Nuclear Physics from Lattice QCD (part 1)

 The why's, what's and how's...
Raúl Briceño

Jefferson Lab

Outline

First half:
DWhy QCD/Lattice QCD?
DWhat's Lattice QCD?
DSymmetry?
Second half:
DMasses \& decay constants of single particles
DScattering, resonances \& bound states
\square Decays, form factors, etc.

Unfolding QCD

$$
\mathcal{L}_{\mathrm{QCD}}=\bar{\psi}_{\mathrm{f}}\left(\mathrm{i} \nsupseteq-\mathrm{m}_{\mathrm{f}}\right) \psi_{\mathrm{f}}-\frac{1}{4} \operatorname{tr}(\mathrm{GG})
$$

"chromo"

quarks \& gluons carry "color"!

Warning: Not REAL color! It is like charge in QED, there are three types of this "charge": red, blue, green!
quarks come in 6 different types of flavor!

Quantum chromodynamics

$$
\mathcal{L}_{\mathrm{QCD}}=\bar{\psi}_{\mathrm{f}}\left(\mathrm{i} \nsupseteq-\mathrm{m}_{\mathrm{f}}\right) \psi_{\mathrm{f}}-\frac{1}{4} \operatorname{tr}(\mathrm{GG})
$$

"chromo"

no free quarks!
quarks carry color, but bound states of quarks do NOT!

the proton

Bound states of quarks are "hadrons"

Unfolding QCD

$$
\mathcal{L}_{\mathrm{QCD}}=\bar{\psi}_{\mathrm{f}}\left(\mathrm{i} \not \mathrm{D}-\mathrm{m}_{\mathrm{f}}\right) \psi_{\mathrm{f}}-\frac{1}{4} \operatorname{tr}(\mathrm{GG})
$$

gluons can scatter

Unfolding QCD

$$
\mathcal{L}_{\mathrm{QCD}}=\bar{\psi}_{\mathrm{f}}\left(\mathrm{i} \emptyset \mathrm{D}-\mathrm{m}_{\mathrm{f}}\right) \psi_{\mathrm{f}}-\frac{1}{4} \operatorname{tr}(\mathrm{GG})
$$

gluons
0000

These effects make QCD look remarkably similar to QED!
quarks \& gluons couple

Unfolding QCD

$$
\mathcal{L}_{\mathrm{QCD}}=\bar{\psi}_{\mathrm{f}}\left(\mathrm{i} \not D-\mathrm{m}_{\mathrm{f}}\right) \psi_{\mathrm{f}}-\frac{1}{4} \operatorname{tr}(\mathrm{GG})
$$

These effects make QCD have

 remarkably different behavior from QED!
quarks \& gluons couple

gluons can decay

gluons can scatter

Perturbative vs. non-perturbative

$$
\begin{aligned}
\beta\left(\alpha_{s}\right) & =Q^{2} \frac{\partial g}{\partial Q^{2}}=-\left(b_{0} \alpha_{s}^{2}+b_{1} \alpha_{s}^{3}+b_{2} \alpha_{s}^{4}+\cdots\right) \\
b_{0} & =\left(33-2 n_{f}\right) /(12 \pi) \\
b_{1} & =\left(153-19 n_{f}\right) /\left(24 \pi^{2}\right) \\
b_{2} & =\left(2857-\frac{5033}{9} n_{f}+\frac{325}{27} n_{f}^{2}\right) /\left(128 \pi^{3}\right)
\end{aligned}
$$

$$
\alpha_{s}\left(Q^{2}\right) \approx \frac{1}{b_{0} \ln _{Q}}\left(1-\frac{b_{1}}{b_{0}^{2}} \frac{\ln t}{t}+\frac{b_{1}^{2}\left(\ln ^{2} t-\ln t-1\right)+b_{0} b_{2}}{b_{0}^{4} t^{2}}\right.
$$

$$
\left.-\frac{b_{1}^{3}\left(\ln ^{3} t-\frac{5}{2} \ln ^{2} t-2 \ln t+\frac{1}{2}\right)+3 b_{0} b_{1} b_{2} \ln t-\frac{1}{2} b_{0}^{2} b_{3}}{b_{0}^{6} t^{3}}\right)
$$

$$
\ln _{q} \equiv \ln \left(\frac{Q^{2}}{\Lambda_{Q C D}^{2}}\right), \quad \Lambda_{Q C D} \sim 200 \mathrm{MeV}
$$

Non-perturbative QCD

Three significant features of QCD
allows us to write down a theory in
terms of quarks \mathcal{E} gluons
\& asymptotic freedom

gives insight as to why the longdistance behavior of the strong nuclear force is dominated by pionexchange, among many other things.
\% spontaneous chiral symmetry breaking
The last two are non-perturbative characteristic of
QCD. Any hope to understand these, requires us to
construct a non-perturbative framework for studying
QCD at low-energies.

