Applications of Renormalization Group Methods in Nuclear Physics – 2

Dick Furnstahl

Outline: Lecture 2

Lecture 2: SRG in practice

Recap from lecture 1: decoupling Implementing the similarity renormalization group (SRG) Block diagonal (" $V_{low,k}$ ") generator Computational aspects Quantitative measure of perturbativeness

Outline: Lecture 2

Lecture 2: SRG in practice

Recap from lecture 1: decoupling

Implementing the similarity renormalization group (SRG) Block diagonal (" $V_{low,k}$ ") generator Computational aspects Quantitative measure of perturbativeness

Why did our low-pass filter fail?

- Basic problem: low k and high k are coupled (mismatched dof's!)
- E.g., perturbation theory for (tangent of) phase shift:

$$\langle k|V|k\rangle + \sum_{k'} \frac{\langle k|V|k'\rangle\langle k'|V|k\rangle}{(k^2 - {k'}^2)/m} + \cdots$$

 Solution: Unitary transformation of the *H* matrix ⇒ decouple!

$$E_n = \langle \Psi_n | H | \Psi_n \rangle \quad U^{\dagger} U = 1$$

= $(\langle \Psi_n | U^{\dagger}) U H U^{\dagger} (U | \Psi_n \rangle)$
= $\langle \widetilde{\Psi}_n | \widetilde{H} | \widetilde{\Psi}_n \rangle$

• Here: Decouple using RG

Why did our low-pass filter fail?

- Basic problem: low k and high k are coupled (mismatched dof's!)
- E.g., perturbation theory for (tangent of) phase shift:

$$\langle k|V|k\rangle + \sum_{k'} \frac{\langle k|V|k'\rangle\langle k'|V|k\rangle}{(k^2 - {k'}^2)/m} + \cdots$$

 Solution: Unitary transformation of the *H* matrix ⇒ decouple!

$$E_n = \langle \Psi_n | H | \Psi_n \rangle \quad U^{\dagger} U = 1$$

= $(\langle \Psi_n | U^{\dagger}) U H U^{\dagger} (U | \Psi_n \rangle)$
= $\langle \widetilde{\Psi}_n | \widetilde{H} | \widetilde{\Psi}_n \rangle$

• Here: Decouple using RG

Aside: Unitary transformations of matrices

- Recall that a unitary transformation can be realized as unitary matrices with U[†]_αU_α = I (where α is just a label)
 - Often used to simplify nuclear many-body problems, e.g., by making them more perturbative
- If I have a Hamiltonian *H* with eigenstates $|\psi_n\rangle$ and an operator *O*, then the new Hamiltonian, operator, and eigenstates are

$$\widetilde{H} = UHU^{\dagger}$$
 $\widetilde{O} = UOU^{\dagger}$ $|\widetilde{\psi}_n\rangle = U|\psi_n\rangle$

• The energy is unchanged: $\langle \widetilde{\psi}_n | \widetilde{H} | \widetilde{\psi}_n \rangle = \langle \psi_n | H | \psi_n \rangle = E_n$

• Furthermore, matrix elements of O are unchanged:

 $\boldsymbol{O}_{mn} \equiv \langle \psi_m | \widehat{\boldsymbol{O}} | \psi_n \rangle = \left(\langle \psi_m | \boldsymbol{U}^{\dagger} \right) \, \boldsymbol{U} \widehat{\boldsymbol{O}} \boldsymbol{U}^{\dagger} \, \left(\boldsymbol{U} | \psi_n \rangle \right) = \langle \widetilde{\psi}_m | \widetilde{\boldsymbol{O}} | \widetilde{\psi}_n \rangle \equiv \widetilde{\boldsymbol{O}}_{mn}$

- If asymptotic (long distance) properties are unchanged, H and H
 are equally acceptable physically ⇒ not measurable!
 - Consistency: use O with H and $|\psi_n\rangle$'s but \widetilde{O} with \widetilde{H} and $|\widetilde{\psi}_n\rangle$'s
 - One form may be better for intuition or for calculations
 - Scheme-dependent observables (come back to this later)

Outline: Lecture 2

Lecture 2: SRG in practice

Recap from lecture 1: decoupling Implementing the similarity renormalization group (SRG) Block diagonal (" $V_{\text{low},k}$ ") generator Computational aspects Quantitative measure of perturbativeness

S. Weinberg on the Renormalization Group (RG)

• From "Why the RG is a good thing" [for Francis Low Festschrift] "The method in its most general form can I think be understood as a way to arrange in various theories that the degrees of freedom that you're talking about are the relevant degrees of freedom for the problem at hand."

