Nucleon Spin Decomposition

Lekha Adhikari
New Mexico State University (NMSU)
Las Cruces, NM
HUGS 2012, Jlab.
Outline

- Motivation
- Introduction
- Different results suggested / Latest Development
- Summary of results
Motivation

Spin of Nucleon (proton):

• Before 1980’s: quarks carry all of the nucleon spin
• Suggestion by European muon collaboration (EMC):
 – Spin carried by quarks insufficient to justify total spin of nucleon

- SMC at CERN, HERMES at DESY, COMPASS, Jlab etc. confirmed the original discovery of EMC
- only ~ 30% of nucleon spin is by quark spin.
- where remaining ~70% comes from?
- How is nucleon spin is carried by its constituents?

Spin crisis in nuclear physics !!!!
missing angular momentum !!!!
Introduction

Factors contributing for remaining 70% of nucleon spin:

- Quark Orbital Angular Momentum (OAM)
- from Quantum Chromodynamics (QCD): (exchange of gluon to bind quarks inside the nucleon)
 - Gluon spin
 - Gluon OAM

Spin sum rule

\[\frac{1}{2} = \frac{1}{2} \Sigma_q + \Sigma_g + L_q + L_g. \]

- Quark spin- from polarized Deep Inelastic Collision (DIS)
- Gluon spin –measured by many experiments
- Quark and gluon OAM- Generalized Parton Distribution (GPD) through Deeply Virtual Compton Scattering (DVCS) in Jlab
Introduction

Summary of current status of nucleon spin:

\[\frac{1}{2} = \frac{1}{2} \Delta \Sigma^Q + \Delta g + \text{Orbital Angular Momenta} ? \]

\[\Delta \Sigma^Q : \text{fairly precisely determined!} \quad (\sim 1/3) \]

\[\Delta g : \text{likely to be small, but large uncertainties} \]

↓

What carries the remaining 2/3 of nucleon spin?

quark OAM? gluon spin? gluon OAM?
To decompose \(J \) (total angular momentum) into contributions from different constituents:

- Changing gauge may also shift angular momentum between various degrees of freedom.
- Decomposition depends on gauge and quantization scheme.
- Not necessarily be unique—like culture.
- What is the precise (QCD) definition of each term of the decomposition?
- How we extract each term by means of direct measurement?

Some Decomposers of Nucleon Spin:

- Jaffe Manohar Decomposition
- Ji Decomposition
- Chen, Sun and Leader et al.
- Decomposition by Wakamatsu
- OAM in QED / QCD
- Chen, Sun et al. decomposition
- Some latest updates

Big problem: Orbital Angular Momenta !!!!
Results Suggested for Nucleon Spin

Basic Gauge Principle: Observables must be gauge invariant

JM Decomposition of Nucleon Spin:

\[\frac{1}{2} = \frac{1}{2} \sum_q \Delta q + \sum_q \mathcal{L}^q + \frac{1}{2} \Delta G + \mathcal{L}^g \]

\[M^{+xy} = \frac{1}{2} \sum_q \gamma_5 q_+ + \sum_q (\vec{r} \times \vec{\sigma})^2 q_+ + e^{-ij} TrF^i A^j + 2 TrF^j (\vec{r} \times \vec{\sigma})^2 A^j \]

where \(q_+ = \frac{1}{2} \gamma^- \gamma^+ q \) is the dynamical component of the quark field operators and \(A^+ \)

- not gauge invariant
- Quark spin -polarized DIS
- \(\Delta g \) from polarized DIS
- OAM on light-like hypersurface

Pizza quattro stagioni

R.L. Jaffe and A. Manohar, NPB 337, 1990 ~ 500 citations
Ji Decomposition of Nucleon Spin:

\[\frac{1}{2} = \frac{1}{2} \sum_q \Delta q + \sum_q L^z_q + J^z_g \]

\[M^{0xy} = \frac{1}{2} \sum_q q^\dagger \Sigma^z q + \sum_q q^\dagger (\vec{r} \times i\vec{D})^z q + [\vec{r} \times (\vec{E} \times \vec{B})]^z \]

where \(i\vec{D} = i\vec{\partial} - gA. \)

- Each term is separately gauge invariant
- OAM on space–like hypersurface
- \(J_\alpha \) accessible through GPDs (X. Ji 1997)

\[J^z_q = \frac{1}{2} \Delta q + L^z_q = \frac{1}{2} \int_0^1 dxx[H_q(x, 0, 0) + E_q(x, 0, 0)]. \]

- DVCS to probe \(J_q = S_q + L_q \)
- No further decomposition of \(J_g \)
- i.e. no identification of gluon spin/OAM