Non-perturbative QCD

Non-perturbative model-independent QCD tools:
\& EFT (See talk by Dr: Danilkin,...)
parametrize analytic behavior of low-energy
phenomena, but limited predictive power!
\& Lattice QCD
abundant predictive power, at the cost of loosing analytic handle of QCD

Lattice QCD:
\& The only fully predictive tool we have for lowenergy QCD
\& Numerical QCD
\& Requires introducing well understood and controlled systematic errors
\& LQCD is not a model! It's simply a way to regularized QCD.

Outline

First half:
V Why QCD/Lattice QCD?
DWhat's Lattice QCD?
\square Symmetry?
Second half:
DMasses \& decay constants of single particles
■Scattering, resonances \& bound states

Lattice QCD

Numerical quantum chromodynamics (QCD)

Ken Wilson 1936-2013

Lattice QCD

Definition \#1

- "Lattice QCD is the formulation of QCD in a finite (L^{3} by $\left.T\right)$, discretized 4D Euclidean spacetime. The basic building block is the numerical $4 D$ Euclidean path integral."

$$
Z_{T}=\int \mathcal{D}[\psi, \bar{\psi}, U] e^{-S_{E}[\psi, \bar{\psi}, U, L, T]}
$$

Definition \#2

- "Lattice QCD refers to the numerical evaluation of quantum statistical mechanical properties of QCD in a discretized, finite volume $\left(L^{3}\right)$. The basic building block is the canonical partition function, which is evaluated a finite temperature $1 / T$."

$$
Z_{T}=\operatorname{tr}\left[e^{-T \hat{H}_{Q C D}[L]}\right]
$$

A sketch for a scalar field theory

I claim that this equality holds for any QFT. To avoid technicalities regarding an SU(3) gauge theory, I will show this equivalence for a standard scalar field theory with an arbitrary set of interactions. We start with the second definition, and we must define the Hamiltonian for this theory:

$$
\hat{H}=\int d^{3} x\left(\frac{1}{2} \hat{\Pi}^{2}(t, \mathbf{x})+\frac{1}{2}(\nabla \hat{\Phi}(t, \mathbf{x}))^{2}+\frac{m^{2}}{2} \hat{\Phi}^{2}(t, \mathbf{x})+V(\hat{\Phi}(t, \mathbf{x}))\right)
$$

The field operator and its canonical momentum operator, satisfy the standard equal time commutation relations:

$$
[\hat{\Phi}(t, \mathbf{x}), \hat{\Pi}(t, \mathbf{y})]=i \delta(\mathbf{x}-\mathbf{y}), \quad[\hat{\Phi}(t, \mathbf{x}), \hat{\Phi}(t, \mathbf{y})]=0, \quad[\hat{\Pi}(t, \mathbf{x}), \hat{\Pi}(t, \mathbf{y})]=0
$$

Question: What is the relation between the field operator and the canonical momentum?

$$
\hat{\Pi}(t, \mathbf{x}) \equiv \frac{\partial \mathcal{L}\left[\hat{\Phi}(t, \mathbf{x}), \partial_{\mu} \hat{\Phi}(t, \mathbf{x})\right]}{\partial\left(\partial_{t} \hat{\Phi}(t, \mathbf{x})\right)}=\partial_{t} \hat{\Phi}(t, \mathbf{x})
$$

A sketch for a scalar field theory

In order to evaluate any meaningful QFT we must defined a UV regularization scheme. The standard continuum UV regularization is dimensional regularization ("dim reg") since it preserves all the symmetries of the underlying theory, but of course there are many others (e.g., Pauli Villars, hard momentum cutoff, etc.). Alternatively, one could choose to study the QFT on a lattice. The basic idea is that the continuous spacetime is replaced by a 3D finite lattice

Boundary conditions needed. Typical choice is periodic boundaries, but one could pick antiperiodic, twisted, Dirichlet, etc.

A sketch for a scalar field theory

In order to write down the lattice scalar Hamiltonian, we must first discretize derivative:

$$
\partial_{j} \hat{\Phi}(t, \mathbf{x})=\frac{\hat{\Phi}(\mathbf{n}+\hat{j})-\hat{\Phi}(\mathbf{n}-\hat{j})}{2 a}+\mathcal{O}\left(a^{2}\right)
$$

