Topics on \textbf{QCD} and Spin Physics

(sixth lecture)

Rodolfo Sassot
Universidad de Buenos Aires

HUGS 2010, JLAB June 2010
Spin (revisited)

naive quark spin \(\approx \) parton spin \(\approx \) QCD parton spin

polarized DIS:

EMC experiment: not the naive picture

strange quarks polarization?
gluon polarization?

from moments to parton densities:

first moments \(\approx \) sum rules parton densities \(\approx \) more insight

flavor symmetry & models more observables!
More spin dependent observables:

inclusive DIS

\[
g_1^p(x, Q^2) \quad g_1^n(x, Q^2)
\]

\[
g_1^N(x, Q^2) = \left(\pm \frac{1}{12} \Delta q_3^{NS} + \frac{1}{36} \Delta q_8^{NS} + \frac{1}{9} \Delta \Sigma \right) \otimes \left(1 + \frac{\alpha_s}{2\pi} \Delta C_q \right) + \sum_q e_q^2 \frac{\alpha_s}{2\pi} \Delta g \otimes \Delta C_g.
\]

unknowns

\[
\Delta u, \Delta \bar{u}, \Delta d, \Delta \bar{d}, \Delta s, \Delta \bar{s}, \Delta g
\]

\[
\frac{d}{d \ln Q^2} \Delta q_3^{NS} = \frac{\alpha_s}{2\pi} \Delta P_{qq}^1 \otimes \Delta q_3^{NS}
\]

\[
\frac{d}{d \ln Q^2} \left(\frac{\Delta \Sigma}{\Delta g} \right) = \frac{\alpha_s}{2\pi} \left(\frac{\Delta P_{qq}^1}{\Delta P_{gg}^1} \right) \otimes \left(\frac{2f \Delta P_{qq}^1}{\Delta P_{gg}^1} \right) \otimes \left(\Delta \Sigma \Delta g \right)
\]
More spin dependent observables:

SIDIS asymmetries

\[A_1^N h(x, Q^2) \approx \frac{\int_Z dz g_1^N h(x, z, Q^2)}{\int_Z dz F_1^N h(x, z, Q^2)} \]

\(N = p, D, He \)

\(h = \pi^\pm, K^\pm, h^\pm \)

\[g_1^N h(x, z, Q^2) = \sum_{q, q'} e_i^2 \left\{ \Delta q_i(x, Q^2) D_{q_i}^h(z, Q^2) \right\} \]

\[+ \frac{\alpha_s(Q^2)}{2\pi} \left[\Delta q_i \otimes \Delta C_{ij} \otimes D_{q_j}^h + \Delta q_i \otimes \Delta C_{ig} \otimes D_g^h + \Delta g \otimes \Delta C_{gj} \otimes D_{q_j}^h \right] \]

\[D_1 = D_{\pi^+} = D_{\pi^-} \]

\[D_2 = D_{\pi^+} = D_{\pi^-} \]

\[D_3 = D_{\pi^+} = D_{\pi^-} \]

\[2g_{1p}^{\pi^+(-)} \approx \frac{4}{9} (\Delta u + \Delta \bar{u}) \otimes D_{1(2)}^\pi + \frac{1}{9} (\Delta d + \Delta \bar{d}) \otimes D_{2(1)}^\pi \]

\[+ \frac{1}{9} (\Delta \bar{d} - 4\Delta \bar{u}) \otimes (D_{1(2)}^\pi - D_{2(1)}^\pi) \]
More spin dependent observables:

polarized pp collisions

\[A_{LL} \equiv \frac{d\Delta \sigma}{d\sigma} = \frac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}} \]

\[
d\Delta \sigma = \sum_{ab} \int dx_a \int dx_b \Delta f_a(x_a, Q^2) \Delta f_b(x_b, Q^2) \times d\hat{\sigma}_{ab}(x_a, x_b, p_T).
\]

\[
d\Delta \sigma = \sum_{ab} \int dx_a \int dx_b \int dz \Delta f_a(x_a, Q^2) \Delta f_b(x_b, Q^2) D_c^h(z, Q^2) \times d\hat{\sigma}_{abc}(x_a, x_b, z, p_T).
\]

numerically involved: Mellin tricks
DSSV helicity distributions: D.de Florian, R.S., M. Stratmann, W. Vogelsang 2008

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Data Type</th>
<th>Data Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC, SMC, DIS</td>
<td>DIS</td>
<td>34</td>
</tr>
<tr>
<td>COMPASS DIS</td>
<td>DIS</td>
<td>15</td>
</tr>
<tr>
<td>E142, E143, E154, E155</td>
<td>DIS</td>
<td>123</td>
</tr>
<tr>
<td>HERMES DIS</td>
<td>DIS</td>
<td>39</td>
</tr>
<tr>
<td>HALL-A DIS</td>
<td>DIS</td>
<td>3</td>
</tr>
<tr>
<td>CLAS DIS</td>
<td>DIS</td>
<td>20</td>
</tr>
<tr>
<td>SMC SIDIS</td>
<td>SIDIS h^\pm</td>
<td>48</td>
</tr>
<tr>
<td>HERMES SIDIS</td>
<td>SIDIS h^\pm</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>SIDIS π^\pm</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>SIDIS K^\pm</td>
<td>27</td>
</tr>
<tr>
<td>COMPASS SIDIS</td>
<td>SIDIS h^\pm</td>
<td>24</td>
</tr>
<tr>
<td>PHENIX 200 GeV pp, π^0</td>
<td>DIS</td>
<td>20</td>
</tr>
<tr>
<td>PHENIX 62 GeV pp, π^0</td>
<td>DIS</td>
<td>5</td>
</tr>
<tr>
<td>STAR 200 GeV pp, jet</td>
<td>DIS</td>
<td>19</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>467</td>
</tr>
</tbody>
</table>

