Flavor excitations of mesons and baryons, $\mathrm{SU}(3)$
We know today that there are four quarks that are more massive than u and d :
s (strange), $\sim 150 \mathrm{MeV}$ more massive, $\mathrm{q}_{\mathrm{s}}=-\mathrm{I} / 3$
c (charm), $\sim 1,300 \mathrm{MeV}$ more massive, $\mathrm{q}_{\mathrm{c}}=+2 / 3$
b (bottom), $\sim 4,200 \mathrm{MeV}$ more massive, $\mathrm{q}_{\mathrm{b}}=-\mathrm{I} / 3$
[t (top) is $\sim 172,000 \mathrm{MeV}$ more massive, but decays so quickly it can't form a bound state with other quarks, $q_{t}=+2 / 3$]

Most known mesons and baryons (hadrons) are made up of the three lightest quarks u, d, and s

Develop a classification scheme called $\mathrm{SU}(3)$ flavor or $\mathrm{SU}(3)_{\mathrm{f}}$ based on assumption of invariance of strong interactions under exchange of u, d, and s

SU(3)f classification scheme

$m_{s}-m_{u, d} \simeq 150 \mathrm{MeV}$ appreciable relative to Λ_{QCD} and m_{N} SU(3)f symmetry broken by this mass difference

Like with isospin, assume strong interactions independent of a unitary (probability preserving) transformation between u, d , and s

$$
\left(\begin{array}{l}
u^{\prime} \\
d^{\prime} \\
s^{\prime}
\end{array}\right)=U\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)
$$

Overall phase transformation $U=e^{i \alpha 1}$ physically irrelevant
Close to identity matrix $U=I+i \delta \alpha I$, $\operatorname{det} U=I+3 i \delta \alpha$
If restrict to det $U=I$, i.e., special unitary matrices $S U(3)$, this removes phase change

SU(3)

$\mathrm{SU}(3)$ is the group of
transformations that has the same multiplication table as the set of all unimodular, 3×3 unitary matrices T

$$
\left(\begin{array}{l}
u^{\prime} \\
d^{\prime} \\
s^{\prime}
\end{array}\right)=T\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)
$$

Any element T of $S U(3)$ can be written as $\mathrm{e}^{-\mathrm{i} \theta \cdot \lambda / 2}$ where $\boldsymbol{\theta}$ is a set of 8 real numbers, and the eight hermitean (T unitary), traceless (det $\mathrm{T}=\mathrm{I}$) Gell-Mann matrices $\boldsymbol{\lambda}$ are

$$
\begin{gathered}
\lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \lambda_{6}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
\lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{gathered}
$$

SU(3)

The generators $g_{i}=\lambda_{i} / 2$ satisfy the commutation relations

$$
\left[g_{i}, g_{j}\right]=i f^{i j k} g_{k}
$$

The $f^{i j k}$ are totally antisymmetric with

$$
f^{123}=1, \quad f^{147}=f^{165}=f^{246}=f^{257}=f^{345}=f^{376}=\frac{1}{2}, \quad f^{458}=f^{678}=\frac{\sqrt{3}}{2}
$$

More convenient to define a more symmetric set of operators than the 8 Gell-Mann matrices

$$
i_{1}=\lambda_{1} / 2, i_{2}=\lambda_{2} / 2, i_{3}=\lambda_{3} / 2
$$

Pauli spin matrices, generate the set of all unitary unimodular transformations between quarks I and 2, without changing quark 3 ; for $\mathrm{SU}(3) \mathrm{f}$, this is isospin

$$
\begin{gathered}
\text { I spin, U spin,V spin } \\
i_{1}=\lambda_{1} / 2, i_{2}=\lambda_{2} / 2, i_{3}=\lambda_{3} / 2 \\
u_{1}=\lambda_{6} / 2, u_{2}=\lambda_{7} / 2, u_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & -\frac{1}{2}
\end{array}\right)
\end{gathered}
$$

generate the set of all unitary unimodular transformations between quarks 2 and 3 , without changing quark I

$$
v_{1}=\lambda_{4} / 2, v_{2}=-\lambda_{5} / 2, v_{3}=\left(\begin{array}{ccc}
-\frac{1}{2} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right)
$$

generate the set of all unitary unimodular transformations between quarks I and 3, without changing quark 2

I spin, U spin, V spin

SU(3) has only 8 generators; these are not linearly independent because $i_{3}+u_{3}+v_{3}=0$

$$
i_{3}=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & -\frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right) \quad u_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & -\frac{1}{2}
\end{array}\right) \quad v_{3}=\left(\begin{array}{ccc}
-\frac{1}{2} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right)
$$

The abstract generators I_{i}, U_{i}, V_{i} associated with these 'toy' generators satisfies a set of commutation relations

$$
\left[I_{i}, I_{j}\right]=\epsilon_{i j k} I_{k} \quad\left[U_{i}, U_{j}\right]=\epsilon_{i j k} U_{k} \quad\left[V_{i}, V_{j}\right]=\epsilon_{i j k} V_{k}
$$

These are just the usual $\mathrm{SU}(2)$ commutation relations (realized by the Pauli spin matrices)

