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Why did our low-pass filter fail?

Basic problem: low k and high k
are coupled (mismatched dof’s!)

E.g., perturbation theory
for (tangent of) phase shift:

〈k |V |k〉+
∑
k ′

〈k |V |k ′〉〈k ′|V |k〉
(k2 − k ′2)/m

+ · · ·

Solution: Unitary transformation
of the H matrix =⇒ decouple!

En = 〈Ψn|H|Ψn〉 U†U = 1
= (〈Ψn|U†)UHU†(U|Ψn〉)
= 〈Ψ̃n|H̃|Ψ̃n〉

Here: Decouple using RG
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Aside: Unitary transformations of matrices
Recall that a unitary transformation can be realized as unitary
matrices with U†αUα = I (where α is just a label)

Often used to simplify nuclear many-body problems, e.g., by
making them more perturbative

If I have a Hamiltonian H with eigenstates |ψn〉 and an operator O,
then the new Hamiltonian, operator, and eigenstates are

H̃ = UHU† Õ = UOU† |ψ̃n〉 = U|ψn〉

The energy is unchanged: 〈ψ̃n|H̃|ψ̃n〉 = 〈ψn|H|ψn〉 = En

Furthermore, matrix elements of O are unchanged:

Omn ≡ 〈ψm|Ô|ψn〉 =
(
〈ψm|U†

)
UÔU†

(
U|ψn〉

)
= 〈ψ̃m|Õ|ψ̃n〉 ≡ Õmn

If asymptotic (long distance) properties are unchanged, H and H̃
are equally acceptable physically =⇒ not measurable!

Consistency: use O with H and |ψn〉’s but Õ with H̃ and |ψ̃n〉’s
One form may be better for intuition or for calculations
Scheme-dependent observables (come back to this later)
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S. Weinberg on the Renormalization Group (RG)
From “Why the RG is a good thing” [for Francis Low Festschrift]
“The method in its most general form can I think be understood as
a way to arrange in various theories that the degrees of freedom
that you’re talking about are the relevant degrees of freedom for
the problem at hand.”

Improving perturbation theory; e.g., in QCD calculations

Mismatch of energy scales can generate large logarithms
RG: shift between couplings and loop integrals to reduce logs
Nuclear: decouple high- and low-momentum modes

Identifying universality in critical phenomena

RG: filter out short-distance degrees of freedom
Nuclear: evolve toward universal interactions

Nuclear: simplifying calculations of structure/reactions

Make nuclear physics look more like quantum chemistry!
RG gains can violate conservation of difficulty!
Use RG scale (resolution) dependence as a probe or tool
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Two ways to use RG equations to decouple Hamiltonians

“Vlow k ”

Λ
0

Λ
1

Λ
2

k’

k

Lower a cutoff Λi in k , k ′,
e.g., demand
dT (k , k ′; k2)/dΛ = 0

Similarity RG

λ
0

λ
1

λ
2

k’

k

Drive the Hamiltonian toward
diagonal with “flow equation”
[Wegner; Glazek/Wilson (1990’s)]

=⇒ Both tend toward universal low-momentum interactions!



Flow equations in action: NN only

In each partial wave with εk = ~2k2/M and λ2 = 1/
√

s

dVλ
dλ

(k , k ′) ∝ −(εk − εk ′)2Vλ(k , k ′) +
∑

q

(εk + εk ′ − 2εq)Vλ(k ,q)Vλ(q, k ′)
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Decoupling and phase shifts: Low-pass filters work!

Unevolved AV18 phase shifts
(black solid line)

Cutoff AV18 potential at
k = 2.2 fm−1 (dotted blue)
=⇒ fails for all but F wave

Uncut evolved potential agrees
perfectly for all energies

Cutoff evolved potential agrees
up to cutoff energy

F-wave is already soft (π’s)
=⇒ already decoupled



Low-pass filters work! [Jurgenson et al. (2008)]
NN phase shifts in different channels: no filter

Uncut evolved potential agrees perfectly for all energies



Low-pass filters work! [Jurgenson et al. (2008)]
NN phase shifts in different channels: filter full potential

All fail except F-wave (D?) =⇒ already soft (π’s) =⇒ already decoupled



Low-pass filters work! [Jurgenson et al. (2008)]
NN phase shifts in different channels: filtered SRG works!

