Topics on QCD and Spin Physics

(third lecture)

Rodolfo Sassot
Universidad de Buenos Aires

HUGS 2010, JLAB June 2010
Lecture 1: Introduction.
1.1 The origins of QCD: the quark model, Bjorken scaling and the parton model.
1.2 From QED to QCD: the QCD lagrangian and its Feynman diagrams.
1.3 The running coupling constant: renormalization and asymptotic freedom.

Lecture 2: DIS and PDFs.
2.1 DIS kinematics and cross sections.
2.2 Defining PDFs, evolution equations, LO, NLO and beyond.
2.3 PDFs extraction from data.

hadronization: a path to confinement
accessed by "jets"
fragmentation functions "FFs"

Lecture 3: Final states in QCD.
3.1 Factorization beyond DIS: fragmentation functions and jets.
3.2 SIDIS, e+e- -> hadrons, pp -> hadrons.
3.3 Combined global fits of fragmentation functions.
Looking for FFs:

\[z \equiv \frac{E_h}{E_q} = \frac{2E_h}{Q} \]

\[\frac{d\sigma}{dz}(e^+ e^- \rightarrow h X) = \sum_q \sigma(e^+ e^- \rightarrow q\bar{q}) \left[D^h_q(z) + D^h_q(z) \right] \]

\[\sum_h \int_0^1 z D^h_q(z) \, dz = 1 \quad \sum_q \int_0^1 \left[D^h_q(z) + D^h_q(z) \right] \, dz = n_h \]

\[D^h_q(z) \rightarrow D^h_q(z, Q^2) \]

\[\frac{dD^h_q(z, Q^2)}{d\ln Q^2} = \frac{\alpha_s}{2\pi} \int_z^1 \frac{dy}{y} \left[D^h_q(y, Q^2) P_{qq} \left(\frac{x}{y} \right) + D^h_q(y, Q^2) P_{gg} \left(\frac{x}{y} \right) \right] \]

\[\frac{dD^h_q(x, Q^2)}{d\ln Q^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dy}{y} \left[\sum_q D^h_q(y, Q^2) P_{qq} \left(\frac{x}{y} \right) + D^h_q(y, Q^2) P_{gg} \left(\frac{x}{y} \right) \right]. \]
why does it work?
collinear emission?
A good example: \(\hat{\sigma}(e^+e^- \rightarrow q\bar{q}g) \)

\[
\begin{align*}
 z_q &\equiv \frac{2E_q}{Q} \\
 z_{\bar{q}} &\equiv \frac{2E_{\bar{q}}}{Q} \\
 z_g &\equiv \frac{2E_g}{Q}
\end{align*}
\]

\[z_q + z_{\bar{q}} + z_g = 2\]

\[
\frac{d\hat{\sigma}}{dz_q dz_{\bar{q}}} = \sigma_0 \frac{2\alpha_s}{3\pi} \frac{z_q^2 + z_{\bar{q}}^2}{(1-z_q)(1-z_{\bar{q}})}
\]
SIDIS: semi-inclusive deep inelastic scattering

"one-particle-inclusive"

\[l + p \rightarrow l' + h + X \]

\[d\sigma = f_i \otimes \hat{\sigma}_{ij} \otimes D^h_j \]

- \(f_i \) parton density
- \(\hat{\sigma}_{ij} \) partonic cross section
- \(D^h_j \) fragmentation function

\[2F^h_1(x, z, Q^2) = \sum_{q, \bar{q}} e^2_q f_q(x, Q^2) D^h_q(z, Q^2) \]

LO
SIDIS: semi-inclusive deep inelastic scattering
“one-particle-inclusive”

\[l + p \rightarrow l' + h + X \]

\[d\sigma = f_i \otimes \hat{\sigma}_{ij} \otimes D_j^h \]

- \(f_i \) parton density
- \(\hat{\sigma}_{ij} \) partonic cross section
- \(D_j^h \) fragmentation function

\[2F_1^h(x, z, Q^2) = \sum_{q, \bar{q}} e_q^2 f_q(x, Q^2) D_q^h(z, Q^2) \]

\[+ \frac{\alpha_s}{2\pi} \sum_{q, \bar{q}} e_q^2 \left[f_q \otimes C_{qq} \otimes D_q^h + f_q \otimes C_{gq} \otimes D_g^h + f_q \otimes C_{qg} \otimes D_q^h \right] \]