I spin, U spin, V spin

$$
\begin{array}{lll}
{\left[I_{1}, U_{1}\right]=-i / 2 V_{2}} & {\left[I_{2}, U_{1}\right]=-i / 2 V_{1}} & {\left[I_{3}, U_{1}\right]=-i / 2 U_{2}} \\
{\left[I_{1}, U_{2}\right]=-i / 2 V_{1}} & {\left[I_{2}, U_{2}\right]=i / 2 V_{2}} & {\left[I_{3}, U_{2}\right]=i / 2 U_{1}} \\
{\left[I_{1}, U_{3}\right]=i / 2 I_{2}} & {\left[I_{2}, U_{3}\right]=-i / 2 I_{1}} & {\left[I_{3}, U_{3}\right]=0} \\
{\left[I_{1}, V_{1}\right]=i / 2 U_{2}} & {\left[I_{2}, V_{1}\right]=i / 2 U_{1}} & {\left[I_{3}, V_{1}\right]=-i / 2 V_{2}} \\
{\left[I_{1}, V_{2}\right]=i / 2 U_{1}} & {\left[I_{2}, V_{2}\right]=-i / 2 U_{2}} & {\left[I_{3}, V_{2}\right]=i / 2 V_{1}} \\
{\left[I_{1}, V_{3}\right]=i / 2 I_{2}} & {\left[I_{2}, V_{3}\right]=-i / 2 I_{1}} & {\left[I_{3}, V_{3}\right]=0} \\
{\left[U_{1}, V_{1}\right]=-i / 2 I_{2}} & {\left[U_{2}, V_{1}\right]=-i / 2 I_{1}} & {\left[U_{3}, V_{1}\right]=-i / 2 V_{2}} \\
{\left[U_{1}, V_{2}\right]=-i / 2 I_{1}} & {\left[U_{2}, V_{2}\right]=i / 2 I_{2}} & {\left[U_{3}, V_{2}\right]=i / 2 V_{1}} \\
{\left[U_{1}, V_{3}\right]=i / 2 U_{2}} & {\left[U_{2}, V_{3}\right]=-i / 2 U_{1}} & {\left[U_{3}, V_{3}\right]=0}
\end{array}
$$

From these it can be shown that I_{3}, U_{3}, V_{3} and one of $\left\{I^{2}, U^{2}, V^{2}\right\}$ are a complete set of commuting observables

I spin, U spin, \bigvee spin

They are not independent since $I_{3}+U_{3}+V_{3}=0$
The symmetrical use of I_{3}, U_{3}, and V_{3} has its advantages, but in practice we use I_{3} and Y, which corresponds to the hypercharge y

$$
\begin{aligned}
& y=\frac{2}{3} u_{3}-v_{3}=\frac{1}{3}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) \\
& y=\frac{1}{3}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

The hypercharge is just the baryon number plus strangeness (defined to be -I for the strange quark)

Constructing irreducible representations of $\mathrm{SU}(3)$

 Just as with angular momentum $S U(2)$, it helps to define raising and lowering operators$$
I_{ \pm}, I_{3}, U_{ \pm}, U_{3}, V_{ \pm}, V_{3}, X_{ \pm}=X_{1} \pm i X_{2}
$$

The commutation relations look a little simpler written in terms of these operators, with the usual angular momentum rules (along the diagonal and below)

$$
\begin{aligned}
& {\left[I_{3}, I_{ \pm}\right]= \pm I_{ \pm} \quad\left[u_{3}, I_{ \pm}\right]=\mp 1 / 2 I_{ \pm} \quad\left[V_{3}, I_{ \pm}\right]=\mp 1 / 2 I_{ \pm}} \\
& {\left[I_{3}, u_{ \pm}\right]=\mp v_{2} u_{ \pm} \quad\left[u_{3}, u_{ \pm}\right]= \pm u_{ \pm} \quad\left[v_{3}, u_{ \pm}\right]=\mp r_{2} u_{ \pm}} \\
& {\left[I_{3}, V_{ \pm}\right]=\mp r_{2} V_{ \pm} \quad\left[u_{3}, V_{ \pm}\right]=\mp{ }_{2} V_{ \pm} \quad\left[V_{3}, V_{ \pm}\right]= \pm V_{ \pm}} \\
& {\left[x_{t}, x-\right]=2 x_{3} \quad \forall x} \\
& \begin{array}{llll}
{\left[I_{+}, V_{-}\right]=0} & {\left[I_{+}, U_{-}\right]=0} & {\left[U_{+}, V_{-}\right]=0} & \text { plus } \\
{\left[V_{+}, I_{+}\right]=U_{-}} & {\left[I_{+}, U_{+}\right]=V_{-}} & {\left[U_{+}, V_{+}\right]=I_{-}} & \text {h.c.'s }
\end{array}
\end{aligned}
$$

Constructing irreducible representations of $\mathrm{SU}(3)$

Consider an eigenstate $\left|i ; i_{3}, u_{3}, v_{3}\right\rangle$ of I^{2}, I_{3}, U_{3} and V_{3}

$$
\left.\begin{array}{r}
I^{2}\left|i ; i_{3}, u_{3}, v_{3}\right\rangle=i(i+1)\left|i ; i_{3}, u_{3}, v_{3}\right\rangle, \\
I_{3}\left|i ; i_{3}, u_{3}, v_{3}\right\rangle=i_{3}\left|i ; i_{3}, u_{3}, v_{3}\right\rangle, \\
U_{3}\left|i ; i_{3}, u_{3}, v_{3}\right\rangle
\end{array}=u_{3}\left|i ; i_{3}, u_{3}, v_{3}\right\rangle,\right\} \text {, } V_{3}\left|i ; i_{3}, u_{3}, v_{3}\right\rangle=v_{3}\left|i ; i_{3}, u_{3}, v_{3}\right\rangle,
$$

Can show (just as with angular momentum) that $\mathrm{i}=\mathrm{I} / 2,3 / 2,5 / 2, \ldots$ and that $-i \leq i_{3} \leq i$ (could have done the same with u and v if chose eigenstates of U^{2} or V^{2})

Can generate an irreducible representation of $\mathrm{SU}(3)$ from the state $|M\rangle$ which has $i_{3}=i_{3, \text { max }}$, by taking as its basis space all states generated from $|M\rangle$ by repeated application of $I_{ \pm}, I_{3}, U_{ \pm}, U_{3}, V_{ \pm}, V_{3}$

Constructing irreducible representations of $\mathrm{SU}(3)$

Consider eigenstate $\left|x ; i_{3}, u_{3}, V_{3}\right\rangle$ of $X=\left\{1^{2}, U^{2}, V^{2}\right\}$ and I_{3}, U_{3} and V_{3}

