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Renormalization group and QCD coupling: Running αs(Q2)

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z
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The QCD coupling is scale
dependent (“running”):
αs(Q2) ≈ [β0 ln(Q2/Λ2

QCD)]−1

From µ2(dαs/dµ2) = β(αs) and
β(αs) = −α2

s(β0 + β1αs + · · · )
(this is the “beta function”)

Extractions from experiment can
be compared (here at MZ ):

0.11 0.12 0.13

α  (Μ  )s Z

Quarkonia (lattice)

DIS  F2 (N3LO) 

τ-decays (N3LO)

DIS  jets (NLO)

e+e– jets & shps (NNLO) 

electroweak fits (N3LO) 

e+e– jets & shapes (NNLO) 

Υ decays (NLO)

cf. QED, where αem(Q2) is
effectively constant for soft Q2:

αem(Q2 = 0) ≈ 1/137
∴ fixed H for quantum chemistry



Running QCD αs(Q2) vs. running nuclear Vλ(k , k ′)

QCD α  (Μ  ) = 0.1184 ± 0.0007s Z
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The QCD coupling is scale
dependent (cf. low-E QED):
αs(Q2) ≈ [β0 ln(Q2/Λ2

QCD)]−1

Different Hamiltonians? Do you
get different answers from the
same Feynman diagrams with
αs(µ2

1) and αs(µ2
2)?

Vary scale (“resolution”) with RG
=⇒ diff. eq. for potential V

Scale dependence: RG running of
initial potential with scale λ
(decoupling or separation scale)

But all are (NN) phase equivalent!
(predict the same NN cross sections)

Shift contributions between interaction
and sums over intermediate states
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Low-energy playground: Table of the nuclides



New frontiers from rare isotope facilities (worldwide)Isotope science: XXI science
Heavy Ion Research 
Facility Lanzhou

VECC Kolkata

Sao Paulo Pelletron

51

Asymptotic freedom ? 

from B. Sherrill 

DFT$
FRIB$

current$

Challenge of open quantum systems! (continuum channels, . . . )
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JLab: Understanding “short-range correlations” in nucleiCorrelations in nuclear systems
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FIGURE 1. The simple goal of short-range nucleon-nucleon correlation studies is to cleanly isolate diagram b) from a).
Unfortunately, there are many other diagrams, including those with final-state interactions, that can produce the same final state as
the diagram scientists would like to isolate. If one could find kinematics that were dominated by diagram b) it would finally allow
electron scattering to provide new insights into the short-range part of the nucleon-nucleon potential.

For A(e,e’p) reactions, one can determine not only the energy and moment transferred, but also the energy and

momentum of the knocked-out nucleon. The difference between the transferred and detected energy and momentum

is referred to as the missing energy, Emiss and missing momentum, pmiss, respectively. From the theoretical works on

how short-range nucleon-nucleon correlations effects the momentum distribution of nucleons in the nucleus [6], it

is clear one must probe beyond the simple particle in an average potential motion of the nucleon in the nucleus of

approximately 250 MeV/c in order to observe the effects of correlations.

With the construction of the Jefferson Lab Continuous Electron Beam Facility (CEBAF) [7], it was possible to

do high-luminosity knock-out reactions in ideal quasi-elastic kinematics into the pmiss > 250 MeV/c region. In the

early Jefferson Lab knock-out reaction proposals, such as E89-044 3He(e,e’p)pn and 3He(e,e’p)d, these kinematics

were argued as the key to cleanly observe the effects of short-range correlations. And while final results of the

experiments were clearly effected by the presence of correlations, the magnitude of the cross sections in the high

missing momentum region was dominated by final-state interaction effects [8, 9]. Equally striking was the D(e,e’p)n

data from CLAS taken at Q2 > 5 [GeV/c]2 in xB < 1 kinematics [10]. Here it was shown that meson-exchange currents,
final-state interaction, and delta-isobar configurations mask cleanly probing nucleon-nucleons even at extremely high

Q2 in xB < 1 kinematics.

NUCLEAR SCALING

With both the xB < 1 and xB = 1 kinematics practically ruled out for ever being able to cleanly probe short-range

correlations; there is only one region left to explore: xB > 1. This is a special region, since it is kinematically

forbidden for a free nucleon, and thus seems to be a natural place to observe effects of multi-nucleon interactions.