S. Weinberg on the Renormalization Group (RG)

- From "Why the RG is a good thing" [for Francis Low Festschrift] "The method in its most general form can I think be understood as a way to arrange in various theories that the degrees of freedom that you're talking about are the relevant degrees of freedom for the problem at hand."
- Improving perturbation theory; e.g., in QCD calculations
 - Mismatch of energy scales can generate large logarithms
 - RG: shift between couplings and loop integrals to reduce logs
 - Nuclear: decouple high- and low-momentum modes
- Identifying universality in critical phenomena
 - RG: filter out short-distance degrees of freedom
 - Nuclear: evolve toward universal interactions

S. Weinberg on the Renormalization Group (RG)

- From "Why the RG is a good thing" [for Francis Low Festschrift] "The method in its most general form can I think be understood as a way to arrange in various theories that the degrees of freedom that you're talking about are the relevant degrees of freedom for the problem at hand."
- Improving perturbation theory; e.g., in QCD calculations
 - Mismatch of energy scales can generate large logarithms
 - RG: shift between couplings and loop integrals to reduce logs
 - Nuclear: decouple high- and low-momentum modes
- Identifying universality in critical phenomena
 - RG: filter out short-distance degrees of freedom
 - Nuclear: evolve toward universal interactions
- Nuclear: simplifying calculations of structure/reactions
 - Make nuclear physics look more like quantum chemistry!
 - RG gains can violate conservation of difficulty!
 - Use RG scale (resolution) dependence as a probe or tool

Two ways to use RG equations to decouple Hamiltonians

• Lower a cutoff Λ_i in k, k', e.g., demand $dT(k, k'; k^2)/d\Lambda = 0$

 Drive the Hamiltonian toward diagonal with "flow equation" [Wegner; Glazek/Wilson (1990's)]

 \implies Both tend toward universal low-momentum interactions!

Decoupling and phase shifts: Low-pass filters work!

- Unevolved AV18 phase shifts (black solid line)
- Cutoff AV18 potential at $k = 2.2 \text{ fm}^{-1}$ (dotted blue) \implies fails for all but *F* wave
- Uncut evolved potential agrees perfectly for all energies
- Cutoff evolved potential agrees up to cutoff energy
- F-wave is already soft (π's)
 ⇒ already decoupled

Low-pass filters work! [Jurgenson et al. (2008)]

NN phase shifts in different channels: no filter

Uncut evolved potential agrees perfectly for all energies

Low-pass filters work! [Jurgenson et al. (2008)]

NN phase shifts in different channels: filter full potential

All fail except F-wave (D?) \implies already soft (π 's) \implies already decoupled

Low-pass filters work! [Jurgenson et al. (2008)]

NN phase shifts in different channels: filtered SRG works!

Cutoff evolved potential agrees up to cutoff energy

Consequences of a repulsive core revisited

- Probability at short separations suppressed => "correlations"
- Short-distance structure ⇔ high-momentum components
- Greatly complicates expansion of many-body wave functions

Consequences of a repulsive core revisited

- Transformed potential

 no short-range correlations in wf!
- Potential is now non-local: $V(\mathbf{r})\psi(\mathbf{r}) \longrightarrow \int d^3\mathbf{r}' V(\mathbf{r},\mathbf{r}')\psi(\mathbf{r}')$
 - A problem for Green's Function Monte Carlo approach
 - Not a problem for many-body methods using HO matrix elements