From commutators $\quad I_{ \pm}\left|x ; i_{3}, u_{3}, v_{3}\right\rangle$ has $i_{3} \pm 1, u_{3} \mp \frac{1}{2}, v_{3} \mp \frac{1}{2}$ it is clear that

$$
\begin{aligned}
& U_{ \pm}\left|x ; i_{3}, u_{3}, v_{3}\right\rangle \text { has } i_{3} \mp \frac{1}{2}, u_{3} \pm 1, v_{3} \mp \frac{1}{2} \\
& V_{ \pm}\left|x ; i_{3}, u_{3}, v_{3}\right\rangle \text { has } i_{3} \mp \frac{1}{2}, u_{3} \mp \frac{1}{2}, v_{3} \pm 1
\end{aligned}
$$

It is possible to plot i_{3}, u_{3}, v_{3} on a planar diagram (recall $i_{3}+u_{3}+v_{3}=0$, so there are only two degrees of freedom) so that these relations are automatic

Constructing irreducible representations of $\mathrm{SU}(3)$

$$
\begin{aligned}
& \text { For P: } \\
& i_{3}=R \cos (\theta), \\
& u_{3}=R \cos \left(120^{\circ}-\theta\right), \\
& v_{3}=R \cos \left(120^{\circ}+\theta\right), \\
& \text { so } i_{3}+u_{3}+v_{3}=0
\end{aligned}
$$

From geometry we have

$$
I_{+}\left|x ; i_{3}, u_{3}, v_{3}\right\rangle \text { has } i_{3}+1, u_{3}-\frac{1}{2}, v_{3}-\frac{1}{2}
$$

Constructing irreducible representations of $\mathrm{SU}(3)$

All possible points in the plane lie on interlocking hexagonal lattices

- quark triplet
o anti-quark triplet
Can generate irreducible representation using state $|M\rangle$, which has the maximum is

$$
I_{+}|M\rangle=U_{-}|M\rangle=V_{-}|M\rangle=0
$$

$I^{2}|M\rangle=\left(\frac{1}{2} I+I_{-}+\frac{1}{2} I-I_{+}+I_{3}^{2}\right)|M\rangle$
$=\left(\frac{1}{2} I+I_{-}-\frac{1}{2} I_{-} I_{+}+I_{3}^{2}\right)|M\rangle$
$=\left(I_{3}+I_{3}^{2}\right)|M\rangle=i_{3, \max }\left(i_{3, \max }+1\right) \quad$ so $i=i_{3, \max }$

Constructing irreducible representations of $\mathrm{SU}(3)$
Similarly, since U - raises i_{3}, and so $U-|M\rangle=0$

$$
\begin{aligned}
U^{2}|M\rangle & =\left(\frac{1}{2} U_{+} U_{-}+\frac{1}{2} U_{-} U_{+}+U_{3}^{2}\right)|M\rangle \\
& =\left(-\frac{1}{2} U_{+} U_{-}+\frac{1}{2} U_{-} U_{+}+U_{3}^{2}\right)|M\rangle \\
& =-U_{3}\left(-U_{3}+1\right)|M\rangle
\end{aligned}
$$

and so $|M\rangle$ is also a bottom state of a U-spin (and V-spin) multiplet $|M\rangle=|i i ; u-u ; v-v\rangle$ and since $i_{3}+u_{3}+v_{3}=0$, we must have $i=u+v$

o has $i_{3}=I, u_{3}=0, v_{3}=-I$, generates representation with $i=I, u=0, v=I$ (we will see belongs to 6)

Constructing irreducible representations of $\mathrm{SU}(3)$
Consider $|A\rangle=U_{+}|M\rangle$

$|A\rangle$ has $i_{3}=i-1 / 2$ and must have $i^{\prime}=i-1 / 2$; if it had any greater i^{\prime} we could step up using $l+$ from it to find point *

* would have $i_{3}>i_{3, \text { max }}$ and $|M\rangle$ would not be the state with maximum is

Avoid a contradiction if $|A\rangle$ is a top state and can't be stepped up

Constructing irreducible representations of $\mathrm{SU}(3)$

Simlarly, $|A\rangle$ has $v_{3}=-v-1 / 2$ and must have $v^{\prime}=v+1 / 2$; if it had any greater v^{\prime}, say $v^{\prime}=v+3 / 2$, we could step down using V - from it to find point **
** would have $i_{3}=i_{3, \text { max }}$ and be another candidate for the status of |M>
** has $v^{\prime}=v+3 / 2, i^{\prime}=i, u^{\prime}=u$
 (can't change u by stepping up from $u_{3}=-u$ to $-u+1$) so it can't have
$i=u+v$, which we showed is true of a point like $|M\rangle$

Constructing irreducible representations of $\mathrm{SU}(3)$

$|A\rangle \propto|i-1 / 2, i-1 / 2 ; u,-u+1 ; v+1 / 2,-v-1 / 2\rangle$
Note $V-|A\rangle=I_{+}|A\rangle=0$
Do the same for $|B\rangle=U_{+}|A\rangle=U_{+}{ }^{2}|M\rangle$
Our work with $|A\rangle$ relied on
$V-|M\rangle=I_{+}|M\rangle=0$, also true of $|A\rangle$, so
$|B\rangle \propto|i-1, i-1 ; u,-u+2 ; v+1,-v-1\rangle$
$U_{+}{ }^{n}|M\rangle$ generates a line of states parallel to the u_{3} axis,

$$
U_{+}^{n}|M\rangle \propto|i-n / 2, i-n / 2 ; u,-u+n ; v+n / 2,-v-n / 2\rangle
$$

Exercise

a. Prove using commutators that
$I^{2}|A\rangle=I^{2} U+|M\rangle=(i-1 / 2)(i-1 / 2+1)|A\rangle$, where $|M\rangle$

is a top state of an l-spin multiplet, with $i_{3}=i$
b. Prove using commutators that
$I^{2}|B\rangle=I^{2} U_{+}|A\rangle=(i-1) i|A\rangle$, so $|B\rangle$
has l-spin i-I

