Hadrons, QCD and Confinement

Adam Szczepaniak Indiana University Jefferson Lab

Hadrons as laboratory of strong QCD

Expectations and phenomenology

Challenges and opportunities

Why is QCD special ?

A single theory is responsible for phenomena at distance scales of the order of 10⁻¹⁵m as well as of the order 10⁴m.

- It builds from objects (quarks and gluons) that do not exist in a common sense. >90% mass comes from interactions!
 - Predicts existence of exotic matter, e.g. made from radiation (glueballs, hybrids) or novel plasmas.
 - A possible template for physics beyond the Standard Model
 - ✓ It is challenging !

This talk is about Hadrons: strongly interacting particles

1909/1911 Rutherford/Geiger/Marsden discover the nucleus

It is difficult to "picture" what's going on inside hadrons

we are lacking intuition about:

small world (10⁻¹⁵m)

of fast (v~c) particles

exerting ~1T forces !!!

How to think about the constituents of hadrons: quarks and gluons?

In relativistic quantum mechanics (QFT) particles are emergent phenomena

"excitation of the ether" → field

 $H = H_{c.h.o} = coupled harmonic oscillators$

"bare" particles : eigenstates of c.h.o.

"Bare (free)" particles of QCD: quarks and gluons

e.g. as seen in high energy collisions

analogous to 8 (color) x 6 (flavor) copies of QED quark → electron gluon → photon

x8 combinations

inverse distance between quarks

old (but still surprisingly adequate) description of quarks in hadrons : quark model

Plausible scenario: $H_{QCD} = H_{c.h.o.} + (non-linear)$

"physical quarks" → quasi particles in gluon mean filed

The QCD vacuum is not empty. Rather it contains quantum fluctuations in the gluon field at all scales. (Image: University of Adelaide)

finite energy, localized solutions:

solitons (monopoles, vortices, ...)

Monopoles have been long speculated to be candidate gluon filed configurations responsible for confinement

Dual role of gluons

(all gluons are equal but some are more equal than others)

provide confinement => monopole condensate

are confined => constituent gluons

"constituent gluon" of large effective mass

confined potential between external sources emerges through interactions with chromo-magnetic condensate

Confinement in QCD

e.g. absence of isolated quarks applies to both screening and confinement

absence of isolated quarks

In absence of an order parameter we have to content with properties of confinement:

- linearly rising potentialRegge trajectoriesCasimir and N-ality scaling
- string behavior

	Antion d R = 1.2	lensity 2 fm	
Grammer Holls. Klavni Velulling. Cheistauch Schlift Istar			
- ⁰⁰			
02			
0.4			
ae		14	
45			
nitive and			4

Early ideas about the origin of confinement

Spectroscopy of Hadrons can teach us about "workings" of QCD

1. Hadrons with gluon excitations (confinement)

2. Hadron molecules (residual forces)

the rest of this talk

Theoretical expectations and phenomenological interpretations

Experimental Challenges and opportunities

focus on gluon's role

Mesons with $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}$: Exotic Quantum Numbers

Expected to have very similar properties to ordinary $Q\overline{Q}$ mesons

hybrid interpretation of the Y(4260)

 $P_{q\bar{q}} = (-1)^{L+1}$ $C_{q\bar{q}} = (-1)^{L+S}$ $J_q^{PC} = 1^{+-}$

 $J^{PC} \text{ glue}$ $\int J^{PC} Q \overline{Q}$ \downarrow $1^{+-} \times 0^{-+}_{S_{Q\bar{Q}}} = \boxed{1^{--}}$ $1^{+-} \times 1^{--}_{S_{Q\bar{Q}}=1} = \boxed{0^{-+}, 1^{-+}, 2^{-+}}$

 $J^{PC} = 1^{-+}$ is not a $q\bar{q}$ state

exotic quantum numbers

Strong, theoretical evidence (lattice) for gluon filed excitations in hadron spectrum

Phenomenologically, gluons behave as axial vector, quasiparticles J^{PC}=1⁺⁻

Lowest multiplet of "hybrid mesons" has $J^{PC} = 0^{-+}, 1^{-+}, 2^{-+}, 1^{--}$ states

What about other non-quark model possibilities ? Can these be detected and distinguished ?

QCD: There are many other possible color singlets.

They survive even in presence of open decay channels

But there are known exceptions e.g. **σ** meson

σ meson "medium range NN attraction"

but σ meson is not "ordinary"

Μ 3P X(4260) $\psi(4415)$ 4.5 - 2D $\psi(4040)$ $\psi(4160)$ IF χ_{c2}' **3**S 2P 4.0 ID X(3872) $D^*\overline{D}$ $\dots \psi(3770)$ $\stackrel{h_c \chi_{c0}}{\bullet} \stackrel{\chi_{c2}}{\overset{\chi_{c1}}{\bullet}}$ 3.5 X,Y,Z states Ρ J/ψ $\prod_{q \in \mathcal{A}} \log O(\alpha^4 m_q)$ 3.0 IPC 0-+ I⁺⁻0⁺⁺I⁺⁺2⁺⁺ 3+- 2++ 3++ 4++ 2⁻⁺ I⁻⁻ 2⁻⁻ 3⁻⁻ 1--

- 2F

Hunting for Resonances in fixed target experiments

(ACCMOR, VES, E852, FOCUS, LASS, OMEGA, ... COMPASS, Jlab12)

diffractive-dissociation

New opportunities

High statistics new beam-target combinations polarization measurements

New opportunities

Amplitude analysis: and S-matrix game

"The bootstrap manifesto (1962)"

REVIEWS OF MODERN PHYSICS

VOLUME 34, NUMBER 3 JULY, 1962

S-Matrix Theory of Strong Interactions without Elementary Particles^{*†}

GEOFFREY F. CHEW Department of Physics and Lawrence Radiation Laboratory, University of California, Berkeley, California

all observed hadrons are made of each other

"In this paper I resent an indecently optimistic view of strong interactions theory. My belief is that a major breakthrough has occurred and that within a relatively short period we are going to achieve a depth of understanding of strong interactions that a few years ago I, at least, did not expect to see within my lifetime. I am bursting with excitement, as are a number of other theorists in this game."

Bootstrap failed to reproduce linear Regge trajectories because QCD does have elementary particles: quarks and gluons

π	p	\rightarrow	η	π	p
---	---	---------------	---	---	---

 $M = 1370 \pm 16^{+50}_{-30} MeV / c^2$

 $\Gamma = 385 \pm 40^{+65}_{-105}$ MeV / c²

search for $n\overline{n}$ hybrid $\pi_1(1600)$

No consistent B-W interpretation possible but a weak $\eta\pi$ interaction exists and can reproduce the exotic wave

