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Unftolding QCD

quarks & gluons

v /7
C h rYomo carry “color”!

Warning: Not REAL color! It is like charge in QED, there are
three types of this “charge”: red, blue, green!

quarks come in 6 different types of flavor!



Quantum chromodynamics

quarks carry color, but

£/ 77
C h romo bound states of quarks

\ 4

do NOT!

the proton
Bound states of quarks

are “hadrons”

no free quarks!



Unftolding QCD

quarks & gluons couple gluons can decay gluons can scatter



Unftolding QCD

These effects make QCD look

remarkably similar to QED!

quarks & gluons couple



Unftolding QCD

These effects make QCD have

remarkably different behavior from QED!

gluons can decay gluons can scatter



Perturbative vs. non-perturbative
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QCD is both!



http://pdg.lbl.gov/2013/reviews/contents_sports.html
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Non-perturbative QCD

allows us to write down a theory in
terms of quarks & gluons

Three significant features of QCD

low-energy degrees of freedom are not
quarks & gluons, but rather hadrons

¢ asymptotic freedom

/ gives insight as to why the long-
O . distance behavior of the strong
w Conﬁnement ﬁ nuclear force is dominated by pion-

exchange, among many other things.

¢ spontaneous chiral symmetry breaking

The last two are non-perturbative characteristic of
QCD. Any hope to understand these, requires us to
construct a non-perturbative framework for studying

QCD at low-energies.



Non-perturbative QCD

Non-perturbative model-independent QCD tools:

|
‘5 EFT L } parametrize analytic behavior of low-energy
. (See talk by Dr. Danilkin,...) ' phenomena, but limited predictive power!

—

. nicely complimentary!
‘,5 Lattlce QCD abundant predictive power, at the cost of

loosing analytic handle of QCD /
Lattice QCD:

¢ The only fully predictive tool we have for low-
energy QCD

& Numerical QCD

¢ Requires introducing well understood and controlled
systematic errors

& LQCD is not a model! It's simply a way to
regularized QCD.
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Lattice QCD

Definition #1

“Lattice QCD is the formulation of QCD in a finite (L° by T), discretized
4D Euclidean spacetime. The basic building block is the numerical 4D

Euclidean path integral.”

Jp = /D[w,lﬁ,U] e—SE[w,??Z,U,L,T]

Definition #2

“Lattice QCD refers to the numerical evaluation of quantum statistical

mechanical properties of QCD in a discretized, finite volume (L3). The

basic building block is the canonical partition function, which is

evaluated a finite temperature 1/T.”

ZT:tr €

—THqep|L]

one could also introduce a
chemical potential...this is
extremely challenging

/
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A sketch for a scalar field theory

[ claim that this equality holds for any QFT. To avoid technicalities regarding an SU(3)
gauge theory, I will show this equivalence for a standard scalar field theory with an
arbitrary set of interactions. We start with the second definition, and we must define

the Hamiltonian for this theory:

i — /d% (%ﬂz(t,x) + % (vé(t,x))Q + m;iﬂ(t,x) + V((f)(t,x)))

The field operator and its canonical momentum operator, satisfy the standard equal

time commutation relations:

B(tx) T(ty)| =id(x—y).  |B(Ex),(ty)| =0, [[Ex)1(ty)] =0

Question: What is the relation between the field operator and the canonical

oL {cﬁ(t, x), 9, d(t, X)]
0(0,D(t,x))

momentum?

A

[I(t,x) =

— 8té:)(t, X)



A sketch for a scalar field theory 2/5]

In order to evaluate any meaningful QFT we must defined a UV regularization scheme.
The standard continuum UV regularization is dimensional regularization ("dim reg”)
since it preserves all the symmetries of the underlying theory, but of course there are
many others (e.g., Pauli Villars, hard momentum cutoff, etc.). Alternatively, one could
choose to study the QFT on a lattice. The basic idea is that the continuous spacetime is

replaced by a 3D finite lattice

- -y
——————
- ~

a~ 0.05—0.15 fm ]

r1 =a(N —1)

[ ]

[ ]

a/ [}

[ ]

O—> H

[ ]

[ ]

note: the proton radius *

is in the order of 1fm r1 =
------ r1 = 0

x=an, n;,=0,1,....N—1 for 1 =1,2,3

Boundary conditions needed. Typical choice is periodic boundaries, but one could pick

antiperiodic, twisted, Dirichlet, etc.
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A sketch for a scalar field theory