Note the change in the arguments of the field operators. With this we write the discretized Hamiltonian as at this order:
$\hat{H}=\hat{H}_{0}+\hat{U}, \quad \hat{H}_{0}=a^{3} \sum_{\mathbf{n}} \frac{1}{2} \hat{\Pi}^{2}(\mathbf{n})$
$\hat{U}=a^{3} \sum_{\mathbf{n}}\left(\frac{1}{2} \sum_{j=\{1,2,3\}}\left(\frac{\hat{\Phi}(\mathbf{n}+\hat{j})-\hat{\Phi}(\mathbf{n}-\hat{j})}{2 a}\right)^{2}+\frac{m^{2}}{2} \hat{\Phi}^{2}(\mathbf{n})+V(\hat{\Phi}(\mathbf{n}))\right)$
We have neglected high order discretization corrections, but in practice we can keep track of these, and for actual Lattice QCD one must include higher order corrections.
Having a discretized spacetime, the commutation relations now read:

$$
[\hat{\Phi}(\mathbf{n}), \hat{\Pi}(\mathbf{n})]=\frac{i \delta_{\mathbf{n}, \mathbf{n}^{\prime}}}{a^{3}}, \quad\left[\hat{\Phi}(\mathbf{n}), \hat{\Phi}\left(\mathbf{n}^{\prime}\right)\right]=0, \quad\left[\hat{\Pi}(\mathbf{n}), \hat{\Pi}\left(\mathbf{n}^{\prime}\right)\right]=0
$$

A sketch for a scalar field theory

In order to evaluate the trace, we us the basis: $\hat{\Phi}(\mathbf{n})|\Phi\rangle=|\Phi\rangle \Phi(\mathbf{n})$
Which satisfies:

$$
\begin{aligned}
\left\langle\Phi^{\prime} \mid \Phi\right\rangle & =\delta\left(\Phi^{\prime}-\Phi\right) \equiv \prod_{\mathbf{n}} \delta\left(\Phi^{\prime}(\mathbf{n})-\Phi(\mathbf{n})\right) \\
\mathbb{I} & =\int \mathcal{D} \Phi|\Phi\rangle\langle\Phi|, \quad \mathcal{D} \Phi \equiv \prod_{\mathbf{n}} d \Phi(\mathbf{n})
\end{aligned}
$$

note: even though we have discretized spacetime, the fields can take on a continuous set of values at each point in space

Now I will evaluate the trace in the following manner:

$$
\begin{aligned}
& Z_{T}=\operatorname{tr}\left[e^{-T \hat{H}}\right] \equiv \int \mathcal{D} \Phi\langle\Phi| e^{-T \hat{H}}|\Phi\rangle=\lim _{N_{T} \rightarrow \infty} \int \mathcal{D} \Phi\langle\Phi| \widehat{W}_{\epsilon}^{N_{T}}|\Phi\rangle \\
&=\lim _{N_{T} \rightarrow \infty} \int\left[\prod_{j} \mathcal{D} \Phi_{j}\right]\left\langle\Phi_{1}\right| \widehat{W}_{\epsilon}\left|\Phi_{2}\right\rangle\left\langle\Phi_{2}\right| \widehat{W}_{\epsilon}\left|\Phi_{3}\right\rangle \cdots\left\langle\Phi_{N}-1\right| \widehat{W}_{\epsilon}\left|\Phi_{1}\right\rangle \\
& \text { are th }
\end{aligned}
$$

note: the fact that the initial and final states are the same leads to periodic BCs

Where we have introduced: $\widehat{W}_{\epsilon} \equiv e^{-\epsilon \hat{U} / 2} e^{-\epsilon \hat{H}_{0}} e^{-\epsilon \hat{U} / 2}$
Last non-trivial step...

$$
\begin{aligned}
\left\langle\Phi_{j}\right| \widehat{W}_{\epsilon}\left|\Phi_{j+1}\right\rangle & =\left\langle\Phi_{j}\right| e^{-\epsilon \hat{U} / 2} e^{-\epsilon \hat{H}_{0}} e^{-\epsilon \hat{U} / 2}\left|\Phi_{j+1}\right\rangle \\
& =e^{-\epsilon\left(U\left[\Phi_{j}\right]+U\left[\Phi_{j+1}\right]\right) / 2}\left\langle\Phi_{j}\right| e^{-\epsilon \hat{H}_{0}}\left|\Phi_{j+1}\right\rangle \\
& =\sqrt{\frac{a^{3}}{2 \pi \epsilon} N^{3}} e^{-\epsilon\left(U\left[\Phi_{j}\right]+U\left[\Phi_{j+1}\right]\right) / 2-\left(a^{3} / 2 \epsilon\right) \sum_{\mathbf{n}}\left(\Phi_{j+1}(\mathbf{n})-\Phi_{j}(\mathbf{n})\right)^{2}}
\end{aligned}
$$

A sketch for a scalar field theory

Now we simply need to recognize that...
$S_{E}[\Phi]=a^{3} \epsilon \sum_{\mathbf{n}} \sum_{j=0}^{N_{T-1}}\left(\frac{1}{2}\left(\frac{\Phi_{j+1}(\mathbf{n})-\Phi_{j}(\mathbf{n})}{\epsilon}\right)^{2}+\frac{1}{2} \sum_{\hat{e}_{k}}\left(\frac{\Phi_{j}\left(\mathbf{n}+\hat{e}_{k}\right)-\Phi_{j}\left(\mathbf{n}-\hat{e}_{k}\right)}{2 a}\right)^{2}+\frac{m^{2}}{2} \Phi_{j}^{2}(\mathbf{n})+V\left(\Phi_{j}(\mathbf{n})\right)\right.$
Important features to recognize is the fact that the relative sign between the time and spatial derivative is the same. This is due to the fact that in Euclidean spacetime the metric is just the 4D Kronecker delta function. Also, the other signs make sense.