Constructing irreducible representations of $\mathrm{SU}(3)$

Terminates when $U_{+} U_{+}{ }^{n}|M\rangle=0$, i.e., when $n=2 u$ since started with the bottom state of a U multiplet

$$
\begin{aligned}
U_{+}^{2 u}|M\rangle \propto & |i-u, i-u ; u, u ; v+u,-v-u\rangle \\
& =|v, v ; u, u ; i,-i\rangle \\
& \equiv|N\rangle \\
\text { Note } I_{+}|\mathbf{N}\rangle & =U_{+}|\mathbf{N}\rangle=V_{-}|\mathbf{N}\rangle=0
\end{aligned}
$$

Constructing irreducible representations of $\mathrm{SU}(3)$

Consider $I_{-}^{n}|N\rangle \propto|v, v-n ; u+n / 2, u+n / 2 ; i-n / 2,-i+n / 2\rangle$
Generates a line of states parallel to the i_{3} axis until $n=2 v$

$$
\begin{aligned}
I_{-}^{2 v}|M\rangle \propto & |v,-v ; u+v, u+v ; i-v,-i+v\rangle \\
& =|v,-v ; i, i ; u,-u\rangle \\
\equiv &
\end{aligned}
$$

Constructing irreducible representations of $\mathrm{SU}(3)$

$$
V_{+}^{n}|P\rangle \propto|v-n / 2,-v+n / 2 ; i-n / 2, i-n / 2 ; u,-u+n\rangle
$$

Generates a line of states parallel to the v_{3} axis until $\mathrm{n}=2 u$

$$
\begin{aligned}
V_{+}^{2 u}|P\rangle \propto & |v-u,-v+u ; i-u, i-u ; u, u\rangle \\
& =|v,-v ; i, i ; u,-u\rangle \\
& \equiv|Q\rangle \\
U_{-}^{2 v}|Q\rangle \propto & |i-v,-i+v ; v,-v ; i, i\rangle \\
& =|u,-u ; v,-v ; i, i\rangle \\
& \equiv|R\rangle \\
I_{-}^{2 u}|R\rangle \propto & |u, u ; v+u,-v-u ; i-u, i-u\rangle \\
& =|u, u ; i,-i ; v, v\rangle \\
& \equiv|S\rangle \\
V_{-}^{2 v}|S\rangle \propto & |; i, i ; u,-u ; v,-v\rangle \\
& \propto|M\rangle
\end{aligned}
$$

Constructing irreducible representations of $\mathrm{SU}(3)$

All of the boundary is unique; if any state isn't, we could have started with it and gone two different ways around the boundary to get two different $\mid M$'s, but $|M\rangle$ is the only state with $i_{3}=i_{3, \text { max }}$

Can fill in the interior by applying l_{-}^{n} to states on the right border(s)

Or by applying $V_{-}{ }^{n}$ or $U^{-}{ }^{n}$ to states on other borders

Does this generate unique states?

Constructing irreducible representations of $\mathrm{SU}(3)$

Consider a state $|A\rangle$ on right boundary, i.e., with $i=i_{3}=i_{R}$
Then $I-|A\rangle$ has $i_{3}=i_{R}-I$, so it must have $i \geq i_{R}-I$
It must have $i=i_{R}-I$, because there is a state with this u_{3} and v_{3} and $i=i_{R}$ on the boundary, which is unique
This site is at most doubly occupied by $\left|i_{R}, i_{R}-I ; u_{3 A} ; v_{3 A}\right\rangle$ and $\left|i_{R}-I, i_{R}-I ; u_{3 A} ; v_{3 A}\right\rangle$ (note: can only specify i, u and v simultaneously on the boundary)
The n -th ring in from the boundary has a maximum possible multiplicity
 of n

Constructing irreducible representations of $\mathrm{SU}(3)$

$|\alpha\rangle$ can be reached by $I_{-} U_{-}|N\rangle, V_{+}|N\rangle, U_{-} I_{-}|N\rangle$, etc.
Since $\left[U_{-}, I-\right]=V_{+}$, these are not unique, focus on $I-U-|N\rangle$, and $V+|N\rangle$
$U-|N\rangle$ is the border state

$\left|i_{N}+1 / 2, i_{N}+1 / 2 ; u_{N}, u_{N}-1 ; v_{N}-1 / 2,-v_{N}+1 / 2\right\rangle$
So $I_{-} U_{-}|N\rangle=\left|i_{N}+1 / 2, i_{N}-1 / 2 ; u_{N}-1 / 2 ;-v_{N}+1\right\rangle$
is one of our two states on the first ring in
$V_{+}|N\rangle$ must be the mixture
$\lambda_{1}\left|i_{N}+1 / 2, i_{N}-1 / 2 ; u_{3 \alpha} ; v_{3 \alpha}\right\rangle+\lambda_{2}\left|i_{N}-1 / 2, i_{N}-1 / 2 ; u_{3 \alpha} ; v_{3 \alpha}\right\rangle$

Constructing irreducible representations of $\mathrm{SU}(3)$
$I_{-} U_{-}|N\rangle=\left|i_{N}+1 / 2, i_{N}-1 / 2 ; u_{N}-1 / 2 ;-v_{N}+1\right\rangle$ is one of our two states on the first ring in
Can show $V_{+}|N\rangle+\frac{1}{2 i_{N}+1} I_{-} U_{-}|N\rangle$ has $\mathrm{i}=\mathrm{i}_{\mathrm{N}}-1 / 2$, and so is our other state

This procedure can be repeated for every state along the right boundary to generate the right hand side of the second layer; repeatedly applying I- then generates the entire second layer

Eventually a triangular layer is reached (which may be a point)

Exercise

Show using commutators that

$$
V_{+}|N\rangle+\frac{1}{2 i_{N}+1} I_{-} U_{-}|N\rangle
$$

is an eigenvector of I^{2} with eigenvalue
$\left(i_{N}{ }^{-1 / 2}\right)\left[\left(i_{N}-1 / 2\right)+1\right]$

Constructing irreducible representations of $\mathrm{SU}(3)$

Pick a corner $|K\rangle$ on the triangle; since $I_{-} V_{+}=V_{+} I_{-}$ (commutator zero), beginning from $|K\rangle$ we generate a unique set of states,
 independent of path

This is true for all subsequent inner triangular layers, so the triangles are unique

We're done with the formalism, let's look at some examples!

