IUAS 2014

Jefferson Lab

Spin Sum Rules and 3D Nucleon Structure (2/6)

Cédric Lorcé

IPN Orsay - IFPA Liège

June 2-20, 2014, JLab, Newport News, Virginia, USA
Université
de Liège

Outline

Lecture 1

- Introduction
- Tour in phase space
- Galileo vs Lorentz

Lecture 2

- Photon point of view
- Galileo vs Lorentz : round 2
- Nucleon 1D picture

Forms of dynamics

Space-time foliation

Light-front components

$$
a^{ \pm}=\frac{1}{\sqrt{2}}\left(a^{0} \pm a^{3}\right)
$$

Time	x^{0}	x^{+}
Space	\vec{x}	\vec{x}_{\perp}, x^{-}
Energy	p^{0}	p^{-}
Momentum	\vec{p}	\vec{p}

Instant-form dynamics

Light-front form dynamics

Instant form vs light-front form

Ordinary point of view

Instant form vs light-front form

Photon point of view $\quad x^{+}=\frac{1}{\sqrt{2}}(t+z)$

Initial frame

Boosted frame

$$
\begin{aligned}
x^{\prime 0} & =\frac{x^{0}+v x^{3}}{\sqrt{1-v^{2}}} \\
x^{\prime 3} & =\frac{x^{3}+v x^{0}}{\sqrt{1-v^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
x^{\prime+} & =\sqrt{\frac{1+v}{1-v}} x^{+} \\
x^{\prime-} & =\sqrt{\frac{1-v}{1+v}} x^{-}
\end{aligned}
$$

(Quasi) infinite-momentum frame

Transverse space-time symmetry is Galilean

$$
\begin{aligned}
K_{\perp}^{1} & =M^{+1} & J_{\perp}^{1} & =M^{-1} \\
& =\frac{1}{\sqrt{2}}\left(K^{1}+J^{2}\right) & & =\frac{1}{\sqrt{2}}\left(K^{1}-J^{2}\right) \\
K_{\perp}^{2} & =M^{+2} & J_{\perp}^{2} & =M^{-2} \\
& =\frac{1}{\sqrt{2}}\left(K^{2}-J^{1}\right) & & =\frac{1}{\sqrt{2}}\left(K^{2}+J^{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
{\left[J^{3}, J_{\perp}^{i}\right] } & =i \epsilon^{3 i j} J_{\perp}^{j} \\
{\left[J^{3}, K_{\perp}^{i}\right] } & =i \epsilon^{3 i j} K_{\perp}^{j} \\
{\left[K_{\perp}^{i}, K_{\perp}^{j}\right] } & =0
\end{aligned}
$$

$$
\begin{aligned}
{\left[K_{\perp}^{i}, P^{-}\right] } & =-i P_{\perp}^{i} \\
{\left[K_{\perp}^{i}, P_{\perp}^{j}\right] } & =-i \delta_{\perp}^{i j} P^{+} \\
{\left[K_{\perp}^{i}, P^{+}\right] } & =\left[J^{3}, P^{+}\right]=0
\end{aligned}
$$

Transverse position operator can be defined!

$$
\begin{aligned}
& K_{\perp}^{i}=-P^{+} R_{\perp}^{i} \quad \rightleftarrows \quad\left[R_{\perp}^{i}, P_{\perp}^{j}\right]=i \delta_{\perp}^{i j} \mathbb{1} \\
& {\left[R_{\perp}^{i}, R_{\perp}^{j}\right]=0} \\
& {\left[J^{3}, R_{\perp}^{i}\right]=i \epsilon^{3 i j} R_{\perp}^{j}}
\end{aligned}
$$

Longitudinal momentum plays the role of mass in the transverse plane $\quad P^{+} \sim M$

Transverse boost

$$
p^{\prime+}=p^{+} \quad \vec{p}_{\perp}^{\prime}=\vec{p}_{\perp}+p^{+} \vec{v}_{\perp}
$$

Quasi-probabilistic interpretation

What about the further issues with Special Relativity ?

Transverse boosts are Galilean
\longrightarrow No transverse Lorentz contraction! $\int \mathrm{d} r^{-} \longrightarrow$ No sensitivity to longitudinal Lorentz contraction !

Particle number is conserved in Drell-Yan frame

Conclusion : quasi-probabilistic interpretation is possible !