Cutoff evolved potential agrees up to cutoff energy



Consequences of a repulsive core revisited
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Short-distance structure⇔ high-momentum components

Greatly complicates expansion of many-body wave functions
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A problem for Green’s Function Monte Carlo approach
Not a problem for many-body methods using HO matrix elements
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HO matrix elements with SRG flow

We’ve seen that high and low momentum states decouple

Does this help for harmonic oscilator matrix elements?

Consider the SRG evolution from R. Roth et al.:

Yes! We have decoupling of high-energy from low-energy states



Revisit the convergence with matrix size (Nmax)

Harmonic oscillator basis with Nmax shells for excitations
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is accelerated for evolved SRG potentials
Rapid growth of basis still a problem; what else can we do?

importance sampling of matrix elements
e.g., use symmetry: work in a symplectic basis



Visualizing the softening of NN interactions
Project non-local NN potential: Vλ(r) =

∫
d3r ′ Vλ(r , r ′)

Roughly gives action of potential on long-wavelength nucleons

Central part (S-wave) [Note: The Vλ’s are all phase equivalent!]

Tensor part (S-D mixing) [graphs from K. Wendt et al., PRC (2012)]

=⇒ Flow to universal potentials!



Basics: SRG flow equations [e.g., see arXiv:1203.1779]

Transform an initial hamiltonian, H = T + V , with Us:

Hs = UsHU†s ≡ T + Vs ,

where s is the flow parameter. Differentiating wrt s:

dHs

ds
= [ηs,Hs] with ηs ≡

dUs

ds
U†s = −η†s .

ηs is specified by the commutator with Hermitian Gs:

ηs = [Gs,Hs] ,

which yields the unitary flow equation (T held fixed),

dHs

ds
=

dVs

ds
= [[Gs,Hs],Hs] .

Very simple to implement as matrix equation (e.g., MATLAB)

Gs determines flow =⇒ many choices (T , HD, HBD, . . . )



SRG flow of H = T + V in momentum basis

Takes H −→ Hs = UsHU†s in small steps labeled by s or λ

dHs

ds
=

dVs

ds
= [[Trel,Vs],Hs] with Trel|k〉 = εk |k〉 and λ2 = 1/

√
s

For NN, project on relative momentum states |k〉, but generic

dVλ
dλ

(k , k ′) ∝ −(εk − εk ′)2Vλ(k , k ′)+
∑

q

(εk + εk ′ − 2εq)Vλ(k ,q)Vλ(q, k ′)

Vλ=3.0(k , k ′) 1st term 2nd term Vλ=2.5(k , k ′)

First term drives 1S0 Vλ toward diagonal:

Vλ(k , k ′) = Vλ=∞(k , k ′) e−[(εk − εk ′)/λ2]2 + · · ·
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Two ways to use RG equations to decouple Hamiltonians

General form of the flow equation: dHs
ds = [[Gs,Hs],Hs]

“Vlow k ” SRG (“T” generator)

General rule: Choose Gs to match the desired final pattern



Two ways to use RG equations to decouple Hamiltonians

General form of the flow equation: dHs
ds = [[Gs,Hs],Hs]

SRG (“BD” generator) SRG (“T” generator)

General rule: Choose Gs to match the desired final pattern



Block diagonalization via SRG [Gs = HBD]

Can we get a Λ = 2 fm−1 Vlow k -like potential with SRG?

Yes! Use dHs
ds = [[Gs,Hs],Hs] with Gs =

(
PHsP 0

0 QHsQ

)

What are the best generators for nuclear applications?
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Custom potentials via the SRG

Can we tailor the potential to other shapes with the SRG?