DIS \sim 50%
SIDIS \sim 40%
RHIC \sim 10%
DSSV helicity distributions: parameterization

\[
x(\Delta q + \Delta \bar{q})(x, Q_0^2) = N_q x^{\alpha_q} (1 - x)^{\beta_q} (1 + \gamma_q \sqrt{x} + \eta_q x)
\]

\[
x\Delta \bar{q}(x, Q_0^2) = N_{\bar{q}} x^{\alpha_{\bar{q}}} (1 - x)^{\beta_{\bar{q}}} (1 + \eta_{\bar{q}} x)
\]

\[
x\Delta g(x, Q_0^2) = N_g x^{\alpha_g} (1 - x)^{\beta_g} (1 + \eta_g x)
\]

\[
Q_0^2 = 1 \text{GeV}^2
\]

NLO evolution \(\alpha_s\) MRST

\[
\alpha_{u+\bar{u}} = \alpha_{u+\bar{u}} \quad \alpha_{d+\bar{d}} = \alpha_{d+\bar{d}} \quad \Delta s = \Delta \bar{s}
\]

\[
(\Delta u^1 + \Delta \bar{u}^1) - (\Delta d^1 + \Delta \bar{d}^1) = (F + D)[1 + \epsilon_{SU(2)}]
\]

\[
(\Delta u^1 + \Delta \bar{u}^1) + (\Delta d^1 + \Delta \bar{d}^1) - 2(\Delta s^1 + \Delta \bar{s}^1) = (3F - D)[1 + \epsilon_{SU(3)}]
\]
DSSV helicity distributions: scheme

\[A_{LL}^{NLO-\overline{MS}}(DSSV) \equiv A_{LL}^{EXP} \]

\[g_1^{NLO-\overline{MS}}(DSSV) \over F_1^{NLO-\overline{MS}}(MRST) \equiv A_1^{EXP} \]

not “unique”: \(F_1(x, Q^2) \) from data

from parameterization from \(F_2(x, Q^2) \) and \(R(x, Q^2) \)

fit just \(g_1(x, Q^2) \)

approximation:

\[\frac{g_1^{NLO-\overline{MS}}}{F_1^{NLO-\overline{MS}}} + O\left(\frac{1}{Q^2}, \alpha_s^2\right) = A_1 \]
DSSV helicity distributions:

very good!

no significant tension

\[\chi^2 / d.o.f. \approx 0.88 \]
DSSV helicity distributions: DIS data

new compass data also in good agreement
DSSV helicity distributions: SIDIS data

new compass data also in good agreement
DSSV helicity distributions: RHIC data

important constraint on gluons despite large uncertainties
Not included

no NLO yet...

\[\Delta g/g \]

- COMPASS 2-had, \(Q^2 < 1 \text{ GeV}^2 \)
- COMPASS charm
- HERMES (prel.)
- SMC

\(Q^2 = 1 \text{ GeV}^2 \)
\(Q^2 = 10 \text{ GeV}^2 \)
DSSV helicity distributions: $u_{tot} d_{tot}$

Very well constrained

Agrees with DIS-only fits

Valence-like behavior
DSSV helicity distributions: $u\bar{u}$

- Small and positive?
- Large uncertainties

sidis driven
DSSV helicity distributions: ubar

small and positive?

large uncertainties

sidis driven
DSSV helicity distributions: dbar

larger and negative?

larger uncertainties

h/π tension?
DSSV helicity distributions: SU(2) breaking

breakning similar to unpolarized case

similar patterns in many models
DSSV helicity distributions: strangeness

always though to be negative...
mainly determined by sidis (kaon)
becomes negative at small x?
DSSV helicity distributions: gluons

\[
\Delta g^{1, [0.05 \rightarrow 0.2]} \equiv \int_{0.05}^{0.2} \Delta g \, dx
\]

RHIC region

\[
\Delta \chi^2 = 1
\]

\[
\Delta \chi^2 / \chi^2 = 2\%
\]

<table>
<thead>
<tr>
<th></th>
<th>[0.0 \rightarrow 1.0]</th>
<th>[0.001 \rightarrow 1.0]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta u + \Delta u)</td>
<td>0.813 (+0.011 -0.012)</td>
<td>0.793 (+0.028 -0.034)</td>
</tr>
<tr>
<td>(\Delta d + \Delta \bar{d})</td>
<td>-0.458 (+0.011 -0.009)</td>
<td>-0.416 (+0.035 -0.025)</td>
</tr>
<tr>
<td>(\Delta \bar{u})</td>
<td>0.036 (+0.021 -0.020)</td>
<td>0.028 (+0.059 -0.059)</td>
</tr>
<tr>
<td>(\Delta \bar{d})</td>
<td>-0.115 (+0.029 -0.029)</td>
<td>-0.089 (+0.090 -0.080)</td>
</tr>
<tr>
<td>(\Delta \bar{s})</td>
<td>-0.057 (+0.010 -0.012)</td>
<td>-0.006 (+0.028 -0.031)</td>
</tr>
<tr>
<td>(\Delta g)</td>
<td>-0.084 (+0.106 -0.120)</td>
<td>0.013 (+0.702 -0.314)</td>
</tr>
<tr>
<td>(\Delta \Sigma)</td>
<td>0.242 (+0.015 -0.018)</td>
<td>0.366 (+0.042 -0.062)</td>
</tr>
</tbody>
</table>

measured region

low x extrapolation
QCD and Spin Physics

a collection of topics that highlight the link between theory and experiment

many “surprises”, lively discussions, still learning...

pQCD as a tool to connect phenomena relates experiment to the underlying protagonists

step by step approach: changing picture

just the first steps...