Small representations of $\operatorname{SU}(3)$

label (dimension)	-u	-v	$\|M\rangle$	diagram	description
I	0	0	\|0,0; 0,0; 0,0>	1	singlet
3	0	1/2	\|1/2,1/2; 0,0; 1/2,-1/2>	$m>$	quark; fundamental representation
$\overline{3}$	1/2	0	$\|1 / 2,1 / 2 ; 1 / 2,-1 / 2 ; 0,0\rangle$		antiquark
8	1/2	1/2	$\|1,1 ; 1 / 2,-1 / 2 ; 1 / 2,-1 / 2\rangle$		mesons, baryons

Constructing irreducible representations of $\mathrm{SU}(3)$

Quark representation:

$$
\begin{aligned}
\text { (up) }|M\rangle & =|1 / 2,1 / 2 ; 0,0 ; 1 / 2,-1 / 2\rangle \\
\text { (strange) } V_{+}|M\rangle & =|0,0 ; 1 / 2,-1 / 2 ; 1 / 2,1 / 2\rangle \\
\text { (down) } U_{+} V_{+}|M\rangle & =|1 / 2,-1 / 2 ; 1 / 2,1 / 2 ; 0,0\rangle
\end{aligned}
$$

Antiquark representation:
(anti-up) $\quad|M\rangle=|1 / 2,1 / 2 ; 1 / 2,-1 / 2 ; 0,0\rangle$
(anti-strange) $U_{+}|M\rangle=|0,0 ; 1 / 2,1 / 2 ; 1 / 2,-1 / 2\rangle$

(anti-down) $V_{+} U_{+}|M\rangle=|1 / 2,-1 / 2 ; 0,0 ; 1 / 2,1 / 2\rangle$

Meson octet

Octet

representation:

$$
|M\rangle=|11 ; 1 / 2,-1 / 2 ; 1 / 2,-1 / 2\rangle
$$

Note this representation is symmetric between u and v, i.e., is a regular hexagon, and so is self-conjugate; there is no $\overline{8}$

Recall $y=B+S$ is the vertical axis, and for mesons $B=0$
K^{0} and K^{+}have $\mathrm{S}=+\mathrm{I}$ (anti-s),
K^{-}and $\overline{\mathrm{K}}^{0}$ have $\mathrm{S}=-\mathrm{I}$ (s)

Baryon octet

$J^{P}=1 / 2^{+}$ground state baryon octet Σ^{0}, \wedge $y=B+S$ is the vertical axis, and for baryons $B=I$, so Λ, Σ have $S=-1$, and \equiv has $S=-2$

Octet baryons

States with one strange quark are called Λ (uds), or Σ^{+}(uus), Σ^{0} (uds), Σ^{-}(dds)
with masses 1116 MeV and II 89 MeV
States with two strange quarks are called Ξ^{0} (ssu), Ξ^{-}(ssd) with octet mass 1318 MeV

Note the roughly equal spacing; 939 / II89 / I318 MeV; can trivially break $\mathrm{SU}(3)_{\mathrm{f}}$ symmetry by adding $\mathrm{m}_{\mathrm{s}}-\mathrm{m}_{u, d}$ to m_{N} to find the ground state masses

Expect second-order effects from changes in size of wave function with heavier quarks

Small representations of $\operatorname{SU}(3)$

label (dimension)		-v	$\|M\rangle$	diagram	description
6	0	I	$\|I, I ; 0,0 ; 1,-I\rangle$		Doesn't occur in nature, two quarks
$\overline{6}$	I	0	\|I,I; I,-I; 0,0>		Formed by two antiquarks
10	3/2	0	\|3/2, 3/2; 0,0; 3/2,-3/2>		J=3/2 ground-state baryons
$\overline{10}$	0	3/2	\|3/2, 3/2; 3/2,-3/2; 0,0		anti-baryons ($\mathrm{J}=3 / 2$) (and pentaquarks)

Baryon decuplet

$J=3 / 2$ ground states: Δ has $i=3 / 2, S=0 ; \Sigma^{*}$ has $i=1$ and $S=-I ; \equiv *$ has $i=1 / 2, S=-2$; and Ω (sss) has $i=0, S=-3$
Again roughly equal spacing: $m_{\Delta}=1232 \mathrm{MeV}, \mathrm{m}_{\Sigma^{*}}=1384 \mathrm{MeV}, \mathrm{m}_{\Xi^{*}=}=1530 \mathrm{MeV}$, $\mathrm{m}_{\Omega}=1672 \mathrm{MeV}$

Small representations of $\mathrm{SU}(3)$

Small representations of $\operatorname{SU}(3)$

Combining representations of $\mathrm{SU}(3)$

Could find $1 / 2 \otimes 1 / 2$ graphically by laying $|1 / 2,1 / 2\rangle$ and $|1 / 2,-1 / 2\rangle$ along a line, then lay a doublet on top of each point in the original doublet, then
 exclude the original doublet itself

$$
3 \otimes 3=6 \oplus \overline{3}
$$

Combining representations of $\mathrm{SU}(3)$

$$
3 \otimes \overline{3}=1 \oplus 8
$$

In mesons there is an additional flavor singlet state which is not part of the octet

$$
\begin{aligned}
& \eta_{0}=\frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s}) \\
& \eta_{8}=\frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-2 s \bar{s})
\end{aligned}
$$

isoscalar mesons like η_{0}, η_{8} mix via annihilation, with $\theta_{p}=-11.5^{\circ}$

$$
\binom{\eta}{\eta^{\prime}}=\left(\begin{array}{cc}
\cos \theta_{\mathrm{P}} & -\sin \theta_{\mathrm{P}} \\
\sin \theta_{\mathrm{P}} & \cos \theta_{\mathrm{P}}
\end{array}\right)\binom{\eta_{8}}{\eta_{0}}
$$