Consider dHs
ds = [[Gs,Hs],Hs] in the 1P1 partial wave

with a strange choice for Gs
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S-wave NN potential as momentum-space matrix

〈k |VL=0|k ′〉 =

∫
d3r j0(kr) V (r) j0(k ′r) =⇒ Vkk ′ matrix

Momentum units (~ = c = 1): typical relative momentum
in large nucleus ≈ 1 fm−1 ≈ 200 MeV

What would the kinetic energy look like on right?



Comments on computational aspects

Although momentum is continuous in principle, in practice
represented as discrete (gaussian quadrature) grid:

=⇒

Calculations become just matrix multiplications! E.g.,

〈k |V |k〉+
∑
k ′

〈k |V |k ′〉〈k ′|V |k〉
(k2 − k ′2)/m

+· · · =⇒ Vii +
∑

j

VijVji
1

(k2
i − k2

j )/m
+· · ·

100× 100 resolution is sufficient for two-body potential



Discretization of integrals =⇒ matrices!
Momentum-space flow equations have integrals like:

I(p,q) ≡
∫

dk k2 V (p, k)V (k ,q)

Introduce gaussian nodes and weights {kn,wn} (n = 1,N)

=⇒
∫

dk f (k) ≈
∑

n

wn f (kn)

Then I(p,q)→ Iij , where p = ki and q = kj , and

Iij =
∑

n

k2
n wn VinVnj →

∑
n

ṼinṼnj where Ṽij =
√

wiki Vij kj
√

wj

Lets us solve SRG equations, integral equation for phase
shift, Schrödinger equation in momentum representation,
. . .

In practice, N=100 gauss points more than enough for
accurate nucleon-nucleon partial waves



MATLAB Code for SRG is a direct translation!

The flow equation d
ds Vs = [[T ,Hs],Hs] is solved by

discretizing, so it is just matrix multiplication.

If the matrix Vs is converted to a vector by “reshaping”, it can
be fed to a differential equation solver, with the right side:

% V_s is a vector of the current potential; convert to square matrix
V_s_matrix = reshape(V_s, tot_pts, tot_pts);
H_s_matrix = T_matrix + V_s_matrix; % form the Hamiltontian

% Matrix for the right side of the SRG differential equation
if (strcmp(evolution,’T’))

rhs_matrix = my_commutator( my_commutator(T_matrix, H_s_matrix), ...
H_s_matrix );

elseif (strcmp(evolution,’Wegner’))
rhs_matrix = my_commutator( my_commutator(diag(diag(H_s_matrix)), ...

H_s_matrix), H_s_matrix );

[etc.]

% convert the right side matrix to a vector to be returned
dVds = reshape(rhs_matrix, tot_pts*tot_pts, 1);



Pseudocode for SRG evolution

1 Set up basis (e.g., momentum grid with gaussian
quadrature or HO wave functions with Nmax)

2 Calculate (or input) the initial Hamiltonian and Gs matrix
elements (including any weight factors)

3 Reshape the right side [[Gs,Hs],Hs] to a vector and pass it
to a coupled differential equation solver

4 Integrate Vs to desired s (or λ = s−1/4)
5 Diagonalize Hs with standard symmetric eigensolver

=⇒ energies and eigenvectors

6 Form U =
∑

i |ψ
(i)
s 〉〈ψ

(i)
s=0| from the eigenvectors

7 Output or plot or calculate observables



Many versions of SRG codes are in use

Mathematica, MATLAB, Python, C++, Fortran-90
Instructive computational project for undergraduates!

Once there are discretized matrices, the solver is the same
with any size basis in any number of dimensions!

Still the same solution code for a many-particle basis
Any basis can be used

For 3NF, harmonic oscillators, discretized partial-wave
momentum, and hyperspherical harmonics are available
An accurate 3NF evolution in HO basis takes ∼ 20 million
matrix elements =⇒ that many differential equations
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S. Weinberg on the Renormalization Group (RG)
From “Why the RG is a good thing” [for Francis Low Festschrift]
“The method in its most general form can I think be understood as
a way to arrange in various theories that the degrees of freedom
that you’re talking about are the relevant degrees of freedom for
the problem at hand.”

