

Spin Sum Rules and 3D Nucleon Structure (4/6)

Cédric Lorcé

IPN Orsay - IFPA Liège

June 2-20, 2014, JLab, Newport News, Virginia, USA

Outline

Lecture 1

- Introduction
- Tour in phase space
- Galileo vs Lorentz

Lecture 2

- Photon point of view
- Galileo vs Lorentz : round 2
- Nucleon 1D picture

Lecture 3

- Nucleon 2D picture
- •1D+2D=3D
- Galileo vs Lorentz : round 3

Lecture 4

- Another nucleon 3D picture
- Tour in Fock space
- 3D+3D=... 5D !

What about k_T ?

Large single-spin asymmetries have been observed at high energy !

Semi-inclusive DIS

Inclusive DIS Semi-inclusive DIS (SIDIS) $(E', \vec{k'})$ $(E', \vec{k'})$ $\mathbf{e}_{\mu} \stackrel{(E, \vec{k})}{\longrightarrow}$ (E, \vec{k}) θ θ (v, \vec{q}) (v, \vec{q}) Tu p<u>u</u> Xπ π (ˈːu) Ľu) X π π Ν Ν π^+ π^+

Identified particles in final state

Transverse-momentum distributions (TMDs) 3/32

TMD correlator

$$\begin{split} \Phi_{\Lambda'\Lambda}^{[\Gamma]}(x,\vec{k}_{\perp}) &= \frac{1}{2} \int \frac{\mathrm{d}z^{-} \,\mathrm{d}^{2} z_{\perp}}{(2\pi)^{3}} \,e^{ik\cdot z} \langle P,\Lambda' | \overline{\psi}(-\frac{z}{2}) \,\Gamma \,\mathcal{W} \,\psi(\frac{z}{2}) | P,\Lambda \rangle \big|_{z^{+}=0} \\ &= W_{\Lambda'\Lambda}^{[\Gamma]}(x,0,\vec{k}_{\perp},\vec{0}_{\perp}) \end{split}$$

SIDIS modulations

[Mulders, Tangermann (1996)] [Boer, Mulders (1998)] [Bacchetta *et al.* (2004)] [Bacchetta *et al.* (2007)] [Anselmino *et al.* (2011)]

Transverse-momentum distributions (TMDs) 5/32

U T_x T_y L**Nucleon polarization** $\frac{k_y}{M} h_1^{\perp}$ $-\frac{k_x}{M} h_1^\perp$ U f_1 $h_1 + \frac{k_x^2 - k_y^2}{2M^2} h_{1T}^{\perp}$ $\frac{k_x k_y}{M^2} h_{1T}^{\perp}$ $\frac{k_y}{M} f_{1T}^{\perp}$ $\frac{k_x}{M} g_{1T}$ T_x $h_1 - \frac{k_x^2 - k_y^2}{2M^2} h_{1T}^{\perp}$ $\frac{k_y}{M} g_{1T}$ $-\frac{k_x}{M}f_{1T}^{\perp}$ $\frac{k_x k_y}{M^2} h_{1T}^{\perp}$ T_y $\frac{k_y}{M} h_{1L}^{\perp}$ $\frac{k_x}{M} h_{1L}^{\perp}$ L g_{1L}

Quark polarization

Dipole

Monopole

Quadrupole

 T_x U T_y L**Nucleon polarization** $\frac{k_y}{M} h_1^{\perp}$ $-\frac{k_x}{M} h_1^\perp$ U $h_1 + rac{k_x^2 - k_y^2}{2M^2} h_{1T}^{\perp}$ $\frac{k_x k_y}{M^2} h_{1T}^{\perp}$ $\frac{k_y}{M} f_{1T}^{\perp}$ $\frac{k_x}{M} g_{1T}$ T_x $-rac{k_x^2-k_y^2}{2M^2} h_{1T}^{\perp}$ $\frac{k_y}{M} g_{1T}$ $-\frac{k_x}{M}f_{1T}^{\perp}$ $\frac{k_x k_y}{M^2} h_{1T}^{\perp}$ h_1 T_y $\frac{k_y}{M} h_{1L}^{\perp}$ $\frac{k_x}{M} h_{1L}^{\perp}$ L g_{1L} Monopole Dipole Quadrupole