Combining representations of $\mathrm{SU}(3)$

$$
3 \otimes \overline{3}=1 \oplus 8
$$

Can also form a vector

 meson from quark and anti-quark$$
\begin{aligned}
& V_{0}=\frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s}) \\
& V_{8}=\frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-2 s \bar{s})
\end{aligned}
$$

$\begin{aligned} & \text { 'ideal' mixing } \\ & \text { gives } \omega=\frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}), \phi=s \bar{s}\end{aligned} \quad\binom{\omega}{\phi}=\left(\begin{array}{cc}\frac{1}{\sqrt{3}} & \sqrt{\frac{2}{3}} \\ -\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}}\end{array}\right)\binom{V_{8}}{V_{0}}$

Exercise: Direct products of representations of $\mathrm{SU}(3)$

a. Show $6 \otimes \overline{6}=27 \oplus 8 \oplus \mathrm{I}$ (note the direct product of any representation and its conjugate is self-conjugate)
b. What is $\overline{3} \otimes 6$?
c. Show that with the ideal mixing shown,

$$
\omega=\frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}), \phi=s \bar{s}
$$

Σ / \wedge mass difference

States with one strange quark are called Λ (uds),
or Σ^{+}(uus), Σ^{0} (uds), Σ^{-}(dds)
with masses 1116 MeV and II 89 MeV
These are both $S=-I$, octet ground state baryons with $J^{\mathrm{P}}=1_{2}{ }^{+}$; they differ only by their isospin (Λ is an isosinglet, Σ an iso-triplet)

We saw in the case of $n-p$ that isospin-symmetry violating mass differences are generally small, of the order of a few MeV ; is this an anomalously large isospin violation?

Like the p, n (and other baryon) magnetic moments, this is easily explained in the quark model

Σ / \wedge mass difference

Switch to 'uds' basis where don't symmetrize flavor wave function in heavier s quark (results independent of basis used)

$$
\begin{aligned}
& \phi_{\Lambda^{0}}=\frac{1}{\sqrt{2}}(u d-d u) s, \Psi_{\Lambda^{0}}=C_{A} \phi_{\Lambda^{0}} \chi_{\frac{1}{2}}^{\rho} \\
& \phi_{\Sigma^{0}}=\frac{1}{\sqrt{2}}(u d+d u) s, \Psi_{\Sigma^{0}}=C_{A} \phi_{\Sigma^{0}} \chi_{\frac{1}{2}}^{\lambda}
\end{aligned}
$$

Assume a short-distance potential between the quarks proportional to $\sum_{i<j} f\left(r_{i j}\right) \frac{\mathbf{S}_{i} \cdot \mathbf{S}_{j}}{m_{i} m_{j}}, r_{i j}:=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|$

Need to evaluate this potential in the Λ and Σ to see if there is a difference in its expectation value

Σ / \wedge mass difference

Examine the Λ spin expectation value

$$
\left.\left.\left.\chi_{\frac{1}{2}}^{\rho} \sum_{i<j} \frac{\mathbf{S}_{i} \cdot \mathbf{S}_{j}}{m_{i} m_{j}} \chi_{\frac{1}{2}}^{\rho}=\frac{1}{\sqrt{2}}\langle(\uparrow \downarrow-\downarrow \uparrow) \uparrow|\left(\frac{\mathbf{S}_{1} \cdot \mathbf{S}_{2}}{m_{u, d}^{2}}+2 \frac{\mathbf{S}_{1} \cdot \mathbf{S}_{3}}{m_{u, d} m_{s}}\right) \frac{1}{\sqrt{2}} \right\rvert\, \uparrow \downarrow-\downarrow \uparrow\right) \uparrow\right\rangle
$$

Evaluate the $\mathbf{S}_{1} \cdot \mathbf{S}_{2}$ term first

$$
\begin{aligned}
& \frac{1}{2 m_{u, d}^{2}}\langle(\uparrow \downarrow-\downarrow \uparrow) \uparrow|\left(\frac{S_{1+} S_{2-}+S_{1-} S_{2+}}{2}+S_{1 z} S_{2 z}\right)|(\uparrow \downarrow-\downarrow \uparrow) \uparrow\rangle \\
& =\frac{1}{2 m_{u, d}^{2}}\left(-\frac{1}{2}-\frac{1}{2}-\frac{1}{4}-\frac{1}{4}\right) \\
& =\frac{1}{2 m_{u, d}^{2}}\left(-\frac{3}{2}\right)=-\frac{3}{4 m_{u, d}^{2}}
\end{aligned}
$$

Σ / \wedge mass difference

$$
\frac{\chi_{\frac{1}{2}}^{\rho} \dagger}{i<j} \sum_{i<j}^{\mathbf{S}_{i} \cdot \mathbf{S}_{j}} \frac{\chi_{i}^{\rho}}{x_{1}^{\prime}}=\frac{1}{\sqrt{2}}\left\langle(\uparrow \downarrow-\downarrow \uparrow) \uparrow \left\lvert\,\left(\frac{\mathbf{S}_{1} \cdot \mathbf{S}_{2}}{m_{u, d}^{2}}+2 \frac{\mathbf{S}_{1} \cdot \mathbf{S}_{3}}{m_{u, d} m_{s}}\right) \frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow) \uparrow\right.\right\rangle
$$