Non-relativistic phase space

Localized state in momentum space

$$
\begin{aligned}
|\Psi\rangle & =|\vec{P}\rangle \\
|\Psi\rangle & =|\vec{R}\rangle \\
& =\int \frac{\mathrm{d}^{3} P}{(2 \pi)^{3}} e^{-i \vec{P} \cdot \vec{R}}|\vec{P}\rangle
\end{aligned}
$$

in position space
$\underset{\text { momentum }}{\text { CoM }} \vec{P}=\sum_{i} \vec{k}_{i}$
$\underset{\text { position }}{\text { Com }} \quad \vec{R}=\frac{\sum_{i} m_{i} \vec{r}_{i}}{\sum_{i} m_{i}}$

Equal-time Wigner operator

$$
\widehat{W}(\vec{k}, \vec{r}, t)=\int \mathrm{d} k^{0} \widehat{W}(k, r)
$$

Intrinsic phase-space/Wigner distribution

$$
\rho_{W}(\vec{k}, \vec{r}, \nsim \overrightarrow{0}, \overrightarrow{0})=\int \frac{\mathrm{d}^{3} \Delta}{(2 \pi)^{3}}\left\langle\frac{\vec{\Delta}}{2}\right| \widehat{W}(\vec{k}, \vec{r}, t)\left|-\frac{\vec{\Delta}}{2}\right\rangle
$$

Identified with intrinsic variables

$$
\text { Time translation } \quad \widehat{O}(t)=e^{i \widehat{H} t} \widehat{O}(0) e^{-i \widehat{H} t}
$$

Localized state in momentum space
in position space

Equal light-front time Wigner operator
[Burkardt (2000)]
[Burkardt (2003)]

$$
\widehat{W}\left(k^{+}, \vec{k}_{\perp}, r^{-}, \vec{r}_{\perp}, r^{+}\right)=\int \mathrm{d} k^{-} \widehat{W}(k, r)
$$

[Ji (2003)]
[Belitsky, Ji, Yuan (2004)]

Intrinsic relativistic phase-space/Wigner distribution

$$
\left.\begin{array}{l}
\quad \begin{array}{l}
\rho_{W}\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right)
\end{array}=\frac{P^{+}}{\left\langle P^{+} \mid P^{+}\right\rangle} \int \mathrm{d} r^{-} \frac{\mathrm{d}^{2} \Delta_{\perp}}{(2 \pi)^{2}}\left\langle P^{+}, \frac{\vec{\Delta}_{\perp}}{2}\right| \widehat{W}\left(x P^{+}, \vec{k}_{\perp}, r^{-}, \vec{b}_{\perp}, r^{+}\right)\left|P^{+},-\frac{\vec{\Delta}_{\perp}}{2}\right\rangle \\
x=\frac{k^{+}}{P^{+}} \\
\text {Boost invariant }
\end{array}=\frac{1}{2} \int \frac{\mathrm{~d}^{2} \Delta_{\perp}}{(2 \pi)^{2}}\left\langle P^{+}, \frac{\vec{\Delta}_{\perp}}{2}\right| \widehat{W}\left(x P^{+}, \vec{k}_{\perp}, 0, \vec{b}_{\perp}, 0\right)\left|P^{+},-\frac{\vec{\Delta}_{\perp}}{2}\right\rangle\right)
$$

$$
\int \mathrm{d} k^{+} f\left(k^{+}\right)=\int \mathrm{d} x P^{+} f\left(x P^{+}\right)
$$

Space-time translation

$$
\widehat{O}(r)=e^{i \widehat{P} \cdot r} \widehat{O}(0) e^{-i \widehat{P} \cdot r}
$$

$$
\text { Normalization } \quad\left\langle P^{+} \mid P^{+}\right\rangle=2 P^{+} 2 \pi \delta(0)
$$

$$
\begin{aligned}
& |\Psi\rangle=\left|P^{+}, \vec{P}_{\perp}\right\rangle \quad \begin{array}{c}
\text { 《CoM» } \\
\text { momentum }
\end{array} \vec{P}_{\perp}=\sum_{i} \vec{k}_{i \perp} \\
& \begin{aligned}
|\Psi\rangle & =\left|P^{+}, \vec{R}_{\perp}\right\rangle \\
& =\int \frac{\mathrm{d}^{2} P_{\perp}}{(2 \pi)^{2}} e^{-i \vec{P}_{\perp} \cdot \vec{R}_{\perp}}\left|P^{+}, \vec{P}_{\perp}\right\rangle
\end{aligned}
\end{aligned}
$$

Relativistic phase space

Our intuition is instant form and not light-front form

NB: $\quad \rho_{W}\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right)$ is invariant under light-front boosts

It can be thought as instant form phase-space/Wigner distribution in IMF !

In IMF, the nucleon looks like a pancake
[C.L., Pasquini (2011)]

Phase-space/Wigner distributions are Fourier transforms

$$
\begin{aligned}
\rho_{W}\left(x, \vec{k}_{\perp}, \vec{b}_{\perp}\right) & =\frac{1}{2} \int \frac{\mathrm{~d}^{2} \Delta_{\perp}}{(2 \pi)^{2}}\left\langle P^{+}, \frac{\vec{\Delta}_{\perp}}{2}\right| \widehat{W}\left(x P^{+}, \vec{k}_{\perp}, 0, \vec{b}_{\perp}, 0\right)\left|P^{+},-\frac{\vec{\Delta}_{\perp}}{2}\right\rangle \\
& =\int \frac{\mathrm{d}^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{-i \vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}} W\left(x, 0, \vec{k}_{\perp}, \vec{\Delta}_{\perp}\right) \quad \begin{array}{l}
\text { Space-time translation } \\
\widehat{O}(r)=e^{i \widehat{P} \cdot r} \widehat{O}(0) e^{-i \widehat{P} \cdot r}
\end{array}
\end{aligned}
$$