Putting all the pieces together we get:

$$
\operatorname{tr}\left[e^{-T \hat{H}}\right]=\int\left[\prod_{j} \mathcal{D} \Phi_{j}\right] e^{-S_{E}[\Phi]}
$$

Question?

Perfect kime for questions!

Observables

Simplest example is the two-point correlation function. This is related to the probability of creating a state at some initial time, letting it propagate and then annihilating it. Some examples of operators are: $\mathcal{O}=\Phi, \mathcal{O}=\Phi^{n}, \mathcal{O}=\Phi \partial_{\mu} \Phi$

There are three representations for this object.
(1) $C(t)=\left\langle\mathcal{O}(t) \mathcal{O}^{\dagger}(0)\right\rangle_{T} \equiv \frac{1}{Z_{T}} \operatorname{tr}\left[e^{-\hat{H} T} \mathcal{O}(t) \mathcal{O}^{\dagger}(0)\right]$
$\mathrm{t}=$ separation time between source and sink. T=temporal extent of the lattice, i.e., how big is the time part of our spacetime volume...

$$
=\frac{1}{Z_{T}} \operatorname{tr}\left[e^{-\hat{H}(T-t)} \mathcal{O}(0) e^{-\hat{H} t} \mathcal{O}^{\dagger}(0)\right]
$$

$$
\left.=\frac{1}{Z_{T}} \sum_{n, m} e^{-E_{n}(T-t)-E_{m} t}\left|\left\langle E_{n}\right| \mathcal{O}(0)\right| E_{m}\right\rangle\left.\right|^{2}
$$

This representation explains how to extract observables. For example, we know that by studying the exponential behavior of the correlation function, we can determine the spectrum and the matrix element of operators.

Observables

Simplest example is the two-point correlation function. This is related to the probability of creating a state at some initial time, letting it propagate and then annihilating it. Some examples of operators are: $\mathcal{O}=\Phi, \mathcal{O}=\Phi^{n}, \mathcal{O}=\Phi \partial_{\mu} \Phi$
There are three representations for this object.
$\left.(1) C(t)=\left\langle\mathcal{O}(t) \mathcal{O}^{\dagger}(0)\right\rangle_{T}=\frac{1}{Z_{T}} \sum_{n, m} e^{-E_{n}(T-t)-E_{m} t}\left|\left\langle E_{n}\right| \mathcal{O}(0)\right| E_{m}\right\rangle\left.\right|^{2}$
(2) $C(t)=\frac{1}{Z_{T}} \int\left[\prod_{j} \mathcal{D} \Phi_{j}\right] \mathcal{O}(t) \mathcal{O}^{\dagger}(0) e^{-S_{E}}$
this representation, as will become apparent shortly, allows us to evaluate correlation functions numerically

Observables

Simplest example is the two-point correlation function. This is related to the probability of creating a state at some initial time, letting it propagate and then annihilating it. Some examples of operators are: $\mathcal{O}=\Phi, \mathcal{O}=\Phi^{n}, \mathcal{O}=\Phi \partial_{\mu} \Phi$
There are three representations for this object.
(1) $\left.C(t)=\left\langle\mathcal{O}(t) \mathcal{O}^{\dagger}(0)\right\rangle_{T}=\frac{1}{Z_{T}} \sum_{n, m} e^{-E_{n}(T-t)-E_{m} t}\left|\left\langle E_{n}\right| \mathcal{O}(0)\right| E_{m}\right\rangle\left.\right|^{2}$
(2) $C(t)=\frac{1}{Z_{T}} \int\left[\prod_{j} \mathcal{D} \Phi_{j}\right] \mathcal{O}(t) \mathcal{O}^{\dagger}(0) e^{-S_{E}}$
(3) Sum over all Feynman diagrams: e.g., $\pi \pi \rightarrow \pi \pi$
mion oom

Why Euclidean?

Generically we have to evaluate an integral of the form: $\langle f[\Phi]\rangle_{T} \equiv \int\left[\prod_{j} \mathcal{D} \Phi_{j}\right] e^{-S_{E}[\Phi]} f[\Phi]$
We could attempt to evaluate this using brute-force numerical tools, but this is a high-dimensionality integral, e.g. if we have a single scalar field, and we truncate spacetime such that $\left(L^{3} x T\right)=\left(10^{3} x\right.$ 10), then we have to approximately evaluate 10,000 integrals. Using a mesh of only 10 points per integral, this would require summing over $\sim 1 \mathbf{1 0}^{10,000}$ elements! Typical LQCD calculations require integrating $\operatorname{SU(3)}$ gauge fields, which are functions of 8 parameters in spacetimes that are in the order of $\left(L^{3} \times T\right) \sim\left(40^{3} \times 100\right)$. This would be a complete disaster!!!
Instead we use Monte Carlo techniques. This requires defining a probability density: $e^{-S_{E}[\Phi]}$ over which we sample the different allowed configurations that the fields can take on. Note, the probability is maximum when the actions is minimized, which leads to classical solutions. Fluctuations away from this lead to quantum fluctuations.