Consequences of a repulsive core revisited

- Transformed potential ⇒ no short-range correlations in wf!
- Potential is now non-local: $V(\mathbf{r})\psi(\mathbf{r}) \longrightarrow \int d^3\mathbf{r}' V(\mathbf{r},\mathbf{r}')\psi(\mathbf{r}')$
 - A problem for Green's Function Monte Carlo approach
 - Not a problem for many-body methods using HO matrix elements

HO matrix elements with SRG flow

- We've seen that high and low momentum states decouple
- Does this help for harmonic oscilator matrix elements?
- Consider the SRG evolution from R. Roth et al.:

Yes! We have decoupling of high-energy from low-energy states

Revisit the convergence with matrix size (N_{max})

• Harmonic oscillator basis with $N_{\rm max}$ shells for excitations

- Graphs show that convergence for *soft* chiral EFT potential is accelerated for evolved SRG potentials
- Rapid growth of basis still a problem; what else can we do?
 - importance sampling of matrix elements
 - e.g., use symmetry: work in a symplectic basis

Visualizing the softening of NN interactions

- Project non-local NN potential: $\overline{V}_{\lambda}(r) = \int d^3r' V_{\lambda}(r, r')$
 - Roughly gives action of potential on long-wavelength nucleons
- Central part (S-wave) [Note: The V_{λ} 's are all phase equivalent!]

• Tensor part (S-D mixing) [graphs from K. Wendt et al., PRC (2012)]

Basics: SRG flow equations [e.g., see arXiv:1203.1779]

• Transform an initial hamiltonian, H = T + V, with U_s :

$$H_s = U_s H U_s^{\dagger} \equiv T + V_s$$

where *s* is the *flow parameter*. Differentiating wrt *s*:

$$rac{dH_s}{ds} = [\eta_s, H_s]$$
 with $\eta_s \equiv rac{dU_s}{ds} U_s^\dagger = -\eta_s^\dagger$.

• η_s is specified by the commutator with Hermitian G_s :

$$\eta_{s} = [G_{s}, H_{s}] ,$$

which yields the unitary flow equation (T held fixed),

$$\frac{dH_s}{ds} = \frac{dV_s}{ds} = [[G_s, H_s], H_s] \; .$$

Very simple to implement as matrix equation (e.g., MATLAB)

• G_s determines flow \implies many choices (T, H_D , H_{BD} , ...)
SRG flow of H = T + V in momentum basis

• Takes
$$H \longrightarrow H_s = U_s H U_s^{\dagger}$$
 in small steps labeled by s or λ

 $\frac{dH_s}{ds} = \frac{dV_s}{ds} = [[T_{\rm rel}, V_s], H_s] \text{ with } T_{\rm rel}|k\rangle = \epsilon_k|k\rangle \text{ and } \lambda^2 = 1/\sqrt{s}$

For NN, project on relative momentum states |k>, but generic

• First term drives ${}^{1}S_{0} V_{\lambda}$ toward diagonal:

$$V_{\lambda}(k,k') = V_{\lambda=\infty}(k,k') e^{-[(\epsilon_k - \epsilon_{k'})/\lambda^2]^2} + \cdots$$

SRG flow of H = T + V in momentum basis

• Takes
$$H \longrightarrow H_s = U_s H U_s^{\dagger}$$
 in small steps labeled by s or λ

 $\frac{dH_s}{ds} = \frac{dV_s}{ds} = [[T_{\rm rel}, V_s], H_s] \text{ with } T_{\rm rel}|k\rangle = \epsilon_k|k\rangle \text{ and } \lambda^2 = 1/\sqrt{s}$

For NN, project on relative momentum states |k>, but generic

• First term drives ${}^{1}S_{0} V_{\lambda}$ toward diagonal:

$$V_{\lambda}(k,k') = V_{\lambda=\infty}(k,k') e^{-[(\epsilon_k - \epsilon_{k'})/\lambda^2]^2} + \cdots$$

SRG flow of H = T + V in momentum basis

• Takes
$$H \longrightarrow H_s = U_s H U_s^{\dagger}$$
 in small steps labeled by s or λ

 $\frac{dH_s}{ds} = \frac{dV_s}{ds} = [[T_{\rm rel}, V_s], H_s] \text{ with } T_{\rm rel}|k\rangle = \epsilon_k|k\rangle \text{ and } \lambda^2 = 1/\sqrt{s}$