In order to write down the lattice scalar Hamiltonian, we must first discretize

derivative: A A . A
O +j) — ¢(n—j)
2a
Note the change in the arguments of the field operators. With this we write the

0,0 (t,x) = + O(a?)

discretized Hamiltonian as at this order:

N N N N 1 ~
H=Hy+U, Hy=d") -I*(n)

U=a*y" % N (cb(““)mq)(nj)) +m7<i>2(n)—|—V(<i>(n))

7={1,2,3}

We have neglected high order discretization corrections, but in practice we can keep
track of these, and for actual Lattice QCD one must include higher order corrections.

Having a discretized spacetime, the commutation relations now read:

| {@(n),é@(n’)} — 0, {ﬂ(n),ﬁ(n’)} — 0

k / Note: take continuum limit and recover delta-function

~ i5n,n/

b(n), T(n)| =

as
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A sketch for a scalar field theory

In order to evaluate the trace, we us the basis: ®(n)|®) = |®) ®(n)

Which satisfies:

note: even though we have

<(I)/ ‘ (I)> _ 5 H 5 (I)/ )) discretized spacetime, the fields can
V take on a continuous set of values at
each point in space
H:/D@]@@\, Do = | [ d®(n) |

Now I will evaluate the trace in the following manner:

note: the fact that the initial and final states

/ Do <(I)|6_Tﬁ |(I)> — lim Db <(I)|WNT |(I)> | are the same leads to periodic BCs

Np—00

1 = tr {G_Tﬁ}

= lim [ [[[D®;] (®1|We| @) (Po|We|B3) - - - (B — 1|TWe|®y)
J

N1 —00

Where we have introduced: T/, = ¢=€U/2¢=¢Ho—€U/2 7

Last non-trivial step...
(@] Wel@j41) = (@l 2emMoe™ V2P )

e €U[®;]+U[®;41])/2 (D ]e_eﬁo ki

correct up to terms that vanish in
the continuum limit

HW: Show the last equality!
j+1)
N3
3
_ Y —eURs]4U[@511]) /2 (a%/26) T, (@541 (n) =85 (m))
2Te
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A sketch for a scalar field theory

Now we simply need to recognize that...

Sp] =% S S ( (B =R Dy (B ) T ) + V()

n j5=0 e

Important features to recognize is the fact that the relative sign between the time and
spatial derivative is the same. This is due to the fact that in Euclidean spacetime the
metric is just the 4D Kronecker delta function. Also, the other signs make sense.

. . I've absorbed the overall constant up
Putting all the pieces together we get: front onto the measure...

tr [B_Tﬁ} — /[I;IDQDJ-]@SE[(D]

Question?

|' Perfect time for qu@.s&mms!]




Observables

Simplest example is the two-point correlation function. This is related to the probability of

creating a state at some initial time, letting it propagate and then annihilating it. Some

examples of operators are: O = ¢, O = ®", O = ©9,P

There are three representations for this object.

(1) C1) = (01O 0)r = e HTo)o1(0)]
souree nd sk, Tempors] = ——trle”"1700(0) e 1OT(0)
extent of the lattice, i.e., how bi T
s tlhe time part of our spacetime ’ _ i e—En(T—t)—Emt |<E ‘O(O)‘E >|2
| volume... ZT L n m

A

This representation explains how to extract observables.
For example, we know that by studying the exponential behavior
of the correlation function, we can determine the spectrum and the

matrix element of operators.
N




Observables

Simplest example is the two-point correlation function. This is related to the probability of

creating a state at some initial time, letting it propagate and then annihilating it. Some

examples of operators are: O = ¢, O = ®", O = ©9,P

There are three representations for this object.

C(t) = (OO O)r = = 3 e FrT=0=Ent |(E, [0(0) By
C(t) = ZLT / [IP2)00)0! 0) e

this representation, as will become apparent shortly,

allows us to evaluate correlation functions numerically
G




Observables

Simplest example is the two-point correlation function. This is related to the probability of

creating a state at some initial time, letting it propagate and then annihilating it. Some

examples of operators are: O = ¢, O = ®", O = ©9,P

There are three representations for this object.

