
Introduction and Overview of 
Accelerators 

Fanglei Lin 
Center for Advanced Studies of Accelerators, Jefferson Lab 

 
 

29th Annual Hampton University Graduate Studies Program 
HUGS 2014, Jefferson Lab, June 2-20, 2014 



Basic Definitions and Formulas 
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Convenient Energy & Mass Units 
 We use eV to describe the energy of individual particles. The energy that a 

unit charge  
e = 1.6 ×10-19 Coulomb 

    gains when it falls through a potential ΔΦ=1 volt. 
1eV = 1.6 ×10-19 Joule 

1MeV = 1.6 ×10-13 J;  1GeV = 1.6 ×10-10 J;  1TeV = 1.6 ×10-7 J 
 Einstein’s relation to convert rest mass to energy units 

Eo = mc2 
 For electron 
 Eo,e = 9.1×10-31kg×(3×108 m/sec)2 = 81.9×10-15 Joule = 0.512 MeV 
 For proton 
 Eo,p = 938 MeV 

 Momentum  
 p : eV/c 
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Relativity Review 
 Relativistic parameters: 

 
 
 

 
 
 Later β and γ will also be used for other quantities, but the context 

should usually make them clear 
 γ=1 (classical mechanics) to ~2.05×105 (to date) 
 

 Total energy E, momentum p, kinetic energy K 
 

 Relativity relations 
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Frames and Lorentz Transformations 
 The lab frame will dominate most of our discussions 

 But not always (synchrotron radiation, space charge …) 
 

 Invariance of space-time interval (Minkowski) 
  
 
 Lorentz transformation of four-vectors 

 For example, time/space coordinates in z velocity boost 
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Relativistic Electromagnetism I 
 Classical electromagnetic potentials can be shown to combine to a four-

potential (with c=1) 
 

 The field-strength tensor is related to the four-potential 
 
 
 
 

 
 

 E/B fields Lorentz transform with factor of  γ, (βγ) 
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Relativistic Electromagnetism II 
 The relativistic electromagnetic force equation becomes 

 
 
 We can write this in somewhat simpler terms 

 
 
 

 That is, “classical” E&M force equations hold if we treat the momentum 
as relativistic,  
 

 Unsurprisingly, we get 
 Energy changes from electric fields  
 Direction changes (energy conservative) from magnetic fields 
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Constant Magnetic Field (Zero Electric Field) 

 In a constant magnetic field, charged particles move in circular arcs of 
radius ρ with constant angular velocity ω 

 
 
 
 
 
 
 

 For           , we have 
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Rigidity: Bending Radius vs Momentum 
 

                               Beam                              Accelerator (magnets, geometry) 
 

 This is such a useful expression in accelerator physics that it has it own 
name: rigidity 
 

 Ratio of momentum to charge 
 How hard (or easy) is a particle to deflect? 
 Often expressed in [T-m] (easy to calculate B) 
 Be careful when q≠e !!! 
 

 A very useful expression 
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Cyclotron Frequency 
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 Another very useful expression for particle angular frequency in a constant 

field: cyclotron frequency  
 

 In the nonrelativistic approximation 
 
 

     
 
        Revolution frequency is independent of radius or energy ! 
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Lawrence and the Cyclotron 
 Can we repeatedly spiral and accelerate 

particles through the same potential 
gap? 

 
 
 
 
 
 
 
 
 
 
                   Accelerating gap ΔΦ  
11 Ernest Orlando Lawrence 



A Patentable Idea 
 1934 patent 1948384 

 Two accelerating gaps per turn ! 
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27”/69cm Cyclotron 

13 M.S. Livingston and E.O. Lawrence, 1934 



Historical Hallmark of Accelerator  
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Electrostatic Accelerator I 
 Cockcroft-Walton 

 In 1932, John Douglas Cockcroft and Ernst 
Thomas Sinton Walton reached 400-kV 
terminal voltage to achieve the first man-
made nuclear transmutation: p+7Li→2He 

 1 MV maximum achievable voltage was 
limited by sparking in air 
 

 Cockcroft-Walton accelerators have been 
widely used as the first-stage ion-beam 
accelerator 
 H gas ionized with HV current 
 Provides high current DC beam 
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Electrostatic Accelerator II 
 Van de Graaff 

 How to increase voltage? 
 1931 R.J. Van de Graaff developed charge 

transporting accelerator 
 Electrode sprays HV charge onto insulated belt 
 Carried up to spherical Faraday cage 
 Removed by second electrode and distributed 

over sphere 
 

 Limited by discharge breakdown 
 ~2MV in air 
 Up to 20+ MV in tandem accelerator 
 Ancestor of Pelletrons (chains)/ Laddertrons 

(stripes) 
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Electrostatic Accelerator III 
 Tandem Van de Graaff 

 Reverse ion charge state in  
    middle of Van de Graaff allows 
    over twice the energy gain 
 This only works for negative  
    ions 
 However, stripping need not  
    be symmetric 
 Second stage accelerates more efficiently  

 BNL: two Tandems (1970, 14MV, 24m) 
 Au-1 to Au+10 /Au+11 /Au+12 to Au+32 for RHIC 
 About a total of 0.85MeV/nucleon total 

energy  
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Induction Accelerator 
 Betatron: first circular electron accelerator  

 Apply Faraday’s law with time-varying current  
   in coils 
 Beam sees time-varying electric field  
   – accelerate half the time 
 Betatron: The betatron principle states that 
   the guide field Bg is equal to 1/2 of the average field Bav, (R. Wideröe 1928). 
 Limitation: synchrotron radiation loss and transverse beam size limit due 

to intrinsic weak-focusing force 
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From Electrostatic to RF Acceleration 
 RF accelerators 