NLO
Single-inclusive h production in p-p (p-pbar) collisions

\[p + p \rightarrow h + X \]

\[d\sigma = f_i \otimes f_j \otimes \hat{\sigma}_{ijk} \otimes D_{hk}^h \]

\[\sim f_q \otimes f_\bar{q} \otimes \hat{\sigma}_{q\bar{q}g} \otimes D_{g}^h \]

Gluon fragmentation at lowest order

\[\sim f_g \otimes f_g \otimes \hat{\sigma}_{ggg} \otimes D_{g}^h \]
Target fragmentation: fracture functions

initial state partons carry no p_T

final state hadrons produced collinearly

in $\gamma - p$ c.m. frame (lowest order)

(only “backward” hadrons in a collider)

(order α_s)

(“forward” hadrons suppressed)
no $\mathcal{O}(\alpha_s^0)$ contribution for "forward" processes
no consistent factorization of (forward) divergencies

current fragmentation

target fragmentation
\[M^h_i(x, z, Q^2) \text{ fracture functions} \]

\[D^h_i(z, Q^2) f_i(x, Q^2) \]

\[
\frac{\partial M^h_i(x, z, Q^2)}{\partial \log Q^2} = \frac{\alpha_s(Q^2)}{2\pi} \int \frac{du}{u} P_{i \leftarrow j}(u) M^h_j \left(\frac{x}{u}, z, Q^2 \right)
\]

\[
+ \frac{\alpha_s(Q^2)}{2\pi} \frac{1}{x} \int \frac{du}{u} \int \frac{dv}{v} P_{ki \leftarrow j}(u, v) f_j \left(\frac{x}{u}, Q^2 \right) D^h_k \left(\frac{z}{x v}, Q^2 \right)
\]

"non-homogeneous evolution"
Global fits FFs:

increasing interest in accurate FFs:
precise one particle inclusive measurements
full NLO framework available

recent NLO analyses:

KRE(2000)
HKNS(2007)

\[
D_h^{\pm} \quad D_{\pi q}^{\pm} \quad D_{K q}^{\pm} \quad D_{p q}^{\pm} \\
D_{\pi q}^{+} \quad D_{\pi q}^{-} \quad D_{K q}^{+} \quad D_{K q}^{-} \quad \ldots
\]

uncertainties

L. Bourhis et al.,
S. Albino et al.,
S. Kretzer et al.,
M. Hirai et al.,
Standard FFs analyses:

\[e^+e^- \rightarrow (\gamma, Z) \rightarrow H \]

\[
\frac{1}{\sigma_{\text{tot}}} \frac{d\sigma^H}{dz} = \frac{\sigma_0}{\sum_q \hat{e}_q^2} \left[2 F_1^H(z, Q^2) + F_L^H(z, Q^2) \right]
\]

\[
2F_1^H(z, Q^2) = \sum_q \hat{e}_q^2 \left\{ \left[D_q^H(z, Q^2) + D_{\bar{q}}^H(z, Q^2) \right] + \frac{\alpha_s(Q^2)}{2\pi} \left[C_{q}^{1} \otimes (D_{q}^{H} + D_{\bar{q}}^{H}) + C_{g}^{1} \otimes D_{g}^{H} \right] (z, Q^2) \right\}
\]

SIA can only give information on the sum \(D_q^H(z, Q^2) + D_{\bar{q}}^H(z, Q^2) \)!

gluon fragmentation strongly suppressed \(\sim \frac{\alpha_s(M_Z^2)}{2\pi} \)
ansatz needed if only SIA or charge averaged data used,

“linear suppression”

$$D_{q}^{h^+}(z, Q^2) = (1 - z) D_{q}^{h^+}(z, Q^2)$$

Further disadvantages:

SIA data dominated by precise LEP/SLD measurements at M_Z
mostly determine “singlet”
distribution:

$$\Sigma = D_u + D_{\bar{u}} + D_d + D_{\bar{d}} + D_s + D_{\bar{s}} + D_c + D_{\bar{c}} + D_b + D_{\bar{b}}$$

bad resolution for g fragmentation

not precise at large z (relevant for pp collisions)
DSS set of FFs:

\[D^H_{q+\bar{q}}(z, Q^2) \]

\[D^H_q(z, Q^2) \quad D^H_{\bar{q}}(z, Q^2) \]

\[D^H_g(z, Q^2) \]

charge & flavor separation

D.de Florian, R.S., M. Stratmann 2007

gluon fragmentation
DSS set of FFs:

Flexible parametrization:

\[D_i^H(z, Q_0^2) = N_i z^{\alpha_i} (1 - z)^{\beta_i} \left[1 + \gamma_i (1 - z)^{\delta_i} \right] \]

at initial scale

\[Q_0^2 = 1 \text{ GeV}^2 \quad u, d, s, g \]

\[Q_0^2 = m_Q^2 \quad c, b \]

with \(\alpha_s \) and \(\Lambda_{QCD} \) from MRST

Try to avoid Isospin symmetry assumptions:

breaking of SU(3) in the sea and SU(2) in “favored” FFs (unless data can not discriminate)

for “unfavored” fragmentations

\[D_{d+\bar{d}}^{\pi^+} = N D_{u+\bar{u}}^{\pi^+} \]

\[D_{s}^{\pi^+} = D_{\bar{s}}^{\pi^+} = N' D_{\bar{u}}^{\pi^+} \]

\[D_{\bar{u}}^{\pi^+} = D_{d}^{\pi^+} \]

\[D_{u}^{K^+} = D_{s}^{K^+} = D_{d}^{K^+} = D_{\bar{d}}^{K^+} \]
Is it possible to still have a good fit to SIA data?

KRE: S. Kretzer 2000
AKK: S. Albino 2005

large errors at $z > 0.5$
Real challenge: SIDIS “charge discriminated” data

ad-hoc charge separation from Kretzer fails

large z covered

HERMES preliminary, A. Hillenbrand PhD Thesis

crucial data!
Real challenge: RHIC “charge discriminated” data

\[\mu_F = \mu_R = p_T \]

\[E \frac{d^3 \sigma}{dp^3} \] [mb / GeV^2]

BRAHMS data
\[\eta = 2.95 \]

\[\frac{\text{(data - theory)}}{\text{theory}} \]

Charged pions (at large z)
\(D_{q+\bar{q}}^h(z, Q^2) \) should work for \(\pi^0 \) :

Neutral pions at PHENIX

Neutral pions at STAR
Cross checks:

charged pions at STAR

not included

STAR data

not included
FFs (pions)

\[zD_{1}^{\pi^{+}}(z) \]
\[Q^2 = 10 \text{ GeV}^2 \]

\[zD_{1}^{\pi^{+}}(z) \]
\[Q^2 = 10 \text{ GeV}^2 \]
FFs (Kaons)
Uncertainties in PDFs/FFs

How accurate are they?

black box: data → PDFs

data uncertainties → ??
th. uncertainties → ??

fit assumptions → ??
Uncertainties: lagrange multipliers

\[\Phi(\lambda, \{a_j\}) = \chi^2(\{a_j\}) + \sum_i \lambda_i O_i(\{a_j\}) \]

See how fit to data deteriorates when PDFs/FFs forced (artificially) to give different prediction for \(O(\{a\}) \)

We study truncated moments:

\[\int_{0.2}^{1} z \, D_i^H(z, Q = 5 \text{ GeV}) \, dz \]
Uncertainties: pions as an example

profiles for the different flavors

Individual profiles by experiment

\[\chi^2 \] profiles

Tension

Complementarity

Precision

\[\Delta \chi^2 = 15 (\simeq 2\%) \]

\(u \sim 2\% \)

\(s \sim 10\% \)

Uncertainties: pions as an example
Not so nice:

NLO

<table>
<thead>
<tr>
<th>experiment</th>
<th>data type</th>
<th>rel. norm.</th>
<th>data points</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC [15]</td>
<td>incl.</td>
<td>0.94</td>
<td>17</td>
<td>18.5</td>
</tr>
<tr>
<td></td>
<td>“uds tag”</td>
<td>0.94</td>
<td>9</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>“c tag”</td>
<td>0.94</td>
<td>9</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td>“b tag”</td>
<td>0.94</td>
<td>9</td>
<td>7.4</td>
</tr>
<tr>
<td>TASSO [17]</td>
<td>incl. (34 GeV)</td>
<td>0.94</td>
<td>11</td>
<td>30.1</td>
</tr>
<tr>
<td></td>
<td>incl. (44 GeV)</td>
<td>0.94</td>
<td>7</td>
<td>20.5</td>
</tr>
<tr>
<td>SLD [16]</td>
<td>incl.</td>
<td>1.008</td>
<td>28</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>“uds tag”</td>
<td>1.008</td>
<td>17</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>“c tag”</td>
<td>1.008</td>
<td>17</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>“b tag”</td>
<td>1.008</td>
<td>17</td>
<td>33.2</td>
</tr>
<tr>
<td>ALEPH [11]</td>
<td>incl.</td>
<td>0.97</td>
<td>22</td>
<td>38.3</td>
</tr>
<tr>
<td>DELPHI [12]</td>
<td>incl.</td>
<td>1.0</td>
<td>17</td>
<td>42.3</td>
</tr>
<tr>
<td></td>
<td>“uds tag”</td>
<td>1.0</td>
<td>17</td>
<td>26.4</td>
</tr>
<tr>
<td></td>
<td>“b tag”</td>
<td>1.0</td>
<td>17</td>
<td>42.8</td>
</tr>
<tr>
<td>OPAL [13, 14]</td>
<td>incl.</td>
<td>1.0</td>
<td>21</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>“u tag”</td>
<td>1.10</td>
<td>5</td>
<td>11.8</td>
</tr>
<tr>
<td></td>
<td>“d tag”</td>
<td>1.10</td>
<td>5</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>“s tag”</td>
<td>1.10</td>
<td>5</td>
<td>49.8</td>
</tr>
<tr>
<td></td>
<td>“c tag”</td>
<td>1.10</td>
<td>5</td>
<td>38.3</td>
</tr>
<tr>
<td></td>
<td>“b tag”</td>
<td>1.10</td>
<td>5</td>
<td>73.0</td>
</tr>
<tr>
<td>HERMES [18]</td>
<td>(\pi^+)</td>
<td>1.03</td>
<td>32</td>
<td>67.4</td>
</tr>
<tr>
<td></td>
<td>(\pi^-)</td>
<td>1.03</td>
<td>32</td>
<td>120.8</td>
</tr>
<tr>
<td>PHENIX [19]</td>
<td>(\pi^0)</td>
<td>1.09</td>
<td>23</td>
<td>76.4</td>
</tr>
<tr>
<td>STAR [23]</td>
<td>(\pi^0, \langle \eta \rangle = 3.3)</td>
<td>1.05</td>
<td>4</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>(\pi^0, \langle \eta \rangle = 3.7)</td>
<td>1.05</td>
<td>5</td>
<td>9.8</td>
</tr>
<tr>
<td>BRAHMS [22]</td>
<td>(\pi^+, \langle \eta \rangle = 2.95)</td>
<td>1.0</td>
<td>18</td>
<td>28.2</td>
</tr>
<tr>
<td></td>
<td>(\pi^-, \langle \eta \rangle = 2.95)</td>
<td>1.0</td>
<td>18</td>
<td>43.0</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td></td>
<td>392</td>
<td>843.7</td>
</tr>
</tbody>
</table>