C(t) = (OO (0))7 = o 3 e EnT=0=Ent |([|0(0)|E,p)|

4
n,m

ct) = [[[I 210007 (0) e

hadrons: the low-energy
degrees of freedom

N

Sum over all Feynman diagrams:

this representation gives meaning to the observables, and

it will be the focus of the second lecture
A




Why Euclidean?

Generically we have to evaluate an integral of the form: (f[®]); = / [H D& ] o~ SB[P] f[®]
J

We could attempt to evaluate this using brute-force numerical tools, but this is a high-dimensionality
integral, e.g. if we have a single scalar field, and we truncate spacetime such that (L x T) = (10° x
10), then we have to approximately evaluate 10,000 integrals. Using a mesh of only 10 points per
integral, this would require summing over ~10199% elements! Typical LQCD calculations require
integrating SU(3) gauge fields, which are functions of 8 parameters in spacetimes that are in the

order of (L? x T) ~ (40° x 100). This would be a complete disaster!!!

Instead we use Monte Carlo techniques. This requires defining a probability density: e onlP]

over which we sample the different allowed configurations that the fields can take on.
Note, the probability is maximum when the actions is minimized, which leads to classical

solutions. Fluctuations away from this lead to quantum fluctuations.

Finally, the expectation value of this observable is the average & uncertainty of the

different measurements in the this weighted sample.

F8hr~f= 5= 3 S8 oo ~ o[ ey )

ged gelG
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Some details on the Lattice QCD

Some basics about Lattice QCD

Quarks live in lattice sites —L:g*—

Gluons live in the links between sites

Fermions are integrated out exactly!

/ DYDY e MY = det[M]
Gauge configurations are generated using Monte Carlo

Calculating propagators of quark at physical quark masses is hard! The
majority of calculations are performed at unphysically heavy pion masses.
This can be an advantage! Some calculations are performed at the physical

point now!

—1 1 Nearly divergent eigenvalues!
< > > ™~ M ™~ Numerically noisy!
m™m
q v
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What's symmetry got to do with it?

We have Wick-rotated our spacetime to have the wrong metric, discretized
spacetime and at the end we truncated it. This cannot have been done at

zero cost! What did we loose?

. anyone



What's symmetry got to do with it?

We have Wick-rotated our spacetime to have the wrong metric, discretized
spacetime and at the end we truncated it. This cannot have been done at

zero cost! What did we loose?

€«

Gauge symmetry remains intact!

€«

No more Poincare symmetry = (translation) + (rotations) + (boost) (in
particular we don’t have Lorentz symmetry and reduced rotational
symmetry)

¢ A continuous Euclidean spacetime has = (translation) + (rotations) +
(reflections)

Discretized lattice have less allowed rotations (hypercubic for isotropic
lattices)

“€c

& Finite volumes have less allowed rotations (cubic for cubic volumes)

¢ Chiral symmetry (in the massless quark limit) is partially lost . It is
modified in a non-trivial way.



Symmetry and physics

- Less symmetry!

Something must be lost:
angular momentum conservation!







Final remarks

( \

¢ Hadronic spectra: E(a, L, T, mq)

€ Matrix elements: A(a, L, T, mq)

\ J

ol IH I B = = = C L

R P
.’ ] .’
R .
., 1 4
R .
P 1 4
[ 3

AN I I B =N = = =N = = = = -

(Euclidean Spacetime) ‘5 Formalism ( this afternoon! )

& Limits:(a — 0,L — 00, T — 00, my — mP"¥*)

; 7
- )

- Physics: hadron masses, decay constants,

scattering parameters, form factors,...
| Minkowski Spacetime)

\_
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( \

¢ Hadronic spectra: E(a, L, T, mq)

€ Matrix elements: A(a, L, T, mq)

\ J

ol IH I B = = = C L

R P
.’ ] .’
R .
., 1 4
R .
P 1 4
[ 3

AN I I B =N = = =N = = = = -

( Euclidean Spacetime ) € Formalism

& Limits:(a — 0,L — 00, T — 00, my — mP"¥*)

; 7
- )

- Physics: hadron masses, decay constants,

scattering parameters, form factors,...
| Minkowski Spacetime)

\_




Disclaimer: for the remainder of today, I will

forget about discretization effects...




Recap

Simplest example is the two-point correlation function. This is related to the probability of

creating a state at some initial time, letting it propagate and then annihilating it. Some

examples of operators are: O = ¢, O = ®", O = ©9,P

There are three representations for this object.