X. Ji PRL 78, 1997
Results Suggested for Nucleon Spin

Compare: Ji and JM Decomposition

\[L_Q(JM) \sim \psi^\dagger x \times p \psi \]

\[L_Q(Ji) \sim \psi^\dagger x \times (p - gA) \psi \]

canonical OAM

\((p: \text{canonical momentum}) \)

dynamical OAM

\((p - gA: \text{dynamical momentum}) \)

not gauge invariant!

\[\Delta g \quad + \quad \mathcal{L}^g \neq J^g \quad \text{gauge invariant!} \]

no sense to mix them

\(\Rightarrow J_q - \Delta g \) has no connection to OAM

Important question:

how significant is the difference between \(L_q \) and \(\mathcal{L}_q \), etc.?
Results Suggested for Nucleon Spin

OAM in Scalar Diquark Model by MB and BC:

- Toy model for nucleon-nucleon splits into quark and scalar ‘diquark’

\[J^z = \frac{1}{2} \Delta \Sigma + \sum_q L_q + J_g \]

Jaffe: \[J^z = \frac{1}{2} \Delta \Sigma + \sum_q \mathcal{L}_q + \Delta G + \mathcal{L}_g \]

\[L_q = \int_0^1 dx \int \frac{d^2 k}{16 \pi^3} (1 - x) \left| \psi_{-\frac{1}{2}} \right|^2 \]

\[J_q^z = \frac{1}{2} \Delta q + L_q^z = \frac{1}{2} \int_0^1 dx [H_q(x,0,0) + E_q(x,0,0)]. \]
Results Suggested for Nucleon Spin

Orbital Angular Momentum in Quantum electrodynamics (QED):
(Angular Momentum Decomposition in QED)

OAM of e^- according to Jaffe/Manohar

$$\mathcal{L}_e = \int_0^1 dx \int d^2k_\perp \left[(1 - x) \left| \Psi_{1/2}^{+1}(x, k_\perp) \right|^2 - \left| \Psi_{1/2+1}(x, k_\perp) \right|^2 \right]$$

e^- OAM according to Ji

$$L_e = \frac{1}{2} \int_0^1 dx \cdot x \left[q(x) + E(x, 0, 0) \right] - \frac{1}{2} \Delta q$$

$$\mathcal{L}_e = L_e + \frac{\alpha}{4\pi} \neq L_e$$

Likewise, computing J_γ from photon GPD, and $\Delta \gamma$ and \mathcal{L}_γ from light-cone wave functions and defining $\hat{L}_\gamma \equiv J_\gamma - \Delta \gamma$ yields

$$\hat{L}_\gamma = \mathcal{L}_\gamma + \frac{\alpha}{4\pi} \neq \mathcal{L}_\gamma; \ \alpha/4\pi \text{ is small.}$$

Similar calculation in QCD for quark and gluon:

Applying these results to a (massive) quark with $J^z = +\frac{1}{2}$ yields to $\mathcal{O}(\alpha_s)$

$$\mathcal{L}_q^z - L_q^z = \frac{\alpha_s}{3\pi},$$

i.e., for $\alpha_s \approx 0.5$ about 10% of the spin budget for this quark.

Coined new term “Vector potential “to contribute to nucleon spin
Results Suggested for Nucleon Spin

Important: so far, quest for gauge invariant decomposition of J_g

Gauge Invariant Decomposition by Chen, Sun et. all:

basic idea

$$A^\mu = A^\mu_{phys} + A^\mu_{pure}$$

which is a kind of generalization of the decomposition of photon field into the transverse and longitudinal components in QED:

$$A_{phys} \Leftrightarrow A_{\perp}, \quad A_{pure} \Leftrightarrow A_{\parallel}$$

$$A = A_{pure} + A_{phys} \quad \text{with} \quad \nabla \cdot A_{phys} = 0 \quad \nabla \times A_{pure} = 0$$

$$\frac{1}{2} = \sum_q J_q + J_g = \sum_q \left(\frac{1}{2} \Delta q + L'_q \right) + S'_g + L'_g$$ with Δq as in JM/Ji

$$L'_q = \int d^3x \langle P, S | q^\dagger(\vec{x}) \left(\vec{x} \times i \vec{D}_{pure} \right)^3 q(\vec{x}) | P, S \rangle$$

$$S'_g = \int d^3x \langle P, S | \left(\vec{E} \times \vec{A}_{phys} \right)^3 | P, S \rangle$$

$$L'_g = \int d^3x \langle P, S | E^i \left(\vec{x} \times \vec{\nabla} \right)^3 A^i_{phys} | P, S \rangle$$

Chen Sun Goldman PRL 103, 2009
Results Suggested for Nucleon Spin

\[\bar{J}_{\text{QCD}} = \int d^3x \bar{\psi} \gamma^1 \bar{\Sigma} \psi + \int d^3x \bar{\psi} \gamma^1 \bar{D} \psi + \int d^3x \bar{E} \times \bar{A} + \int d^3x \bar{E} \times E_i \bar{D} \bar{A}_i \]

\[\equiv \bar{S} + \bar{L}_q + \bar{S} + \bar{L}_q. \]

• \(S_g \) very small, but large uncertainties
• Reduces Jaffe-Manohar decomposition in a Gauge

\[A_{\text{pure}} = 0, \quad A = A_{\text{phys}} \]

• OAM is canonical OAM operator
• \(S \) (gluon spin in coulomb Gauge) = (5/9) \(\Delta g \) (light cone gauge).
• Suggests that under proper identification, gluon spin to nucleon spin may be drastically smaller than conventional wisdom.