Finally, the expectation value of this observable is the average \& uncertainty of the different measurements in the this weighted sample.

$$
\langle f[\Phi]\rangle_{T} \approx \bar{f}=\frac{1}{N_{G}} \sum_{g \in G} f\left[\Phi_{g}\right] \quad \sigma_{\langle f[\Phi]\rangle_{T}} \approx \frac{1}{N_{G}} \sqrt{\sum_{g \in G}\left(f\left[\Phi_{g}\right]-\bar{f}\right)}
$$

Some details on the Lattice QCD

Some basics about Lattice QCD
\% Quarks live in lattice sites
\& Gluons live in the links between sites
\% Fermions are integrated out exactly!

$$
\int \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{-\bar{\psi} \mathbb{M} \psi}=\operatorname{det}[\mathbb{M}]
$$

\& Gauge configurations are generated using Monte Carlo
\& Calculating propagators of quark at physical quark masses is hard! The majority of calculations are performed at unphysically heavy pion masses. This can be an advantage! Some calculations are performed at the physical point now!

$$
\left\langle\longrightarrow \mathbb{M}^{-1} \sim \frac{1}{m_{q}}\right.
$$

Outline

First half:
V Why QCD/Lattice QCD?
IV What's Lattice QCD?
$\square S y m m e t r y ?$
Second half:
DMasses \& decay constants of single particles
■Scattering, resonances \& bound states

What's symmetry got to do with it?

We have Wick-rotated our spacetime to have the wrong metric, discretized spacetime and at the end we truncated it. This cannot have been done at zero cost! What did we loose?

anyone?...anyone?

What's symmetry got to do with it?

We have Wick-rotated our spacetime to have the wrong metric, discretized spacetime and at the end we truncated it. This cannot have been done at zero cost! What did we loose?
\% Gauge symmetry remains intact!
\& No more Poincare symmetry $=($ translation $)+($ rotations $)+($ boost $)$ (in particular we don't have Lorentz symmetry and reduced rotational symmetry)
\% A continuous Euclidean spacetime has $=($ translation $)+($ rotations $)+$ (reflections)
\% Discretized lattice have less allowed rotations (hypercubic for isotropic lattices)

- Finite volumes have less allowed rotations (cubic for cubic volumes)
\& Chiral symmetry (in the massless quark limit) is partially lost. It is modified in a non-trivial way.

Symmetry and physics

Symmetry and phy

Final remarks

Hadronic spectra: $\mathrm{E}\left(\mathrm{a}, \mathrm{L}, \mathrm{T}, \mathrm{m}_{\mathrm{q}}\right)$
\& Matrix elements: $\mathcal{A}\left(\mathrm{a}, \mathrm{L}, \mathrm{T}, \mathrm{m}_{\mathrm{q}}\right)$

Euclidean Spacetime Formalism (this afternoon!)
\notin Limits: $\left(\mathrm{a} \rightarrow 0, \mathrm{~L} \rightarrow \infty, \mathrm{~T} \rightarrow \infty, \mathrm{~m}_{\mathrm{q}} \rightarrow \mathrm{m}_{\mathrm{q}}^{\text {phys }}\right)$
\& Physics: hadron masses, decay constants, scattering parameters, form factors,...

Minkowski Spacetime

Nuclear Physics from Lattice QCD (part 2)

 The why's, what's and how's...
Raúl Briceño

Jefferson Lab

Outline

First half:
■ Why QCD/Lattice QCD?
IV What's Lattice QCD?
\square Symmetry?
Second half:
DMasses \& decay constants of single particles
\square Scattering, resonances \& bound states

Recap

Formalism
Limits: $\left(\mathrm{a} \rightarrow 0, \mathrm{~L} \rightarrow \infty, \mathrm{~T} \rightarrow \infty, \mathrm{~m}_{\mathrm{q}} \rightarrow \mathrm{m}_{\mathrm{q}}^{\text {phys }}\right)$

* Physics: hadron masses, decay constants, scattering parameters, form factors,...

Minkowski Spacetime

Recap

\& Hadronic spectra: E(a. I. T. m.
Disclaimer: for the remainder of today, I will forget about discretization effects...

$$
\notin \text { Limits: }\left(\mathrm{a} \rightarrow 0, \mathrm{~L} \rightarrow \infty, \mathrm{~T} \rightarrow \infty, \mathrm{~m}_{\mathrm{q}} \rightarrow \mathrm{~m}_{\mathrm{q}}^{\text {phys }}\right)
$$

\% Physics: hadron masses, decay constants, scattering parameters, form factors,...