C(t) = (OO O)r = = 3 e FrT=0=Ent |(E, [0(0) By
Ct) = ZLT / T[ P2, j01)0" (0) ¢S+

J

Sum over all Feynman diagrams:







One particle in a finite volume

(developing some intuition)

Before diving into details, what should we expect? Consider the simple case when the
ground state is much lighter than the first excited state, or when t,T >> 1/Ex:

1

C(t) = (OWON0)r = 5

Y e BT Ent (B O0(0)|Em)|* — Ar cosh[Eo(t — T'/2)]

n,m
a constant that depends
on the temporal extent

From the asymptotic behavior of the correlation function we get the energy of a
single particle in a periodic box! How should we interpret this?

We should expect finite volume effects from the interaction of the particle with
its various mirror images.

How large does the box need to be to be able to neglect finite volume effects?
lcm, 1m,1km...? What sets this scale?

L

Hint: what dictates the long range piece of < ®

the nuclear force? ‘




One particle in a finite volume

(mathematical tools)

Remember the third representation of the correlation functions? Just go ahead and
calculate the correlation function:

- — LD D -

ZZhLT
- P2 —m2+ E(L,T,P2)+ze P?2 —my(L,T)2 +ie

This result is generic and independent about the nature of the particle of interest. If we
want to obtain the spectrum, for example, then we simply need to look at the pole of the
propagator, which we can relate to the self-energy in the following self-consistent and
perturbative fashion

p2 — m(% — E(L7T7p2) — m(2) o E(L7T7 m(%) T = m(2) o Z(OO, Ooamg) _ (Z(L7T7 mg) o Z(OO, oo,m%))
(mf:hrW)2 5E(L},m8)
= (mp™*)? — O%(L, T, (m}™*)%) + -+ = (ma(L,T))’
C finite volume correction: if we can show that

this quantity is small, then we are in
infinite volume mass business!




One particle in a finite volume

(mathematical tools)

In order to calculate self-energy consider a toy low-energy Lagrangian, say for some
stable scalar meson (there’s no such a thing, all stable mesons are pseudoscalars, but
bare with me)

Ltoy:1¢(—82_m2)¢_%¢4 -@-:Q + O +...
' ,, A
\

2

only consider the first

_ r
Remember, we live in a periodic volume: + +

Field operators will have the form: ¢ ( m) ~ ePr

Imposing period boundary conditions: ¢ (T, L) — ¢(O)

2mn
Discretized momenta: P = T where n = [{OOO}, {001}, {OO — 1}, {010}, -
27Tn0 Due to time constraint, I will neglect finite T
Matsubara frequencies: (,, 0 = effects and make it infinite. This is a good

1 &/ approximation since one can show that
corrections scale like exp(-Tmn) ~ exp(-10)




T R -

Answer: These are the numerical values that n2 can take from 0 to 9.

n = [{000}, {001}, {00 — 1}, {010}, .. ]



Answer: These are the numerical values that n2 can take from 0 to 9.
Question: What are 0,1,2,3,4,5,6,8,9?

Proof (?): n={000}, n2=0

n= [{001},{00-1}...,{-100}], n2=1

n= [{011},{011}... {-1-10}], n2=2

n= [{111},{11-1}...,{-1-1-1}], n2=3

n= [{002},{00-2}...,{-200}], n?=4 n = [{000}, {001}, {00 — 1}, {010}, ...]
n= [{201},{20-1}...,{-10-2}], n2=5

n= [{211},{21-1}...{-1-1-2}], n?=6

n= [{022},{02-2}...{-2-20}], n2=8

n= [{122}{12-2}...{-2-2-1}], n2=9




One particle in a finite volume

(mathematical tools)

Finally we can write down the self—energy of our “toy pion”: -@ — Q _|_j
.

dko
L3Z/ 21 ki — 27”‘ —m2+7j6

d3 etln
Using the Poisson resummation formula: L3 Z Ik %:0 / o
k=270 n
| A m \3/2 _
We find: §y2 ( )_ _52( ) g ( ) e nm L
om 2wl n
t n+0

Again, this is exponentially suppressed, except
exp(-Lmr) ~ exp(-4) (nevertheless small).

' We want this to be zero! '

é )

Punch line: "get a big enough box and you might as well forget about the
fact that you performed calculations in a finite Euclidean spacetime”

—/




Too much math, let’s
look at some pretty plot!