General parton correlator

$$
W\left(x, \xi, \vec{k}_{\perp}, \vec{\Delta}_{\perp}\right)=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-} \mathrm{d}^{2} z_{\perp}}{(2 \pi)^{3}} e^{i k \cdot z}\left\langle p^{\prime}\right| \phi^{*}\left(-\frac{z}{2}\right) \phi\left(\frac{z}{2}\right)|p\rangle\right|_{z^{+}=0}
$$

Adding spin to the picture

$$
\begin{aligned}
& W_{\Lambda^{\prime} \Lambda}^{[\Gamma]}\left(x, \xi, \vec{k}_{\perp}, \vec{\Delta}_{\perp}\right)=\frac{1}{2} \int \frac{\mathrm{~d} z^{-} \mathrm{d}^{2} z_{\perp}}{(2 \pi)^{3}} e^{i k \cdot z}\left\langle p^{\prime}, \Lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right)\left.\Gamma \psi\left(\frac{z}{2}\right)|p, \Lambda\rangle\right|_{z^{+}=0} \\
& \uparrow \underset{\sim}{\text { Dirac matrix }} \\
& \sim \text { quark polarization }
\end{aligned}
$$

$$
\begin{gathered}
\text { Leading twist } \\
\gamma^{+} \sim \delta_{\lambda^{\prime} \lambda} \\
\gamma^{+} \gamma_{5} \sim\left(\tau_{3}\right)_{\lambda^{\prime} \lambda} \\
i \sigma^{j+} \gamma_{5} \sim\left(\tau_{j}\right)_{\lambda^{\prime} \lambda}
\end{gathered}
$$

Adding spin and color to the picture

$$
W_{\Lambda^{\prime}{ }_{\Lambda}}^{[\Gamma]}\left(x, \xi, \vec{k}_{\perp}, \vec{\Delta}_{\perp} ; \mathcal{W}\right)=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-} \mathrm{d}^{2} z_{\perp}}{(2 \pi)^{3}} e^{i k \cdot z}\left\langle p^{\prime}, \Lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W}_{-\frac{z}{2} \frac{z}{2}} \psi\left(\frac{z}{2}\right)|p, \Lambda\rangle\right|_{z^{+}=0}
$$

Very very very complicated object not directly measurable
\longrightarrow Let's look for simpler measurable correlators

Deep inelastic scattering

Incoherent scattering

Deep inelastic scattering

Incoherent scattering

Deep inelastic scattering

Parton model

$$
\mathrm{d} \sigma^{l p \rightarrow l X} \sim \sum_{i} f_{i}(x)
$$

Probability to find parton i with momentum fraction x

Deep inelastic scattering

Cross-section must not depend on $\mu \quad \frac{\mathrm{d} \sigma^{l p \rightarrow l X}}{\mathrm{~d} \ln \mu}=0$

DGLAP evolution equations

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \ln \mu} f_{i}\left(x, \mu^{2}\right) & =\sum_{j} \int_{x}^{1} \frac{\mathrm{~d} y}{y} P_{i j}\left(\frac{x}{y}\right) f_{j}\left(y, \mu^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} \ln \mu} C_{i}\left(x, \frac{Q^{2}}{\mu^{2}}\right) & =-\sum_{j} \int_{x}^{1} \frac{\mathrm{~d} y}{y} C_{j}\left(y, \frac{Q^{2}}{\mu^{2}}\right) P_{j i}\left(\frac{x}{y}\right)
\end{aligned}
$$

Splitting functions

Parton distribution functions (PDFs)

Optical theorem

Final-state cut

2

PDF correlator

$$
\begin{aligned}
\mathcal{F}_{\Lambda^{\prime} \Lambda}^{[\Gamma]}(x) & =\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P, \Lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W} \psi\left(\frac{z}{2}\right)|P, \Lambda\rangle\right|_{z^{+}=z_{\perp}=0} \\
& =\int \mathrm{d}^{2} k_{\perp} W_{\Lambda^{\prime} \Lambda}^{[\Gamma]}\left(x, 0, \vec{k}_{\perp}, \overrightarrow{0}_{\perp}\right)
\end{aligned}
$$

Parametrization

$$
\mathcal{F}_{\Lambda^{\prime} \Lambda}^{[\Gamma]}(x)=\sum_{i}\left[\bar{u}\left(P, \Lambda^{\prime}\right) \Gamma_{i} u(P, \Lambda)\right] \operatorname{PDF}_{i}(x)
$$

Parton distribution functions (PDFs)

Vector Quark number

Axial Quark helicity

Tensor Quark transversity

Summary

Lecture 2

- Light-front coordinates are very convenient
- Relativistic phase space has 2+3 dimensions
- PDFs provide 1D pictures of the nucleon