These kinematics were probed with limited statistics at SLAC [11] and the plateaus in the per nucleon ratios, r(A/d),

were claimed at to be evidence for short-range correlations [12].

In 2003, CLAS published high statics data in the same kinematic region. The results clearly showed that the plateaus

could only be seen for Q2 > 1 [GeV/c]2 and xB > 1 kinematics [13] as predicted by Frankfurt and Strikman [14]. But

plateaus alone are not evidence for correlations, just evidence that the functional form of the cross section is the same

for the two nuclei; so data was taken the xB > 2 region. By logic, if 1< xB < 2 is a region of two-nucleon correlations,

then the xB > 2 region should be dominated by three-nucleon correlations. The CLAS Q2 > 1 and xB > 2 experiment

reported observing a second scaling plateau as shown in Fig. 2 [15]. Preliminary results of Hall C high precision data

have shown roughly the same magnitude for these plateaus as CLAS and shown that there is no Q2 dependence in the

2< Q2 < 4 [GeV/c]2 range [16, 17].

Subedi et al., Science 320, 1476 (2008)

would demonstrate the presence of 3-nucleon (3N) SRC
and confirm the previous observation of NN SRC.

Note that: (i) Refs. [5,6] argue that the c.m. motion of the
NN SRC may change the value of a2 (by up to 20% for
56Fe) but not the scaling at xB < 2. For 3N SRC there are
no estimates of the effects of c.m. motion. (ii) Final state
interactions (FSI) are dominated by the interaction of the
struck nucleon with the other nucleons in the SRC [7,8].
Hence the FSI can modify !j, while such modification of
aj!A" are small since the pp, pn, and nn cross sections at
Q2 > 1 GeV2 are similar in magnitudes.

In our previous work [6] we showed that the ratios
R!A; 3He" # 3!A!Q2;xB"

A!3He!Q2;xB" scale for 1:5< xB < 2 and 1:4<

Q2 < 2:6 GeV2, confirming findings in Ref. [7]. Here we
repeat our previous measurement with higher statistics
which allows us to estimate the absolute per-nucleon prob-
abilities of NN SRC.

We also search for the even more elusive 3N SRC,
correlations which originate from both short-range NN
interactions and three-nucleon forces, using the ratio
R!A; 3He" at 2< xB $ 3.

Two sets of measurements were performed at the
Thomas Jefferson National Accelerator Facility in 1999
and 2002. The 1999 measurements used 4.461 GeV elec-
trons incident on liquid 3He, 4He and solid 12C targets. The
2002 measurements used 4.471 GeVelectrons incident on a
solid 56Fe target and 4.703 GeV electrons incident on a
liquid 3He target.

Scattered electrons were detected in the CLAS spec-
trometer [9]. The lead-scintillator electromagnetic calo-
rimeter provided the electron trigger and was used to
identify electrons in the analysis. Vertex cuts were used
to eliminate the target walls. The estimated remaining
contribution from the two Al 15 "m target cell windows
is less than 0.1%. Software fiducial cuts were used to
exclude regions of nonuniform detector response. Kine-
matic corrections were applied to compensate for drift
chamber misalignments and magnetic field uncertainties.

We used the GEANT-based CLAS simulation, GSIM, to
determine the electron acceptance correction factors, tak-
ing into account ‘‘bad’’ or ‘‘dead’’ hardware channels in
various components of CLAS. The measured acceptance-
corrected, normalized inclusive electron yields on 3He,
4He, 12C, and 56Fe at 1< xB < 2 agree with Sargsian’s
radiated cross sections [10] that were tuned on SLAC data
[11] and describe reasonably well the Jefferson Lab Hall C
[12] data.

We constructed the ratios of inclusive cross sections as a
function of Q2 and xB, with corrections for the CLAS
acceptance and for the elementary electron-nucleon cross
sections:

r!A; 3He" # A!2!ep % !en"
3!Z!ep % N!en"

3Y!A"
AY!3He"R

A
rad; (2)

where Z and N are the number of protons and neutrons in
nucleus A, !eN is the electron-nucleon cross section, Y is
the normalized yield in a given (Q2; xB) bin, and RA

rad is the
ratio of the radiative correction factors for 3He and nucleus
A [see Ref. [8] ]. In our Q2 range, the elementary cross
section correction factor A!2!ep%!en"

3!Z!ep%N!en" is 1:14& 0:02 for C

and 4He and 1:18& 0:02 for 56Fe. Note that the 3He yield
in Eq. (2) is also corrected for the beam energy difference
by the difference in the Mott cross sections. The corrected
3He cross sections at the two energies agree within $ 3:5%
[8].