Improving perturbation theory; e.g., in QCD calculations

Mismatch of energy scales can generate large logarithms
RG: shift between couplings and loop integrals to reduce logs
Nuclear: decouple high- and low-momentum modes

Identifying universality in critical phenomena

RG: filter out short-distance degrees of freedom
Nuclear: evolve toward universal interactions

Nuclear: simplifying calculations of structure/reactions

Make nuclear physics look more like quantum chemistry!
RG gains can violate conservation of difficulty!
Use RG scale (resolution) dependence as a probe or tool



Flow of different N3LO chiral EFT potentials
1S0 from N3LO (500 MeV) of Entem/Machleidt

1S0 from N3LO (550/600 MeV) of Epelbaum et al.

Decoupling =⇒ perturbation theory is more effective

〈k |V |k〉+
∑
k ′

〈k |V |k ′〉〈k ′|V |k〉
(k2 − k ′2)/m

+· · · =⇒ Vii +
∑

j

VijVji
1

(k2
i − k2

j )/m
+· · ·
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Convergence of the Born series for scattering

Consider whether the Born series converges for given z

T (z) = V + V
1

z − H0
V + V

1
z − H0

V
1

z − H0
V + · · ·

If bound state |b〉, series must diverge at z = Eb, where

(H0 + V )|b〉 = Eb|b〉 =⇒ V |b〉 = (Eb − H0)|b〉

For fixed E , generalize to find eigenvalue ην [Weinberg]

1
Eb − H0

V |b〉 = |b〉 =⇒ 1
E − H0

V |Γν〉 = ην |Γν〉

From T applied to eigenstate, divergence for |ην(E)| ≥ 1:

T (E)|Γν〉 = V |Γν〉(1 + ην + η2
ν + · · · )

=⇒ T (E) diverges if bound state at E for V/ην with |ην | ≥ 1
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Weinberg eigenvalues as function of cutoff Λ/λ

Consider ην(E = −2.22 MeV)

Deuteron =⇒ attractive
eigenvalue ην = 1

Λ ↓ =⇒ unchanged

But ην can be negative, so
V/ην =⇒ flip potential

Hard core =⇒ repulsive
eigenvalue ην

Λ ↓ =⇒ reduced

In medium: both reduced
ην � 1 for Λ ≈ 2 fm−1

=⇒ perturbative (at least for
particle-particle channel)
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Weinberg eigenvalues as function of cutoff Λ/λ

Consider ην(E = −2.22 MeV)

Deuteron =⇒ attractive
eigenvalue ην = 1

Λ ↓ =⇒ unchanged

But ην can be negative, so
V/ην =⇒ flip potential

Hard core =⇒ repulsive
eigenvalue ην

Λ ↓ =⇒ reduced

In medium: both reduced
ην � 1 for Λ ≈ 2 fm−1

=⇒ perturbative (at least for
particle-particle channel)
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Weinberg eigenvalue analysis of convergence

Born Series: T (E) = V + V
1

E − H0
V + V

1
E − H0

V
1

E − H0
V + · · ·

For fixed E , find (complex) eigenvalues ην(E) [Weinberg]

1
E − H0

V |Γν〉 = ην |Γν〉 =⇒ T (E)|Γν〉 = V |Γν〉(1+ην+η2
ν+· · · )

=⇒ T diverges if any |ην(E)| ≥ 1 [nucl-th/0602060]
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Lowering the cutoff increases “perturbativeness”

Weinberg eigenvalue analysis
(repulsive) [nucl-th/0602060]
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Pauli blocking in nuclear matter increases it even more!
at Fermi surface, pairing revealed by |ην | > 1
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Lowering the cutoff increases “perturbativeness”

Weinberg eigenvalue analysis
(ην at −2.22 MeV vs. density)
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Pauli blocking in nuclear matter increases it even more!
at Fermi surface, pairing revealed by |ην | > 1
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