LO

<table>
<thead>
<tr>
<th>experiment</th>
<th>data type</th>
<th>rel. norm.</th>
<th>data points</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC [15]</td>
<td>incl.</td>
<td>0.94</td>
<td>17</td>
<td>22.7</td>
</tr>
<tr>
<td></td>
<td>“uds tag”</td>
<td>0.94</td>
<td>9</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>“c tag”</td>
<td>0.94</td>
<td>9</td>
<td>5.6</td>
</tr>
<tr>
<td></td>
<td>“b tag”</td>
<td>0.94</td>
<td>9</td>
<td>7.3</td>
</tr>
<tr>
<td>TASSO [17]</td>
<td>incl. (34 GeV)</td>
<td>0.94</td>
<td>11</td>
<td>48.1</td>
</tr>
<tr>
<td></td>
<td>incl. (44 GeV)</td>
<td>0.94</td>
<td>7</td>
<td>21.5</td>
</tr>
<tr>
<td>SLD [16]</td>
<td>incl.</td>
<td>1.007</td>
<td>28</td>
<td>20.9</td>
</tr>
<tr>
<td></td>
<td>“uds tag”</td>
<td>1.007</td>
<td>17</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td>“c tag”</td>
<td>1.007</td>
<td>17</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>“b tag”</td>
<td>1.007</td>
<td>17</td>
<td>34.5</td>
</tr>
<tr>
<td>ALEPH [11]</td>
<td>incl.</td>
<td>0.97</td>
<td>22</td>
<td>64.4</td>
</tr>
<tr>
<td>DELPHI [12]</td>
<td>incl.</td>
<td>1.0</td>
<td>17</td>
<td>45.9</td>
</tr>
<tr>
<td></td>
<td>“uds tag”</td>
<td>1.0</td>
<td>17</td>
<td>30.6</td>
</tr>
<tr>
<td></td>
<td>“b tag”</td>
<td>1.0</td>
<td>17</td>
<td>51.9</td>
</tr>
<tr>
<td>OPAL [13, 14]</td>
<td>incl.</td>
<td>1.0</td>
<td>21</td>
<td>20.7</td>
</tr>
<tr>
<td></td>
<td>“u tag”</td>
<td>1.10</td>
<td>5</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>“d tag”</td>
<td>1.10</td>
<td>5</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>“s tag”</td>
<td>1.10</td>
<td>5</td>
<td>66.7</td>
</tr>
<tr>
<td></td>
<td>“c tag”</td>
<td>1.10</td>
<td>5</td>
<td>36.9</td>
</tr>
<tr>
<td></td>
<td>“b tag”</td>
<td>1.10</td>
<td>5</td>
<td>88.8</td>
</tr>
<tr>
<td>HERMES [18]</td>
<td>(\pi^+)</td>
<td>1.03</td>
<td>32</td>
<td>53.6</td>
</tr>
<tr>
<td></td>
<td>(\pi^-)</td>
<td>1.03</td>
<td>32</td>
<td>153.9</td>
</tr>
<tr>
<td>PHENIX [19]</td>
<td>(\pi^0)</td>
<td>1.09</td>
<td>23</td>
<td>82.2</td>
</tr>
<tr>
<td>STAR [23]</td>
<td>(\pi^0, \langle \eta \rangle = 3.3)</td>
<td>0.95</td>
<td>4</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td>(\pi^0, \langle \eta \rangle = 3.7)</td>
<td>0.95</td>
<td>5</td>
<td>11.7</td>
</tr>
<tr>
<td>BRAHMS [22]</td>
<td>(\pi^+, \langle \eta \rangle = 2.95)</td>
<td>1.0</td>
<td>18</td>
<td>46.3</td>
</tr>
<tr>
<td></td>
<td>(\pi^-, \langle \eta \rangle = 2.95)</td>
<td>1.0</td>
<td>18</td>
<td>77.7</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td></td>
<td>392</td>
<td>1056.8</td>
</tr>
</tbody>
</table>

Not so nice: 20%!
Protons, anti-protons, and charged hadrons

\[D_i^p \quad D_i^{\overline{p}} \]

Graph showing the ratio of STAR data to theory against \(p_T \) for different fits.
Protons, anti-protons, and charged hadrons

\[D_p^+, D_p^-, D_h^+, D_h^- \]

\[h^\pm \equiv \pi^\pm + K^\pm + p^\pm + \text{res} \]
Protons, anti-protons, and charged hadrons

\[D_i^p \quad D_i^{\bar{p}} \quad D_i^{h^+} \quad D_i^{h^-} \]

\[h^\pm \equiv \pi^\pm + K^\pm + p^\pm + res \]
Protons, anti-protons, and charged hadrons

\[D^p_i, D^{\bar{p}}_i, D^{h^+}_i, D^{h^-}_i \]

\[h^\pm \equiv \pi^\pm + K^\pm + p^\pm + res \]
Protons, anti-protons, and charged hadrons

\[D_i^p, \quad D_i^{\bar{p}}, \quad D_i^{h^+}, \quad D_i^{h^-} \]

\[h^\pm \equiv \pi^\pm + K^\pm + p^\pm + \text{res} \]
Protons, anti-protons, and charged hadrons

\[D_i^p, D_i^\bar{p}, D_i^{h^+}, D_i^{h^-} \]

\[h^\pm \equiv \pi^\pm + K^\pm + p^\pm + res \]