Then the $\mathbf{2 S} \cdot \mathbf{S}_{\mathbf{3}}$ term

$$
\begin{aligned}
& \frac{2}{2 m_{u, d} m_{s}}\langle(\uparrow \downarrow-\downarrow \uparrow) \uparrow|\left(\frac{S_{1+} S_{3-}+S_{1-} S_{3+}}{2}+S_{1 z} S_{3 z}\right)|(\uparrow \downarrow-\downarrow \uparrow) \uparrow\rangle \\
& =\frac{1}{2 m_{u, d}^{2}}\left(0+0-\frac{1}{4}+\frac{1}{4}\right)=0
\end{aligned}
$$

Then for the Λ

$$
\chi_{\frac{1}{2}}^{\rho^{\dagger}} \sum_{i<j} \frac{\mathbf{S}_{i} \cdot \mathbf{S}_{j}}{m_{i} m_{j}} \chi_{\frac{1}{2}}=-\frac{3}{4 m_{u, d}^{2}}
$$

The strange quark in Λ does not have an attractive spin-spin interaction with the spin-zero light-quark pair

Σ / \wedge mass difference

Examine the Σ spin expectation value

$$
\chi_{\frac{1}{2}}^{\dagger} \sum_{i<j} \frac{\mathbf{S}_{i} \cdot \mathbf{S}_{j}}{m_{i} m_{j}} \chi_{\frac{1}{2}}^{\rho}=\frac{1}{\sqrt{6}}\langle(\uparrow \downarrow+\downarrow \uparrow) \uparrow-2 \uparrow \uparrow \downarrow|\left(\frac{\mathbf{S}_{1} \cdot \mathbf{S}_{2}}{m_{u, d}^{2}}+2 \frac{\mathbf{S}_{1} \cdot \mathbf{S}_{3}}{m_{u, d} m_{s}}\right) \frac{1}{\sqrt{6}}|(\uparrow \downarrow+\downarrow \uparrow) \uparrow-2 \uparrow \uparrow \downarrow\rangle
$$

The $\mathbf{S}_{1} \cdot \mathbf{S}_{2}$ term

$$
\begin{aligned}
& \frac{1}{6 m_{u, d}^{2}}\langle(\uparrow \downarrow+\downarrow \uparrow) \uparrow-2 \uparrow \uparrow \downarrow|\left(\frac{S_{1+} S_{2-}+S_{1-} S_{2+}}{2}+S_{1 z} S_{2 z}\right)|(\uparrow \downarrow+\downarrow \uparrow) \uparrow-2 \uparrow \uparrow \downarrow\rangle \\
& =\frac{1}{6 m_{u, d}^{2}}\left[\frac{1}{2}+\frac{1}{2}-\frac{1}{4}-\frac{1}{4}+4\left(\frac{1}{4}\right)\right]=\frac{1}{4 m_{u, d}^{2}}
\end{aligned}
$$

Then the $\mathbf{2 S} \cdot \mathbf{S}_{\mathbf{3}}$ term

$$
\begin{aligned}
& \frac{2}{6 m_{u, d} m_{s}}\langle(\uparrow \downarrow+\downarrow \uparrow) \uparrow-2 \uparrow \uparrow \downarrow|\left(\frac{S_{1+} S_{3-}+S_{1-} S_{3+}}{2}+S_{1 z} S_{3 z}\right)|(\uparrow \downarrow+\downarrow \uparrow) \uparrow-2 \uparrow \uparrow \downarrow\rangle \\
& =\frac{2}{6 m_{u, d} m_{s}}\left[-\frac{2}{2}-\frac{2}{2}+\frac{1}{4}-\frac{1}{4}+4\left(-\frac{1}{4}\right)\right]=-\frac{1}{m_{u, d} m_{s}}
\end{aligned}
$$

Σ / \wedge mass difference

Then if we assume that for the Λ and Σ the expectation value of $r_{i j}$ is the same, independent of $\{i, j\}$, i.e., $\mathrm{SU}(3) \mathrm{f}$ symmetry of the spatial wave function, then

$$
\begin{aligned}
\langle\Lambda| \sum_{i<j} f\left(r_{i j}\right) \frac{\mathbf{S}_{i} \cdot \mathbf{S}_{j}}{m_{i} m_{j}}|\Lambda\rangle & =\left\langle\psi_{\Lambda, \Sigma}\right| f\left(r_{i j}\right)\left|\psi_{\Lambda, \Sigma}\right\rangle\left(-\frac{3}{4 m_{u, d}^{2}}\right) \\
\langle\Sigma| \sum_{i<j} f\left(r_{i j}\right) \frac{\mathbf{S}_{i} \cdot \mathbf{S}_{j}}{m_{i} m_{j}}|\Sigma\rangle & =\left\langle\psi_{\Lambda, \Sigma}\right| f\left(r_{i j}\right)\left|\psi_{\Lambda, \Sigma}\right\rangle\left(\frac{1}{4 m_{u, d}^{2}}-\frac{1}{m_{u, d} m_{s}}\right)
\end{aligned}
$$

So we see that the Λ can be lighter than the Σ if m_{s} is heavier than $m_{u, d}$

$$
m_{\Sigma}-m_{\Lambda}=\langle\psi| f\left(r_{i j}\right)|\psi\rangle\left(\frac{1}{m_{u, d}^{2}}-\frac{1}{m_{u, d} m_{s}}\right)=\langle\psi| f\left(r_{i j}\right)|\psi\rangle \frac{1}{m_{u, d}^{2}}\left(1-\frac{m_{u, d}}{m_{s}}\right)
$$