Chen et al.’s papers arose quite a controversy on the feasibility of complete decomposition of nucleon spin.

• Y. Hatta, Phys. Rev. D84 (2011) 041701R.
Gauge Invariant Decomposition by Wakamatsu:

• Tried to give a clear picture of complete decomposition of nucleon spin:

\[
J_{QCD} = S^q + L^q + S^g + L^g
\]

\[
S^q = \int \psi \frac{1}{2} \sum \psi d^3x
\]

\[
L^q = \int \psi x \times (p - gA) \psi d^3x
\]

\[
S^g = \int E^a \times A_{phys}^a d^3x
\]

\[
L^g = \int E^{aj} (x \times \nabla) A_{phys}^{aj} d^3x + \int \rho^a (x \times A_{phys}^a) d^3x
\]

• Vector potential found in ‘MB and BC’

• Quark part is common to Ji decomposition

• Quark and gluon intrinsic spin part common to “Chen et. all” decomposition

quark OAM extracted from combined analysis of GPD
and polarized PDFs is \textbf{dynamical quark OAM}, not
the\textbf{ canonical OAM} as predicted by Chen et. all

A crucial difference with the Chen decomp. appears in the \textbf{orbital parts}

\[
L^q + L^g = L'^q + L'^g
\]

\[
L^g - L'^g = -(L^g - L'^q) = \int \rho^a (x \times A_{phys}^a) d^3x
\]
Results Suggested for Nucleon Spin

QED framework also supports his work: (Physical meaning of potential angular momentum)

It represents angular momentum associates with the longitudinal part of electric field generated by color-charged quarks!

Next:

Introduced the covariant generalization for all decomposition:

1. It is useful to find relations to high-energy DIS observables.
2. It is essential to prove Lorentz frame-independence of the decomposition.

\[
\Delta q = \int_{-1}^{1} \Delta q(x) \, dx, \quad \Delta g = \int_{-1}^{1} \Delta g(x) \, dx.
\]

\[
S_q = \frac{1}{2} \Delta q,
\]

\[
L_q = \frac{1}{2} \left[A_{20}^q(0) + B_{20}^q(0) \right] - \frac{1}{2} \Delta q,
\]

\[
S_g = \Delta g,
\]

\[
L_g = \frac{1}{2} \left[A_{20}^g(0) + B_{20}^g(0) \right] - \Delta g.
\]

\[
A_{20}^{q/g}(0) = \int_{-1}^{1} x \, H^{q/g}(x, 0, 0) \, dx,
\]

\[
B_{20}^{q/g}(0) = \int_{-1}^{1} x \, E^{q/g}(x, 0, 0) \, dx.
\]
Results Suggested for Nucleon Spin

we find two physically nonequivalent decompositions (I) and (II).

The great advantage of decomposition (I) over (II) is: Concrete connection between High Energy DIS (discussed by Wakamatsu)

Decomposition (II)

This decomposition reduces to any ones of Bashinsky-Jaffe, of Chen et al., and of Jaffe-Manohar, after an appropriate gauge-fixing in a suitable Lorentz frame, which reveals that these 3 decompositions are all gauge-equivalent!

These 3 are physically equivalent decompositions!
It was sometimes criticized that there are so many decompositions of nucleon spin.

\[
\frac{1}{2} = \frac{1}{2} \Sigma + L_Q + \Delta g + L_g \\
= \frac{1}{2} \Sigma' + L'_Q + \Delta g' + L'_g \\
= \frac{1}{2} \Sigma'' + L''_Q + \Delta g'' + L''_g \\
\vdots
\]

However, this is not true any more. One should recognize now that there are only two physically nonequivalent decompositions!

Decomposition (I)

extension of Ji's decomp.
including gluon part

Decomposition (II)

nontrivial gauge-invariant extension of Jaffe-Manohar's decomp.

dynamical OAMs

“canonical” OAMs

Since both decompositions are gauge-invariant, there is a possibility that they both correspond to observables!
Goldman argued that the nucleon spin decomposition is **frame-dependent**!

This is generally true, but our interest here is the longitudinal spin sum rule.

- The **longitudinal spin decomposition** is certainly **frame-independent**!

Leader recently proposed a sum rule for **transverse angular momentum**.

More you **read** more you get **confused** !!!!!!!

Thank you for your patience