One example!

This is work by the NPLQCD Collaboration. You can find the electronic copy of the paper
in this link.

Remember: C, (t) — Ar ., cosh[m,(t —T/2)]

Cﬁ(t_1)+cw(t+1)] N
2C, () M

Effective mass plot: mg// (t) = cosh™ [

ef

T

o

N

o

N
|

P N e P T IR SRS B R

@ﬁ % R
:EEHSEE; N - i = — K [1 - -
0.200F @@ﬁ %@@@ )@ﬁﬁ%ﬂi# i @@@@'{t I i @@%
0.L96¢ . | | | ]
0 10 20 30 40
t

define in lattice spacing units. Lattice spacing is |
a~0.09fm, so this corresponds to a physical value

of mn~0.2x197/0.09 MeV ~440 MeV. .
o Question: Why 197?



http://arxiv.org/abs/1108.1380
http://arxiv.org/abs/1108.1380

Too much math, let’s

One example!

look at some pretty plot!
Pion decay constant: QCD contribution to the amplitude Pr
for a charged pion to decay to a lepton+neutrino.
200 - | | I' | | | | | | | | | | ' . |
| o b~0.125fm: L =20 5
1901 b~ 0.125 fm: L = 24, 28 -
| o b=0.09 fm . _
IS0+ PDG 2011 E
170 . -
= i ! 5 ]
= 160F : -
.Z. i l ® i
= 150f | -
: ! Nice example: two lattice |
140+ ! spacings, several different 1
i | volumes and light quark masses. |-
130 : k‘\ Simultaneously extrapolation to £
[ | the physical point leads to ]
120 agreement with experiment! 1
: | :I l | | l | | l | | | ] ] ] | ] ] ] | ] ] ] | ] ] ] :
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
2 2 £2
§ = (mz/87°f7)
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Many-particles a finite volume?

With such success in the one-body sector,
we would be tempted to just jump right in
to study many-body physics!
Unfortunately, physics is not as kind to

us...life get hard really quickly as you pile JJESEEELEVLEEERE SR CPE 5
more and more particles in a box. p&N Pt
To start: if we calculate a two-particle @ """"" f@
energy, what would it mean? o @ @@ : @

a continuum 4 a |

of states

-------------------------

infinite number of discrete

S M — m states separated by 1/L3

R ra—<




Actual lattice results

in the meson sector

243 % 128
{5
isoscalar B

1sovector

Hadron Spectrum Collaboration: [PRD] arXiv:1309.2608 [hep-lat]
J. Dudek, R. Edwards, P. Guo & C. Thomas (2013)



http://arxiv.org/pdf/1309.2608v1.pdf
http://arxiv.org/pdf/1309.2608v1.pdf

Actual lattice results

in the meson sector

Q: How do we interpret this spectrum?

A: Finite volume spectrum maps
onto scattering parameters

™  How do we know this?

T 1+— 2++

P 243 % 128

Vs
isoscalar I

1sovector

Hadron Spectrum Collaboration: [PRD] arXiv:1309.2608 [hep-lat]
J. Dudek, R. Edwards, P. Guo & C. Thomas (2013)



http://arxiv.org/pdf/1309.2608v1.pdf
http://arxiv.org/pdf/1309.2608v1.pdf

Reinventing the guantum-mechanical wheel

. ® Probability conservation
Two partlclesz ® Infinite volume scattering phase shift

b(a) ~ P EH0)

Asymptotic
wavefunction

) =0

p*

Quantization condition:




Reinventing the guantum-mechanical wheel

L p; +2)(p;) =27mn
0 |degrees]

—-40 : :
0 40 80 120 160 200 240 280




Sketch of 3+1D resu’

Consider a non-relativistic

toy problem:

— —7\ mom- -nt

E %}*
In non-relativistic limit: EE— O

Scattering amplitude:

N

note: | have avoided having to talk about
renormalization. This equality is exact:

'however I choose to renormalize the RHS will
lead to a different definition of the LHS.




Sketch of 3+1D result

Consider a non-relativistic .
' . —_— —1 >\
oy problem:

In non-relativistic limit: Q ,zz, zb — ()
Scattering amplitude: x >< +...

1M _( )1 goo 1G>
= AN t=—-WM)"t+G=

momentum independent

note: | have avoided having to talk about
renormalization. This equality is exact:

however I choose to renormalize the RHS will
lead to a different definition of the LHS.