Quark polarization

 T_x T_y UL**Nucleon polarization** $\frac{k_y}{M} h_1^{\perp}$ $\frac{k_x}{M} h_1^{\perp}$ U f_1 $h_1 + \frac{k_x^2 - k_y^2}{2M^2} h_{1T}^{\perp}$ $\frac{k_x k_y}{M^2} h_{1T}^{\perp}$ $\frac{k_y}{M} f_{1T}^{\perp}$ $\frac{k_x}{M}g_{1T}$ T_x $h_1 - \frac{k_x^2 - k_y^2}{2M^2} h_{1T}^{\perp}$ $\frac{k_x k_y}{M^2} h_{1T}^{\perp}$ $\frac{k_y}{M}g_{1T}$ $\frac{k_x}{M} f_{1T}^{\perp}$ T_y $\frac{k_x}{M} h_{1L}^{\perp}$ $\frac{k_y}{M} h_{1L}^{\perp}$ L g_{1L} Quadrupole Monopole Dipole

Quark polarization

U T_x T_y L**Nucleon polarization** $\frac{k_y}{M} h_1^{\perp}$ $-\frac{k_x}{M}h_1^{\perp}$ U f_1 $rac{k_x^2 - k_y^2}{2M^2} h_{1T}^{\perp}$ $\frac{k_y}{M} f_{1T}^{\perp}$ $\frac{k_x k_y}{M^2} h_{1T}^{\perp}$ $\frac{k_x}{M} g_{1T}$ $h_1 +$ T_x $\frac{-k_y^2}{4^2} h_{1T}^{\perp}$ $\frac{k_y}{M} g_{1T}$ $-\frac{k_x}{M}f_{1T}^{\perp}$ $\frac{k_x k_y}{M^2} h_{1T}^{\perp}$ T_y h_1 $\frac{k_y}{M} h_{1L}^{\perp}$ $\frac{k_x}{M} h_{1L}^{\perp}$ L g_{1L} Dipole Monopole Quadrupole

Quark polarization

 T_y U T_x L**Nucleon polarization** $\frac{k_y}{M} h_1^{\perp}$ $\frac{k_x}{M} h_1^{\perp}$ U f_1 $h_1 + \frac{k_x^2 - k_y^2}{2M^2} h_{1T}^{\perp}$ $\frac{k_x k_y}{M^2} h_{1T}^{\perp}$ $\frac{k_y}{M} f_{1T}^{\perp}$ $\frac{k_x}{M} g_{1T}$ T_x $h_1 - \frac{k_x^2 - k_y^2}{2M^2} h_{1T}^{\perp}$ $\frac{k_y}{M} g_{1T}$ $\frac{k_x k_y}{M^2} h_{1T}^{\perp}$ $\frac{k_x}{M} f_{1T}^{\perp}$ T_y $\frac{k_y}{M} h_{1L}^{\perp}$ $\frac{k_x}{M} h_{1L}^{\perp}$ L g_{1L}

Dipole

Quadrupole

Monopole

Naive T-odd !

Transverse-momentum distributions (TMDs) 11/32

Generalized universality

[Buffing *et al.* (2012)] [Buffing *et al.* (2013)]

Quasi-classical interpretation

[Sivers (2006)] [Sievert, Kovchegov (2014)]

Transverse-momentum distributions (TMDs) 13/32

Courtesy of Alexei Prokudin

Transverse-momentum distributions (TMDs) 14/32

Open questions and problems

- Tests of universality (*e.g.* with DY) and evolution
- Model dependence and extrapolations
- Precise determination of polarized TMDs
- Extraction of gluon TMDs

 p_2

- Accessing higher-twist distributions
- Link with low $x_r k_{\tau}$ factorization
- Sign mismatch with collinear twist-3 approach

b

Factorization breaks down in some pp scattering

Entangled color flow

000

• ...

[Rogers, Mulders (2011)]

« Physical » objects

[C.L., Pasquini, Vanderhaeghen (2011)]

[C.L., Pasquini, Vanderhaeghen (2011)]

[C.L., Pasquini, Vanderhaeghen (2011)]

17/32

« Physical » objects

[C.L., Pasquini, Vanderhaeghen (2011)]

Light-front wave functions (LFWFs)

Fock expansion of the nucleon state

Probability associated with the Fock states

$$\begin{split} \rho_{N,\beta}^{\Lambda} &= \int \left[\mathrm{d}x \right]_{N} \left[\mathrm{d}^{2}k_{\perp} \right]_{N} \left| \Psi_{\lambda_{1}\cdots\lambda_{N}}^{\Lambda} \right|^{2} \\ &\sum_{N,\beta} \rho_{N,\beta}^{\Lambda} = 1 \end{split}$$