We can estimate how much lighter by comparing with the $\Delta-N$ splitting

Σ / \wedge mass difference related to Δ / N

When all the masses are the same we can use

$$
\begin{aligned}
& \quad\langle | 2 \sum_{i<j} \mathbf{S}_{i} \cdot \mathbf{S}_{j}| \rangle=\langle | S^{2}-s_{1}^{2}-s_{2}^{2}-s_{3}^{2}| \rangle=S(S+1)-3 / 4-3 / 4-3 / 4 \\
& \langle\Delta| 2 \sum_{i<j} \mathbf{S}_{i} \cdot \mathbf{S}_{j}|\Delta\rangle=\left[\frac{3}{2}\left(\frac{5}{2}\right)-\frac{9}{4}\right]=\frac{3}{2} \\
& \langle N| 2 \sum_{i<j} \mathbf{S}_{i} \cdot \mathbf{S}_{j}|N\rangle=\left[\frac{1}{2}\left(\frac{3}{2}\right)-\frac{9}{4}\right]=-\frac{3}{2} \\
& \text { So }\langle\Delta| \sum_{i<j} f\left(r_{i j} \frac{\mathbf{S}_{i} \cdot \mathbf{S}_{j}}{m_{i} m_{j}}|\Delta\rangle=\left\langle\psi_{\Delta}\right| f\left(r_{i j}\right)\left|\psi_{\Delta}\right\rangle\left(+\frac{3}{4 m_{u, d}^{2}}\right)\right. \\
& \quad\langle N| \sum_{i<j} f\left(r_{i j}\right) \frac{\mathbf{S}_{i} \cdot \mathbf{S}_{j}}{m_{i} m_{j}}|N\rangle=\left\langle\psi_{N}\right| f\left(r_{i j}\right)\left|\psi_{N}\right\rangle\left(-\frac{3}{4 m_{u, d}^{2}}\right) \\
& \text { and } \quad m_{\Delta}-m_{N}=\langle\psi| f\left(r_{i j}\right)|\psi\rangle\left(\frac{3}{2 m_{u, d}^{2}}\right)
\end{aligned}
$$

Σ / \wedge mass difference related to $\Delta-N$

Putting this all together, and assuming $\mathrm{SU}(3)_{\mathrm{f}}$ symmetry in the spatial wave functions, we have

$$
\begin{aligned}
m_{\Sigma}-m_{\Lambda} & =\langle\psi| f\left(r_{i j}\right)|\psi\rangle \frac{1}{m_{u, d}^{2}}\left(1-\frac{m_{u, d}}{m_{s}}\right) \\
& =\frac{2}{3}\left(m_{\Delta}-m_{N}\right)\left[1-\frac{m_{u, d}}{m_{s}}\right] \\
& =\frac{2}{3}(293 \mathrm{MeV})\left[1-\frac{m_{u, d}}{m_{s}}\right]
\end{aligned}
$$

Get 73 MeV with $m_{u, d} / m_{s}=0.63$, reasonable!
Λ is lighter than Σ because the attractive spin-spin interaction involves the strange quark in Σ but not in Λ, and this attraction is weaker than that between two light quarks (inversely proportional to quark mass)

$\mathrm{SU}(3)$ and color

So far we have talked about $\operatorname{SU}(3)$ mainly for flavor, but it also is the symmetry group on which the strong interactions (QCD) are based

We can illustrate some interesting features of the QCD interaction between quarks by considering the possible representations of color for various combinations of quarks and antiquarks

We will see that for certain hadrons the color configuration is unique and one example where it is not

$\mathrm{SU}(3)$ and color

Quarks belong to the 3 (fundamental) representation of $\mathrm{SU}(3)_{c}$, and antiquarks to the 3 .

If we put a quark and an antiquark together, we have already seen the result

$$
3 \otimes \overline{3}=1 \oplus 8
$$

Only colorless (color-singlet) combinations appear in nature, so mesons belong to the singlet (I) representation, with symmetric color wave function

$$
\frac{1}{\sqrt{3}}(q \bar{q}+q \bar{q}+q \bar{q})
$$

$\mathrm{SU}(3)$ and color

To put three quarks together, do it in two stages (like we did with three spins $1 / 2$); first put together two quarks:

$$
3 \otimes 3=6 \oplus \overline{3}
$$

If we add a third quark, is the color configuration unique?

$$
\begin{aligned}
(3 \otimes 3) \otimes 3 & =(6 \oplus \overline{3}) \otimes 3 \\
& =6 \otimes 3 \oplus \overline{3} \otimes 3 \\
& =6 \otimes 3 \oplus(1 \oplus 8)
\end{aligned}
$$

We have a singlet (that looks like a meson!) but is there a singlet in $6 \otimes 3$?

$\mathrm{SU}(3)$ and color

$6 \otimes 3=10 \oplus 8$

So $\quad 3 \otimes 3 \otimes 3=10 \oplus 8^{\prime} \oplus 1 \oplus 8$ and there is only one way to make a color singlet, with totally antisymmetric color wave function
$C_{A}=(I / \sqrt{ } 6)(q q q+q q q+q q q-q q q-q q q-q q q)$
This result also shows that all baryons made of u, d, s lie in two flavor octets, a decuplet, and a singlet!

$\mathrm{SU}(3)$ and color

It is possible to make a colorless combination of two quarks and two anti-quarks; a trivial example is two mesons close to each other, which is two color singlets

Is there another way to combine the colors to get something colorless?

$$
3 \otimes 3=6 \oplus \overline{3}
$$

$$
\overline{3} \otimes \overline{3}=\overline{6} \oplus 3
$$

$\mathrm{SU}(3)$ and color

Lots of combinations:

$$
\begin{aligned}
& (6 \oplus \overline{3}) \otimes(\overline{6} \oplus 3) \\
& =(6 \otimes \overline{6}) \oplus(\overline{3} \otimes 3) \oplus(6 \otimes 3) \oplus(\overline{3} \otimes 6) \\
& =(27 \oplus 8 \oplus 1) \oplus(8 \oplus 1) \oplus(10 \oplus 8) \oplus(15 \oplus 3)
\end{aligned}
$$

What is important is that, in addition to the trivial configuration of two colorless mesons, there are also two colorless configurations from $6 \otimes \overline{6}$ and $\overline{3} \otimes 3$

States made of two quarks and two anti-quarks can fall apart into two colorless mesons, and do not have a unique color wave function even if they are true fourquark states; don't believe anything the bag model says!

Flavor excitations of mesons and baryons, $\mathrm{SU}(3)$

Questions?