Minkowski Spacetime

Recap

Simplest example is the two-point correlation function. This is related to the probability of creating a state at some initial time, letting it propagate and then annihilating it. Some examples of operators are: $\mathcal{O}=\Phi, \mathcal{O}=\Phi^{n}, \mathcal{O}=\Phi \partial_{\mu} \Phi$
There are three representations for this object.
$\left.(1) C(t)=\left\langle\mathcal{O}(t) \mathcal{O}^{\dagger}(0)\right\rangle_{T}=\frac{1}{Z_{T}} \sum_{n, m} e^{-E_{n}(T-t)-E_{m} t}\left|\left\langle E_{n}\right| \mathcal{O}(0)\right| E_{m}\right\rangle\left.\right|^{2}$
(2) $C(t)=\frac{1}{Z_{T}} \int\left[\prod_{j} \mathcal{D} \Phi_{j}\right] \mathcal{O}(t) \mathcal{O}^{\dagger}(0) e^{-S_{E}}$

3 Sum over all Feynman diagrams:
e.g., $\pi \pi \rightarrow \pi \pi$

$$
C(t)=\mathrm{F} \cdot \mathrm{~T} \cdot\{\text { ? }
$$

Physics

Kittens in a box

One particle in a finite volume

(developing some intuition)
Before diving into details, what should we expect? Consider the simple case when the ground state is much lighter than the first excited state, or when $t, T \gg 1 / E_{n}$:

$$
\left.C(t)=\left\langle\mathcal{O}(t) \mathcal{O}^{\dagger}(0)\right\rangle_{T}=\frac{1}{Z_{T}} \sum_{n, m} e^{-E_{n}(T-t)-E_{m} t}\left|\left\langle E_{n}\right| \mathcal{O}(0)\right| E_{m}\right\rangle\left.\right|^{2} \rightarrow \mathcal{A}_{T} \cosh \left[E_{0}(t-T / 2)\right]
$$

a constant that depends on the temporal extent

From the asymptotic behavior of the correlation function we get the energy of a single particle in a periodic box! How should we interpret this?
We should expect finite volume effects from the interaction of the particle with its various mirror images.
How large does the box need to be to be able to neglect finite volume effects?
$1 \mathrm{~cm}, 1 \mathrm{~m}, 1 \mathrm{~km} . .$. ? What sets this scale?

Hint: what dictates the long range piece of the nuclear force?

One particle in a finite volume

(mathematical tools)
Remember the third representation of the correlation functions? Just go ahead and calculate the correlation function:

$$
\begin{aligned}
C(P) & =--\Sigma+\Sigma-\Sigma+\cdots \\
& =\frac{i}{P^{2}-m_{0}^{2}+\Sigma\left(L, T, P^{2}\right)+i \epsilon} \equiv \frac{i Z_{h}(L, T)}{P^{2}-m_{h}(L, T)^{2}+i \epsilon}
\end{aligned}
$$

This result is generic and independent about the nature of the particle of interest. If we want to obtain the spectrum, for example, then we simply need to look at the pole of the propagator, which we can relate to the self-energy in the following self-consistent and perturbative fashion

$$
p^{2}=m_{0}^{2}-\Sigma\left(L, T, p^{2}\right)=m_{0}^{2}-\Sigma\left(L, T, m_{0}^{2}\right)+\cdots=\underbrace{m_{0}^{2}-\Sigma\left(\infty, \infty, m_{0}^{2}\right)}_{\left(m_{h}^{\text {phys }}\right)^{2}}-\underbrace{\left(\Sigma\left(L, T, m_{0}^{2}\right)-\Sigma\left(\infty, \infty, m_{0}^{2}\right)\right)}_{\delta \Sigma\left(L, T, m_{0}^{2}\right)}
$$

$$
=\left(m_{h}^{\text {phys }}\right)^{2}-\delta \Sigma\left(L, T,\left(m_{h}^{\text {phys }}\right)^{2}\right)+\cdots \equiv\left(m_{h}(L, T)\right)^{2}
$$

infinite volume mass

finite volume correction: if we can show that this quantity is small, then we are in business!

One particle in a finite volume

(mathematical tools)
In order to calculate self-energy consider a toy low-energy Lagrangian, say for some stable scalar meson (there's no such a thing, all stable mesons are pseudoscalars, but bare with me)

$$
\mathcal{L}_{t o y}=\frac{1}{2} \phi\left(-\partial^{2}-m^{2}\right) \phi-\frac{\lambda}{4!} \phi^{4}
$$

Remember, we live in a periodic volume:

Field operators will have the form: $\phi(x) \sim e^{i p \cdot x}$
Imposing period boundary conditions: $\phi(T, L)=\phi(0)$
Discretized momenta: $\mathbf{p}=\frac{2 \pi \mathbf{n}}{L}$ where $\mathbf{n}=[\{000\},\{001\},\{00-1\},\{010\}, \ldots]$
Matsubara frequencies: $\omega_{n_{0}}=\frac{2 \pi n_{0}}{T} \quad \begin{aligned} & \text { Due to time constraint, I will neglect finite T } \\ & \text { effects and make it infinite. This is a good } \\ & \text { approximation since one can show that } \\ & \text { corrections scale like } \exp (-T m \pi) \sim \exp (-10)\end{aligned}$

Answer: These are the numerical values that \mathbf{n}^{2} can take from 0 to 9 .