Sketch of 3+1D result

We have: ()\)_ — —(/\/l) + G°°
discretized momenta

Now, lets make the volume finite and obtain the are summed over
spectrum. This can be obtained from the poles of the
momentum-space correlation function:

X@@@

— Gf?“ee - Gfree ( ) gv — Gf’ree - Gf?"ee

(M)~ +06GY

)

this diverges at the free energies

Therefore the poles satisfy: (./\/l) —1 + 000G Vi as well, with the same

magnitude but opposite sign!
Remember: (_/\/l)_1 ~ #(p cot & — @p) |

this has poles at free energies

1 A3k 41
We finally arrive at: pcoto = 73 Z _P°V'/ (2m)3 | k2 — p?




Sketch of 3+1D result

We finally arrive at:

pcotd =

- This relative simple equation
encodes quite a bit of physics:
¢ phase shift
& bound states
& resonances

-
A3k _ 4
Z _P'V‘/ 3 2 2
k=27n/L (27T) | k — P




Remember the deuteron?

¢ Lightest bound nucleus

¢ Composed of one proton and one neutron

(&

\ ]

¢ Finely tuned?

¢ Can we study it in a box?

ri~2 fm




Symmetry and physics

Remember these quys?

\ Less symmetry! j

Something must be lost:
angular momentum conservation!




The deuteron in a box

L = 30 [fm

- The deuteron is nearly
spherical

The nuclear force is not

=) W “central”
é 0 \ ———
A [t looks slightly like a
-5 N “footbal”, but almost spherical

-10

' RB, Z. Davoudi, T. C. Luu and M. J. Savage [PRD] (2013)



The deuteron in a box

L = 20 [fm)|

10

decrease volume
by a third

-10

RB, Z. Davoudi, T. C. Luu and M. J. Savage [PRD] (2013)




The deuteron in a box




L =10 [fm

any spherical symmetry is
completely lost!

' RB, Z. Davoudi, T. C. Luu and M. J. Savage [PRD] (2013)



The deuteron in a box

L =10 [fm

' RB, Z. Davoudi, T. C. Luu and M. J. Savage [PRD] (2013)

interaction with mirror
images should change the
energy of the system

F T

an attractive interaction will
decrease the energy and make
the deuteron more bound



e deuteron in a box

Infinite volume deuteron

What would be
observed in LQCD

O 10 11 12 13 14 15

L [fm] JP—
P g i
Note: only twice as big .
as the deuteron!
RB, Z. Davoudi, T. C. Luu and M. J. Savage [PRD] (2013)

ra~2 fm e '




Another example: resonances

Incoming
states

Resonance ~ short
lived bound state




Another example: resonances

300 850 900 950 1000 1050 R, /MeV

arXiv:1212.0830 [hep-ph] [PRD] Using a simplified version of the master equation
Hadron Spectrum Collaboration (2012) derived in RB arXiv:1401.3312 [hep-lat] [PRD]



http://arxiv.org/abs/arXiv:1212.0830
http://arxiv.org/abs/arXiv:1212.0830
http://arxiv.org/abs/1401.3312
http://arxiv.org/abs/1401.3312

Outline

First half:
[ Why QCD /Lattice QCD?
[ What's Lattice QCD?

[ Symmetry?
Second hallf:

[/ Masses & decay constants of single particles

[ Scattering, resonances & bound states



Status of
formahsm

very bias estimate)

¢ Spectroscopy/
scattering:

& Form factors:

¢ Fundamental
symmetries:




: progress made /
more to come

Status re )()rt é : Under control

(a very bias estinmtate

¢ Spectroscopy/
scattering:

& Form factors:

& Fundamental
symmetries:




Final remarks

Lattice QCD is a vast field, with many intricacies and subtleties, here all I can give is a
taste of the exciting and challenging aspects of this ever growing field. Lattice QCD has
proven to be the most reliable first principles tool for studying low-energy QCD. In recent
years it has become evident that we can actually study fundamental nuclear processes
directly via LQCD, but just as in anything else in nuclear physics, this has proven to be
technically challenging. Furthermore, it has forced us to think outside the box and come
up with scheme to achieve our basic scientific goals. I hope that in the past two hours I

have conveyed just that.

THINK
OUTSIDE
THE BOX