 In 1925 G. Ising pointed out a radio-frequency field 
 In 1928 Wideroe reported the first working rf accelerator 
 In 1931 D.H. Sloan and E.O. Lawerence built a linear  
    accelerator 
  In 1945 E.M. Mcmillan and V.Veksler discovered of the  
     phase-focusing principle 
 In 1948 L.Alvarez and W.K.H.Panofsky constructed  
     the first 32MV drift tube linac for proton 
 In 1970 L.M.Kapchinskij and V.A.Teplyakov invented 
     radio-frequency quadrupole (RFQ) in a low energy 
     accelerator 

 Characteristics 
 Particles are accelerated in each gap 
 Particles are shielded in drift tubes when polarity 
    change occurs 
 Drift tube length or RF frequency must increase 
    at higher energies 19 

Wideroe linac 



Resonant Linac Structures 
 Wideroe linac : π mode 

 
 Alvarez linac:  2π mode  

 
 To minimize excess RF power 

 Make drift tubes/gaps resonant to RF frequency 
 In 2π mode, currents in walls separating two subsequent 
    cavities cancel; tubes are passive 
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Advanced Acceleration Methods 
 How far do accelerating gradients go? 

 Superconducting RF acceleration: ~40MV/m 
 CLIC: ~100MV/m 
 Two beam accelerator: drive beam couples to main beam 

 Dielectric wall acceleration: ~100MV/m 
 Induction acceleerator, very high gradient insulators 

 Dielectric wakefield acceleration: ~GV/m 
 Laser plasma acceleration: ~30GV/m 
 Electrons to 1GeV in 3.3cm 
 Particles ride in wake of plasma charge separation wave 
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Cyclotron Again 
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 Recall that for a constant B field 
 
 
 Radius/circumference of orbit scale with  
   velocity 

 
 Apply AC electric field in the gap at frequency frf 
 Particles accelerate until they drop out of resonance 

 
 

 
 Synchrocyclotrons: accelerate particles in bunches (not DC beam) and 

reduce RF frequency 
 Isochronous cyclotron: keep constant RF frequency and increase 

magnetic field with radius  



Synchrotron 
 Synchrotron is a synchronous accelerator, which has a synchronous RF 

phase for which the energy gain fits the increase of the magnetic field at 
each turn. 
 Separated magnetic fields: dipole, quadrupole, sextupole ……  
 Magnetic fields only present over the actual region of particle orbits 
 Aperture of beams is order of cm or mm 
 1944 V.Veksler published the principle, 1945 E.McMillan constructed the first electron 

synchrotron, 1945 S.M Oliphant designed the first proton synchrotron 
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Synchrotron Radiation Source 
 Synchrotron light source (a source of electromagnetic radiation) 

 Converts the high-energy electron energy into photons when the 
electron is directed into bending magnets and insertion devices 
(undulators or wigglers) 

 Applies the synchrotron light in condensed matter physics, material 
science, biology and medicine to probe the structure of matter from the 
sub-nanometer level of electron structure to the micrometer and 
millimeter level important in medical imaging. 
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BNL Cosmotron 

 
 
 
 
 
 
 
 
 
 
 
 

 1953-1968, proton energy 3.3GeV, weak focusing, 
first external fixed target experiments 25 



LBL Bevatron 
 
 
 
 
 
 
 
 
 
 
 
 

 1954, largest weak-focusing proton synchrotron, beam energy 6.2GeV 
 Discovered antiproton 1955,1959 Nobel for Segre/Chamberlain 
            (became Bevelac, decommissioned 1993, demolished recently) 
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Ed McMillan and Ed Lofgren 



BNL AGS 
 
 
 
 
 
 
 
 

 1960-, the first large synchrotron with alternating gradient, “strong 
focusing” magnets, greatly reduced the required aperture of the beam, and 
size and cost of the bending magnets. 

 Three Nobel Prizes: 
 1976, Samuel C.C. Ting (J part of J/Ψ and the charm quark) 
 1980, J. Cronin and V. Fitch (CP violation by experimenting with Kaons) 
 1962, L.Lederman, M.Schwartz and J.Steingerger (muon neutrino) 27 



Colliders 

28 CERN, Geneva, Switzerland 

Fermilab, Chicago 

SLAC, California 

Brookhaven, New York 



Energy of Beam Particles 
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Induction Accelerators I 
 Faraday’s Law : 
 
 Induction LINAC: 

  developed by N.C.Christofilos in 50’s for acceleration of high-intensity 
beams 

 employs a ferrite core arranged in a cylindrically symmetric 
configuration to produce an inductive load to a voltage gap. When an 
external current source is discharged through the circuit, the electric 
field at the voltage gap along the beam axis is used to accelerate the 
beam 

 properly pulsed stack of modules can be used to accelerate high 
intensity short-pulse beams with a gradient of about 1 MeV/m and a 
power efficiency of about 50%. 
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Induction Accelerator III 
 Induction Synchrotron 

 
              
            CERN Courier Mar 30, 2005 

 
 
 In 2004, for the first time, a bunch of protons in the synchrotron has 

been accelerated by an induction method by K Takayama et al.. 
 The idea was to overcome shortcomings of RF synchrotron, in particular 

the limited longitudinal phase-space available for the acceleration of 
charged particles. 

 The technique may overcome certain effects that normally limit intensity 
achieved in a synchrotron beam and could prove to be an important 
advance for future proton colliders  
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