Field operators will have the form:

Imposing period boundary conditions: $\phi(T, L)=\phi(0)$ Discretized momenta: $\mathbf{p}=\frac{2 \pi \mathbf{n}}{L}$ where

$$
\mathbf{n}=[\{000\},\{001\},\{00-1\},\{010\}, \ldots]
$$

Answer: These are the numerical values that \mathbf{n}^{2} can take from 0 to 9 .
Question: What are $0,1,2,3,4,5,6,8,9$?
Proof (?): $\mathbf{n = \{ 0 0 0 \} , \mathbf { n } ^ { 2 } = \mathbf { 0 }}$

$$
\begin{aligned}
& \mathrm{n}=[\{001\},\{00-1\} . . .,\{-100\}], \mathrm{n}^{2}=1 \\
& \mathrm{n}=[\{011\},\{011\} \ldots,\{-1-10\}], \mathrm{n}^{2}=2 \\
& \mathbf{n}=[\{111\},\{11-1\} \ldots,\{-1-1-1\}], \mathbf{n}^{2}=3 \\
& \mathrm{n}=[\{002\},\{00-2\} \ldots,\{-200\}], \mathrm{n}^{2}=4 \\
& \mathrm{n}=[\{201\},\{20-1\} \ldots,\{-10-2\}], \mathrm{n}^{2}=5 \\
& \mathrm{n}=[\{211\},\{21-1\} \ldots,\{-1-1-2\}], \mathrm{n}^{2}=6 \\
& \mathrm{n}=[\{022\},\{02-2\} \ldots,\{-2-20\}], \mathrm{n}^{2}=8 \\
& n=[\{122\},\{12-2\} \ldots,\{-2-2-1\}], n^{2}=9
\end{aligned}
$$

One particle in a finite volume

(mathematical tools)
Finally we can write down the self-energy of our "toy pion":

$$
i \Sigma(L)=\frac{\lambda}{L^{3}} \sum_{\mathbf{n}} \int \frac{d k_{0}}{2 \pi} \frac{1}{k_{0}^{2}-\left(\frac{2 \pi \mathbf{n}}{L}\right)^{2}-m^{2}+i \epsilon}
$$

Using the Poisson resummation formula: $\frac{1}{L^{3}} \sum_{\mathbf{k}=\frac{2 \pi n}{L}} f(\mathbf{k})=\int \frac{d^{3} k}{(2 \pi)^{3}} f(\mathbf{k})+\sum_{\mathbf{n} \neq 0} \int \frac{d^{3} k}{(2 \pi)^{3}} f(\mathbf{k}) e^{i L \mathbf{n} \cdot \mathbf{k}}$

Again, this is exponentially suppressed, except
We want this to be zero! $\exp (-L m \pi) \sim \exp (-4)$ (nevertheless small).

Punch line: "get a big enough box and you might as well forget about the fact that you performed calculations in a finite Euclidean spacetime"

One example!

This is work by the NPLQCD Collaboration. You can find the electronic copy of the paper in this link.

Remember: $C_{\pi}(t) \rightarrow \mathcal{A}_{T, \pi} \cosh \left[m_{\pi}(t-T / 2)\right]$
Effective mass plot: $m_{\pi}^{e f f}(t) \equiv \cosh ^{-1}\left[\frac{C_{\pi}(t-1)+C_{\pi}(t+1)}{2 C_{\pi}(t)}\right] \rightarrow m_{\pi}$

define in lattice spacing units. Lattice spacing is a $\sim 0.09 \mathrm{fm}$, so this corresponds to a physical value of $m \pi \sim 0.2 \times 197 / 0.09 \mathrm{MeV} \sim 440 \mathrm{MeV}$.

One example!

Pion decay constant: QCD contribution to the amplitude for a charged pion to decay to a lepton+neutrino.

Outline

First half:
V Why QCD/Lattice QCD?
IV What's Lattice QCD?
\square Symmetry?
Second half:
IV Masses \& decay constants of single particles
\square Scattering, resonances \& bound states

Many-particles a finite volume?