For NN, project on relative momentum states |k>, but generic

• First term drives ${}^{1}S_{0} V_{\lambda}$ toward diagonal:

$$V_{\lambda}(k,k') = V_{\lambda=\infty}(k,k') e^{-[(\epsilon_k - \epsilon_{k'})/\lambda^2]^2} + \cdots$$

Outline: Lecture 2

Lecture 2: SRG in practice

Recap from lecture 1: decoupling Implementing the similarity renormalization group (SRG) Block diagonal (" $V_{low,k}$ ") generator Computational aspects Quantitative measure of perturbativeness

Two ways to use RG equations to decouple Hamiltonians

General form of the flow equation: $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$

General rule: Choose G_s to match the desired final pattern

Two ways to use RG equations to decouple Hamiltonians

General form of the flow equation: $\frac{dH_s}{ds} = [[G_s, H_s], H_s]$

General rule: Choose G_s to match the desired final pattern

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low } k}$ -like potential with SRG?

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

• Can we get a $\Lambda = 2 \text{ fm}^{-1} V_{\text{low }k}$ -like potential with SRG?

• Yes! Use
$$\frac{dH_s}{ds} = [[G_s, H_s], H_s]$$
 with $G_s = \begin{pmatrix} PH_sP & 0\\ 0 & QH_sQ \end{pmatrix}$

- Can we tailor the potential to other shapes with the SRG?
- Consider <u>dH_s</u> = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider <u>dH_s</u> = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider <u>dH_s</u> = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider <u>dH_s</u> = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider <u>dH_s</u> = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider <u>dH_s</u> = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider <u>dH_s</u> = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider <u>dH_s</u> = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider <u>dH_s</u> = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider <u>dH_s</u> = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

- Can we tailor the potential to other shapes with the SRG?
- Consider <u>dH_s</u> = [[G_s, H_s], H_s] in the ¹P₁ partial wave with a strange choice for G_s

Outline: Lecture 2

Lecture 2: SRG in practice

Recap from lecture 1: decoupling Implementing the similarity renormalization group (SRG) Block diagonal (" $V_{\text{low},k}$ ") generator Computational aspects

Quantitative measure of perturbativeness

S-wave NN potential as momentum-space matrix

- Momentum units ($\hbar = c = 1$): typical relative momentum in large nucleus $\approx 1 \text{ fm}^{-1} \approx 200 \text{ MeV}$
- What would the kinetic energy look like on right?

Comments on computational aspects

• Although momentum is continuous in principle, in practice represented as discrete (gaussian quadrature) grid:

Calculations become just matrix multiplications! E.g.,

$$\langle k|V|k\rangle + \sum_{k'} \frac{\langle k|V|k'\rangle\langle k'|V|k\rangle}{(k^2 - k'^2)/m} + \cdots \Longrightarrow V_{ii} + \sum_j V_{ij}V_{ji}\frac{1}{(k_j^2 - k_j^2)/m} + \cdots$$

• 100×100 resolution is sufficient for two-body potential

Discretization of integrals \implies matrices!

• Momentum-space flow equations have integrals like:

$$I(p,q) \equiv \int dk \, k^2 \, V(p,k) V(k,q)$$

• Introduce gaussian nodes and weights $\{k_n, w_n\}$ (n = 1, N)

$$\implies \int dk f(k) \approx \sum_n w_n f(k_n)$$

• Then $I(p,q) \rightarrow I_{ij}$, where $p = k_i$ and $q = k_j$, and

. . .

$$I_{ij} = \sum_n k_n^2 w_n \ V_{in} V_{nj} o \sum_n \widetilde{V}_{in} \widetilde{V}_{nj}$$
 where $\widetilde{V}_{ij} = \sqrt{w_i} k_i \ V_{ij} \ k_j \sqrt{w_j}$

- Lets us solve SRG equations, integral equation for phase shift, Schrödinger equation in momentum representation,
- In practice, N=100 gauss points more than enough for accurate nucleon-nucleon partial waves

MATLAB Code for SRG is a direct translation!