We calculated the radiative correction factors for the
reaction A!e; e0" at xB < 2 using Sargsian’s upgraded
code of Ref. [13] and the formalism of Mo and Tsai [14].
These factors change 10%–15% with xB for 1< xB < 2.
However, their ratios, RA

rad, for 3He to the other nuclei are
almost constant (within 2%–3%) for xB > 1:4. We applied
RA
rad in Eq. (2) event by event for 0:8< xB < 2. Since there

are no theoretical cross section calculations at xB > 2, we
applied the value of RA

rad averaged over 1:4< xB < 2 to the
entire 2< xB < 3 range. Since the xB dependence of RA

rad
for 4He and 12C are very small, this should not affect the
ratio r of Eq. (2). For 56Fe, due to the observed small slope
of RA

rad with xB, r!A; 3He" can increase up to 4% at xB #
2:55. This was included in the systematic errors.

Figure 1 shows the resulting ratios integrated over 1:4<
Q2 < 2:6 GeV2. These cross section ratios (a) scale ini-
tially for 1:5< xB < 2, which indicates that NN SRCs
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FIG. 1. Weighted cross section ratios [see Eq. (2)] of (a) 4He,
(b) 12C, and (c) 56Fe to 3He as a function of xB for Q2 >
1:4 GeV2. The horizontal dashed lines indicate the NN (1:5<
xB < 2) and 3N (xB > 2:25) scaling regions.

PRL 96, 082501 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
3 MARCH 2006

082501-3

Higinbotham, arXiv:1010.4433

Egiyan et al. PRL 96, 1082501 (2006)

What is this vertex?

k k� q = k − k�

ν = Ek − Ek�

p1

p2

p�1

SRC interpretation:

NN interaction can scatter 
states with
to intermediate states with  
                   which are 
knocked out by the photon

p1, p2 � kF

How to explain cross sections in terms of 
low-momentum interactions? 

Vertex depends on the resolution!

q

p�1

p�2

p�1, p
�
2 � kF

p�2

1.4 < Q2 < 2.6 GeV 2

Q2 = −q2

xB =
Q2

2mNν
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Historical perspective: JLab experimentalist [L. Weinstein (2012)]

Comprehensive Theory Overview 

Nuclear Theory - circa 2000 

Nuclear Theory - today: 1, 2, 3, … 12, … many 



Historical perspective: “Ab initio” structure 10–15 years ago

Figure from the RIA (now FRIB) white paper (2000)
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Figure 2:  Top: the nuclear landscape - the territory of RIA physics.  The black squares represent the stable 
nuclei and the nuclei with half-lives comparable to or longer than the age of the Earth (4.5 billion years).  
These nuclei form the "valley of stability".  The yellow region indicates shorter lived nuclei that have been 
produced and studied in laboratories.  By adding either protons or neutrons one moves away from the 
valley of stability, finally reaching the drip lines where the nuclear binding ends because the forces between 
neutrons and protons are no longer strong enough to hold these particles together.  Many thousands of 
radioactive nuclei with very small or very large N/Z ratios are yet to be explored.  In the (N,Z) landscape, 
they form the terra incognita indicated in green.  The proton drip line is already relatively well delineated 
experimentally up to Z=83.  In contrast, the neutron drip line is considerably further from the valley of 
stability and harder to approach.  Except for the lightest nuclei where it has been reached experimentally, 
the neutron drip line has to be estimated on the basis of nuclear models - hence it is very uncertain due to 
the dramatic extrapolations involved.  The red vertical and horizontal lines show the magic numbers around 
the valley of stability.  The anticipated paths of astrophysical processes (r-process, purple line; rp-process, 
turquoise line) are shown.  Bottom: various theoretical approaches to the nuclear many-body problem.  For 
the lightest nuclei, ab initio calculations (Green’s Function Monte Carlo, no-core shell model) based on the 
bare nucleon-nucleon interaction, are possible.  Medium-mass nuclei can be treated by the large-scale shell 
model.  For heavy nuclei, the density functional theory (based on selfconsistent mean field) is the tool of 
choice.  By investigating the intersections between these theoretical strategies, one aims at nothing less than 
developing the unified description of the nucleus. 