With such success in the one-body sector, we would be tempted to just jump right in to study many-body physics!
Unfortunately, physics is not as kind to us...life get hard really quickly as you pile more and more particles in a box.
To start: if we calculate a two-particle energy, what would it mean?

infinite number of discrete
states separated by $1 / L^{3}$
$L=\infty$
$L \neq \infty$

Actual lattice results

in the meson sector

Hadron Spectrum Collaboration: [PRD] arXiv:1309.2608 [hep-lat] J. Dudek, R. Edwards, P. Guo \& C. Thomas (2013)

Actual lattice results

 in the meson sector

Hadron Spectrum Collaboration: [PRD] arXiv:1309.2608 [hep-lat] J. Dudek, R. Edwards, P. Guo \& C. Thomas (2013)

Reinventing the quantum-mechanical wheel

Two particles:

Probability conservation
Infinite volume scattering phase shift

Periodicity:

$$
\psi(L)=\psi(0)
$$

Quantization condition:

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

Reinventing the quantum-mechanical wheel
$L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n$

Sketch of 3+1D resu ${ }^{1 .}$

Consider a non-relativistic toy problem:

In non-relativistic limit:

$$
\begin{aligned}
& =\frac{-i}{(\lambda)^{-1}-\mathcal{G}^{\infty}} \\
(\lambda)^{-1} & =-(\mathcal{M})^{-1}+\mathcal{G}^{\infty}
\end{aligned}
$$

$$
i \mathcal{G}^{\infty}
$$

note: I have avoided having to talk about renormalization. This equality is exact:
however I choose to renormalize the RHS will lead to a different definition of the LHS.

Sketch of 3+1D result

Consider a non-relativistic toy problem:
$=-i \lambda \quad$ momentum independent

In non-relativistic limit:

Sketch of 3+1D result

We have: $(\lambda)^{-1}=-(\mathcal{M})^{-1}+\mathcal{G}^{\infty}$
Now, lets make the volume finite and obtain the
discretized momenta are summed over spectrum. This can be obtained from the poles of the momentum-space correlation function:

this diverges at the free energies as well, with the same magnitude but opposite sign!
Remember: $(\mathcal{M})^{-1} \sim \#(p \cot \delta-i p)$

We finally arrive at:

$$
p \cot \delta=\left[\frac{1}{L^{3}} \sum_{\mathbf{k}=2 \pi \mathbf{n} / L}-P . V . \int \frac{d^{3} k}{(2 \pi)^{3}}\right] \frac{4 \pi}{k^{2}-p^{2}}
$$

Sketch of 3+1D result

nemere ($)^{-1}=-(M)^{-1}+g^{x}$
Now, lets make the volume finite and obtain the
discretized momenta spectrum. This can be obtained from the poles of the are summed over momentum-space correlation function:

Therefore the poles sa
Remember: $(M)^{-1}$
We finally arrive at: $\quad p \cot \delta=\left[\frac{1}{L^{3}} \sum_{\mathbf{k}=2 \pi \mathbf{n} / L}-P . V . \int \frac{d^{3} k}{(2 \pi)^{3}}\right] \frac{4 \pi}{k^{2}-p^{2}}$

$$
p \cot \delta=\left[\frac{1}{L^{3}} \sum_{\mathbf{k}=2 \pi \mathbf{n} / L}-P . V . \int \frac{d^{3} k}{(2 \pi)^{3}}\right] \frac{4 \pi}{k^{2}-p^{2}}
$$

Remember the deuteron?

\& Lightest bound nucleus
\& Composed of one proton and one neutron \notin Finely tuned?
\& Can we study it in a box?

$\mathrm{r}_{\mathrm{d}} \sim 2 \mathrm{fm}$

Symmetry and physics

Remember these guys?

Less symmetry!
Something must be lost: angular momentum conservation!

The deuteron in a box

The deuteron in a box

decrease volume by a third

The deuteron in a box

RB, Z. Davoudi, T. C. Luu and M. J. Savage [PRD] (2013)

The deuteron in a box

The deuteron in a box

$x \circ$ he deuteron in a box

${ }^{2}$

Infinite volume deuteron

Note: only twice as big as the deuteron!

Another example: resonances

Another example: resonances

Outline

First half:
V Why QCD/Lattice QCD?
IV What's Lattice QCD?
\square Symmetry?
Second half:
IV Masses \& decay constants of single particles
[J Scattering, resonances \& bound states

Status of formalism

(a very bias estimate)
\& Spectroscopy/ scattering:

Form factors:

Status report \because Under ontrol

 : progress made/ more to come

\& Spectroscopy/ scattering:

Form factors:

\& Fundamental symmetries:

Final remarks

Lattice QCD is a vast field, with many intricacies and subtleties, here all I can give is a taste of the exciting and challenging aspects of this ever growing field. Lattice QCD has proven to be the most reliable first principles tool for studying low-energy QCD. In recent years it has become evident that we can actually study fundamental nuclear processes directly via LQCD, but just as in anything else in nuclear physics, this has proven to be technically challenging. Furthermore, it has forced us to think outside the box and come up with scheme to achieve our basic scientific goals. I hope that in the past two hours I have conveyed just that.