- The flow equation $\frac{d}{ds}V_s = [[T, H_s], H_s]$ is solved by discretizing, so it is just matrix multiplication.
- If the matrix V_s is converted to a vector by "reshaping", it can be fed to a differential equation solver, with the right side:

```
% V_s is a vector of the current potential; convert to square matrix
V_s_matrix = reshape(V_s, tot_pts, tot_pts);
H_s_matrix = T_matrix + V_s_matrix; % form the Hamiltontian
% Matrix for the right side of the SRG differential equation
if (strcmp(evolution,'T'))
rhs_matrix = my_commutator(my_commutator(T_matrix, H_s_matrix), ...
H_s_matrix );
```

[etc.]

% convert the right side matrix to a vector to be returned dVds = reshape(rhs_matrix, tot_pts*tot_pts, 1);

Pseudocode for SRG evolution

- Set up basis (e.g., momentum grid with gaussian quadrature or HO wave functions with N_{max})
- 2 Calculate (or input) the initial Hamiltonian and G_s matrix elements (including any weight factors)
- Solution Reshape the right side $[[G_s, H_s], H_s]$ to a vector and pass it to a coupled differential equation solver
- Integrate V_s to desired s (or $\lambda = s^{-1/4}$)
- Diagonalize H_s with standard symmetric eigensolver \implies energies and eigenvectors
- Form $U = \sum_{i} |\psi_{s}^{(i)}\rangle \langle \psi_{s=0}^{(i)}|$ from the eigenvectors
- Output or plot or calculate observables

Many versions of SRG codes are in use

- Mathematica, MATLAB, Python, C++, Fortran-90
 - Instructive computational project for undergraduates!
- Once there are discretized matrices, the solver is the same with any size basis in any number of dimensions!
- Still the same solution code for a many-particle basis
- Any basis can be used
 - For 3NF, harmonic oscillators, discretized partial-wave momentum, and hyperspherical harmonics are available
 - An accurate 3NF evolution in HO basis takes ~ 20 million matrix elements ⇒ that many differential equations

Outline: Lecture 2

Lecture 2: SRG in practice

Recap from lecture 1: decoupling Implementing the similarity renormalization group (SRG) Block diagonal (" $V_{\text{low},k}$ ") generator Computational aspects

Quantitative measure of perturbativeness
S. Weinberg on the Renormalization Group (RG)

- From "Why the RG is a good thing" [for Francis Low Festschrift] "The method in its most general form can I think be understood as a way to arrange in various theories that the degrees of freedom that you're talking about are the relevant degrees of freedom for the problem at hand."
- Improving perturbation theory; e.g., in QCD calculations
 - Mismatch of energy scales can generate large logarithms
 - RG: shift between couplings and loop integrals to reduce logs
 - Nuclear: decouple high- and low-momentum modes
- Identifying universality in critical phenomena
 - RG: filter out short-distance degrees of freedom
 - Nuclear: evolve toward universal interactions
- Nuclear: simplifying calculations of structure/reactions
 - Make nuclear physics look more like quantum chemistry!
 - RG gains can violate conservation of difficulty!
 - Use RG scale (resolution) dependence as a probe or tool

Flow of different N³LO chiral EFT potentials

 \bullet Decoupling \Longrightarrow perturbation theory is more effective

$$\langle k|V|k\rangle + \sum_{k'} \frac{\langle k|V|k'\rangle \langle k'|V|k\rangle}{(k^2 - {k'}^2)/m} + \cdots \Longrightarrow V_{ii} + \sum_{j} V_{ij} V_{ji} \frac{1}{(k_i^2 - k_j^2)/m} + \cdots$$

Flow of different N³LO chiral EFT potentials

• Decoupling \implies perturbation theory is more effective

$$\langle k|V|k\rangle + \sum_{k'} \frac{\langle k|V|k'\rangle \langle k'|V|k\rangle}{(k^2 - {k'}^2)/m} + \cdots \Longrightarrow V_{ii} + \sum_{j} V_{ij} V_{ji} \frac{1}{(k_j^2 - k_j^2)/m} + \cdots$$