Ab initio: Only up to 12C (GFMC and NCSM with NN+3N)



Historical perspective: “Ab initio” structure 10–15 years ago

From the start of the SciDAC UNEDF project (2007)

Interfaces provide 
crucial clues 

dimension of the problem 

Ab initio: Selected nuclei up to 40Ca (with CC, but 3N?)



What is feasible for ab initio structure today? (examples)

H. Hergert - The Ohio State University -  “Nuclear Structure & Reactions: Experimental and Ab Initio Theoretical Perspectives”, TRIUMF, 02/19/2014
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Phys. Rev. Lett. 110, 242501 (2013)

Results: Oxygen Chain

• reference state: number-projected Hartree-Fock-Bogoliubov 
vacuum (pairing correlations)

• consistent results from different many-body methods

NN + 3N-ind.

exp.

Hergert&et&al.,&PRL&110,&242501&(2013)&

Two-neutron separation energies
for Calcium isotope chain

Exciting advances for neutron-rich nuclei  

3N forces key to explain 24O as heaviest oxygen isotope 
Otsuka, Suzuki, Holt, Schwenk, Akaishi, Phys. Rev. Lett. 105, 032501 (2010). 

 

predicted increased binding for neutron-rich calcium 

 
confirmed in precision Penning trap exp. 

5! and 3! deviation in 51,52Ca from AME 
TITAN collaboration + Holt, Menendez, Schwenk, submitted. 

 

Impact on global predictions? 

Nature'498,'346'(2013)'

Theory'preceded'
accurate'experiment'

Energy/particle (in MeV) from oxygen to tin (A = 132!)
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Standing on the shoulders of giants . . .

Steven Weinberg (1933– )
Nobel Prize 1979

electroweak theory (GWS), . . .

effective field theory (EFT)
applied to nuclear physics

Kenneth G. Wilson (1936–2013)
Nobel Prize 1982

renormalization group (RG)
and critical phenomena, . . .

similarity RG

=⇒ Conceptual basis for changing “resolution” and tools to do it!



Connecting degrees of freedom with EFT and RG
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Quark (QCD) vs. hadronic NN· · ·N interaction
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L"*&.,)-.,(")-,.2)PR9ST)K''UTVV#,W%OA.,GVU/-V<0<1A;?0QOld goal: replace hadronic descriptions at ordinary nuclear

densities with quark description (since QCD is the theory)

New goal: use effective hadronic dof’s systematically

Seek model independence and theory error estimates
Future: Use lattice QCD to match via “low-energy constants”

Need quark dof’s at higher densities (resolutions) where
phase transitions happen or at high momentum transfers



Quark (QCD) vs. hadronic NN· · ·N interaction
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densities with quark description (since QCD is the theory)
New goal: use effective hadronic dof’s systematically

Seek model independence and theory error estimates
Future: Use lattice QCD to match via “low-energy constants”

Need quark dof’s at higher densities (resolutions) where
phase transitions happen or at high momentum transfers



Low resolution makes physics easier + efficient

Weinberg’s Third Law of Progress in Theoretical Physics:
“You may use any degrees of freedom you like to describe
a physical system, but if you use the wrong ones,
you’ll be sorry!”

There’s an old joke about a doctor and patient . . .

Patient: Doctor, doctor, it hurts when I do this!
Doctor: Then don’t do that.
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Low resolution makes physics easier + efficient

Weinberg’s Third Law of Progress in Theoretical Physics:
“You may use any degrees of freedom you like to describe
a physical system, but if you use the wrong ones,
you’ll be sorry!”

There’s an old joke about a doctor and patient . . .
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Digital resolution: Higher resolution is better (?)

Computer screens,
printers, digital
cameras, TV’s . . .

Higher resolution
=⇒ more pixels

Pixel size�
characteristic scale
=⇒ greater detail



Diffraction and resolution

Resolution of Small Apertures

Two point sources far from the aperture each produce a diffrac-
tion pattern.

If the angle subtended by the sources at the aperture is large
enough, the diffraction patterns are distinguishable as shown
in Fig. (a).

If the angle is small, the diffraction patterns can overlap so that
the sources are not well resolved as shown in Fig. (b).



Wavelength and resolution
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Principle of any effective low-energy description

If system is probed at low energies, fine details not resolved

Use low-energy variables for low-energy processes
Short-distance structure can be replaced by something
simpler without distorting low-energy observables
(cf. multipoles in classical electrodynamics)
Could be a model or systematic (e.g., effective field theory)

Density in Pb⇔ low momentum⇔ low resolution (λ = h/p)
but not so fast: the interaction can affect the resolution
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Why is textbook nuclear physics so hard?

