisation of
coefficients relating terms in the lattice action to their continuum
counterparts.
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Basic properties of QCD

@ To discretise a theory and write a useful lattice representation, it is
important to do the best possible job of respecting the symmetries of
the theory.

@ Symmetries define universality classes and ensure the correct
approach to the continuum as we (try to) take a — 0

Symmetries of QCD

o Poincaré invariance (Lorentz and translation invariance)

e Gauge invariance

o Discrete symmetries: parity, time-reversal, charge conjugation

(Near) chiral symmetry (for massless quarks).

(Near) flavour symmetry (for mass-degenerate quarks).

The QCD path integral is written in terms of the two fundamental
fields, the quarks and the gluons.
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Wilson's big idea...

@ Wilson realised that ensuring gauge invariance means the gluon fields
have to be given special treatment:

4

.

.

B S -
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QCD on the lattice

Quark fields
on sites

Gauge fields
on links
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Summary

(]

Starting from a path integral representation, we can formulate
quantum field theory on a discretised version of space-time.

If we are interested in spectroscopy, the Euclidean metric is very
useful. Correlation functions fall exponentially, with rate related to
the energies of eigenstates.

The Euclidean metric also translates QFT into a statistical mechanics
problem. There are then effective numerical techniques to attack
these problems.

Symmetries define field theories - we will need to be careful what
symmetries we keep or break when the field theory is put on a lattice.

An exact gauge symmetry on the lattice will be constructed by
putting quarks on sites, gluons on links.
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Problems

@ Show
82

1
8x2¢ = (¢1 +¢_1—2¢g) — 12a2(

@ Compute an expression for the free scalar boson propagator:

(d(p")d(p Do d(p

= Y ot

where

and

4 4
JUEESS {(m2 +8)¢(x)? = D d(x)e(x + m}

X pn=1
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