Convergence of the Born series for scattering

• Consider whether the Born series converges for given z

$$T(z) = V + V \frac{1}{z - H_0} V + V \frac{1}{z - H_0} V \frac{1}{z - H_0} V + \cdots$$

• If bound state $|b\rangle$, series must diverge at $z = E_b$, where

$$(H_0+V)|b
angle=E_b|b
angle \implies V|b
angle=(E_b-H_0)|b
angle$$

Convergence of the Born series for scattering

Consider whether the Born series converges for given z

$$T(z) = V + V \frac{1}{z - H_0} V + V \frac{1}{z - H_0} V \frac{1}{z - H_0} V + \cdots$$

• If bound state $|b\rangle$, series must diverge at $z = E_b$, where

$$(H_0+V)|b
angle=E_b|b
angle \implies V|b
angle=(E_b-H_0)|b
angle$$

• For fixed *E*, generalize to find eigenvalue η_{ν} [Weinberg]

$$rac{1}{E_b-H_0}V|b
angle=|b
angle \qquad \Longrightarrow \qquad rac{1}{E-H_0}V|\Gamma_
u
angle=\eta_
u|\Gamma_
u
angle$$

• From *T* applied to eigenstate, divergence for $|\eta_{\nu}(E)| \ge 1$:

$$T(E)|\Gamma_{\nu}
angle = V|\Gamma_{\nu}
angle(1 + \eta_{\nu} + \eta_{\nu}^2 + \cdots)$$

 \implies T(E) diverges if bound state at E for V/η_{ν} with $|\eta_{\nu}| \ge 1$

• Consider $\eta_{\nu}(E = -2.22 \text{ MeV})$

- Deuteron \implies attractive eigenvalue $\eta_{\nu} = 1$
 - $\Lambda \downarrow \Longrightarrow$ unchanged
- But η_{ν} can be negative, so $V/\eta_{\nu} \Longrightarrow$ flip potential

- Deuteron \implies attractive eigenvalue $\eta_{\nu} = 1$
 - $\Lambda \downarrow \Longrightarrow$ unchanged
- But η_{ν} can be negative, so $V/\eta_{\nu} \Longrightarrow$ flip potential
- Hard core \implies repulsive eigenvalue η_{ν}
 - $\Lambda \downarrow \Longrightarrow$ reduced

- Consider $\eta_{\nu}(E = -2.22 \text{ MeV})$
- Deuteron \implies attractive eigenvalue $\eta_{\nu} = 1$
 - $\Lambda \downarrow \Longrightarrow$ unchanged
- But η_{ν} can be negative, so $V/\eta_{\nu} \Longrightarrow$ flip potential
- Hard core \implies repulsive eigenvalue η_{ν}
 - $\Lambda \downarrow \Longrightarrow$ reduced
- In medium: both reduced • $\eta_{\nu} \ll 1$ for $\Lambda \approx 2 \text{ fm}^{-1}$
 - \implies perturbative (at least for particle-particle channel)

Weinberg eigenvalue analysis of convergence

Born Series:
$$T(E) = V + V \frac{1}{E - H_0} V + V \frac{1}{E - H_0} V \frac{1}{E - H_0} V + \cdots$$

• For fixed E, find (complex) eigenvalues $\eta_{\nu}(E)$ [Weinberg]

 $\frac{1}{E-H_0}V|\Gamma_{\nu}\rangle = \eta_{\nu}|\Gamma_{\nu}\rangle \implies T(E)|\Gamma_{\nu}\rangle = V|\Gamma_{\nu}\rangle(1+\eta_{\nu}+\eta_{\nu}^2+\cdots)$

 \implies *T* diverges if any $|\eta_{\nu}(E)| \ge 1$ [nucl-th/0602060]

Lowering the cutoff increases "perturbativeness"

Lowering the cutoff increases "perturbativeness"

Lowering the cutoff increases "perturbativeness"

 Weinberg eigenvalue analysis (η_ν at -2.22 MeV vs. density)

Pauli blocking in nuclear matter increases it even more!

• at Fermi surface, pairing revealed by $|\eta_{\nu}| > 1$