Momentum and angular momentum conservation

 $P^+ = \sum_{i=1}^N k_i^+$ $\vec{0}_\perp = \vec{P}_\perp = \sum_{i=1}^N \vec{k}_{i\perp}$

$$\Lambda = \sum_{i=1}^{N} \lambda_i + l_z$$

Overlap representation

[C.L., Pasquini, Vanderhaeghen (2011)]

Light-front wave functions (LFWFs)

Light-front quark models

$$\psi_{\Lambda\beta}(r) = \mathcal{N}\Psi(r)\sum_{\sigma_i} \Phi_{\Lambda}^{\sigma_1\sigma_2\sigma_3} \prod_{i=1}^3 D_{\lambda_i\sigma_i}(\tilde{k}_i)$$

SU(6) spin-flavor wave function

$D(\tilde{k}) = \frac{1}{\vec{k}} \begin{pmatrix} K_z & K_L \\ K_L & K_L \end{pmatrix}$	Model	$\Psi(r)$	K_z	$ec{K}_{\perp}$	κ_z
$ K \left(-K_R K_z\right)$	LFCQM	$ ilde{\psi}(r)$	$m + y\mathcal{M}_0$	$\vec{\kappa}_{\perp}$	$y\mathcal{M}_0-\omega$
$K_{R,L} = K_x \pm iK_y$	$LF\chi QSM$	$\prod_{i=1}^3 \vec{K}_i $	$f_{/\!\!/}(y,\kappa_{\perp})$	$\vec{\kappa}_{\perp} f_{\perp}(y,\kappa_{\perp})$	$y\mathcal{M}_N - E_{\text{lev}}$

[C.L., Pasquini, Vanderhaeghen (2011)]

 $\int \mathrm{d}x \,\rho_W(x,\vec{k}_\perp,\vec{b}_\perp)$

 $ec{k}_{\perp}$, Wigner distribution of unpolarized quark in unpolarized nucleon \vec{b}_{\perp} $\rho_{UU} = \frac{1}{2} \left(\rho_{++}^{[\gamma^+]} + \rho_{--}^{[\gamma^+]} \right) \propto F_{11}$ 2+2D $\rho_{UU}^d \left[1/(GeV^2 \cdot fm^2) \right]$ $\rho_{UU}^u \left[1/(GeV^2 \cdot fm^2) \right]$ 1.0 1.0 1.3 4. $k_{\perp}=0.3 \; GeV$ $k_{\perp} = 0.3 \ GeV$ 3.6 1.17 0.5 0.5 3.2 1.04 2.8 0.91 b_{y} [fm] 2.4 $[m_{p}]$ 0.78 2. 0.65 0.0 favored 0.0 1.6 0.52 1.2 0.39 0.8 0.26 -0.5 disfavored -0.5 0.13 0.4 0. $\ell_z < 0$ $\ell_z < 0$ $\ell_z > 0$ $\ell_z > 0$ 0. -1.0 -1.0-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 $b_x [fm]$ b_x [fm] $\ell_z^{\rm tot} = 0$ Left-right symmetry X D Star.

[C.L., Pasquini (2011)]

favored

disfavored

Quark spin-nucleon spin correlation

$$\rho_{LL} = \frac{1}{2} \left(\rho_{++}^{[\gamma^+ \gamma_5]} - \rho_{--}^{[\gamma^+ \gamma_5]} \right) \propto G_{14}$$

Distortion correlated to nucleon spin

$$\rho_{LU} = \frac{1}{2} \left(\rho_{++}^{[\gamma^+]} - \rho_{--}^{[\gamma^+]} \right) \propto F_{14}$$

d-quark OAM

[C.L., Pasquini (2011)]

Average transverse quark momentum correlated to nucleon spin

$$\langle \vec{k}_{\perp} \rangle (\vec{b}_{\perp}) = \int \mathrm{d}x \, \mathrm{d}^2 k_{\perp} \, \vec{k}_{\perp} \, \rho_{LU}(x, \vec{k}_{\perp}, \vec{b}_{\perp})$$

[C.L., Pasquini, Xiong, Yuan (2012)]

Distortion correlated to quark spin

[C.L., Pasquini (2011)]

Lecture 4

- TMDs provide complementary 3D pictures of the nucleon
- All distributions can be seen as overlaps of light-front wave functions
- Models constrained by data give access to Wigner distributions

GPDs TMDs FFs PDFs