VL=0(k , k ′) =

∫
d3r j0(kr) V (r) j0(k ′r) = 〈k |VL=0|k ′〉 =⇒ Vkk ′ matrix

Momentum units (~ = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV but . . .

Repulsive core =⇒ large high-k (> 2 fm−1) components
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Consequences of a repulsive core
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Probability at short separations suppressed =⇒ “correlations”

Short-distance structure⇔ high-momentum components

Greatly complicates expansion of many-body wave functions



Expanding wave functions in an HO basis

Single-particle radial wf ψ(r)

Expand in harmonic oscillator wfs:

ψNmax (r) =

Nmax∑
α=0

cαφα(r)

Find cαs by diagonalizing ĤΨ = EΨ

Extend to many-body system
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Expanding wave functions in an HO basis

Single-particle radial wf ψ(r)

Expand in harmonic oscillator wfs:
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Expanding wave functions in an HO basis

Single-particle radial wf ψ(r)

Expand in harmonic oscillator wfs:

ψNmax (r) =
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Expanding wave functions in an HO basis

Single-particle radial wf ψ(r)

Expand in harmonic oscillator wfs:

ψNmax (r) =

Nmax∑
α=0

cαφα(r)

Find cαs by diagonalizing ĤΨ = EΨ

Extend to many-body system
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Many-body physics by matrix diagonalization

Harmonic oscillator basis with Nmax shells for excitations

Graphs show convergence for soft chiral EFT potential
(although not at optimal ~Ω for 6Li)
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Too much resolution from potential =⇒ mismatch of scales



What if your theory has too much resolution?
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What if your theory has too much resolution?

Claim: Nuclear physics with textbook V (r) is like using beer coasters!



Less painful to use a low-resolution version!

High resolution Low resolution

Can greatly reduce storage without distorting message

Resolution was lowered here by “block spinning”

Alternative: apply a low-pass filter



Low-pass filter on an image

Use 2D Fourier
transform

Long and short
wavelengths
separated

After low-pass filter:

Much less
information
needed

Long-wavelength
info is preserved
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Try a low-pass filter on nuclear V (r)

=⇒ Set to zero high momentum (k > 2 fm−1) matrix elements
and see the effect on low-energy observables



Use Phase Shifts to Test
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Here: 1S0 (spin-singlet, L = 0, J = 0) neutron-proton scattering

Different phase shifts in each partial wave channel



Effect of low-pass filter on observables
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Why did our low-pass filter fail?

Basic problem: low k and high k
are coupled (mismatched dof’s!)

E.g., perturbation theory
for (tangent of) phase shift:

〈k |V |k〉+
∑
k ′

〈k |V |k ′〉〈k ′|V |k〉
(k2 − k ′2)/m

+ · · ·

Solution: Unitary transformation
of the H matrix =⇒ decouple!

En = 〈Ψn|H|Ψn〉 U†U = 1
= (〈Ψn|U†)UHU†(U|Ψn〉)
= 〈Ψ̃n|H̃|Ψ̃n〉

Here: Decouple using RG 0 100 200 300
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Preview: Decoupling with the similarity RG



Preview: Consequences of a repulsive core revisited

0 2 4 6
r [fm]

-0.1

0

0.1

0.2

0.3

0.4

|ψ
(r)

|2  [f
m

−3
]

uncorrelated
correlated

0 2 4 6
r [fm]

−100

0

100

200

300

400

V
(r)

 [M
eV

]

0 2 4 6
r [fm]

0

0.05

0.1

0.15

0.2

0.25

|ψ
(r)

|2  [f
m

−3
]

Argonne v18

3S1 deuteron probability density

Probability at short separations suppressed =⇒ “correlations”

Short-distance structure⇔ high-momentum components

Greatly complicates expansion of many-body wave functions
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Transformed potential =⇒ no short-range correlations in wf!

Can it really be so different in the interior?
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What part of the coordinate-space wave function is measurable?

What about the high-momentum tail in momentum space?



Preview: Revisit the convergence with matrix size (Nmax)

Harmonic oscillator basis with Nmax shells for excitations
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is accelerated for evolved SRG potentials

Nuclear structure/reaction calculations more “perturbative”
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