Nucleon Form Factors and the Nuclear Medium

Vincent Sulkosky

University of Virginia

HUGS 2014, Lecture 4 June 12th, 2014

Questions to Ponder

- 1) Have we reached the repulsive core of the NN potential?
- 2) What implications do SRC pairs have in terms of the broader field of nuclear physics?
- 3) Is there evidence for 3N-SRC?
- 4) What is the EMC effect?
- 5) Is there a connection between SRC and the EMC effect?

A(e,e'p)A-1 Kinematics

Short-Range Correlations

SRC depletes states below the Fermi sea and makes the states above this level partially occupied.

From the (e,e'), (e,e'p), and (e,e'pN) Results

- > 80 +/- 5% single particles moving in an average potential
 - 60 70% independent single particle in a shell model potential
 - 10 20% shell model long range correlations
- > 20 +/- 5% two-nucleon short-range correlations
 - 18% np pairs
 - 1% pp pairs
 - 1% nn pairs (from isospin symmetry)

Importance of Tensor Correlations

- R. Schiavilla et al., Phys. Rev. Lett. 98 (2007) 132501. [shown above]
- M. Sargsian et al., Phys. Rev. C (2005) 044615.
- M. Alvioli, C. Ciofi degli Atti, and H. Morita, Phys. Rev. Lett. 100 (2008) 162503.

Recent (2011) Experiment

E07-006: ⁴He(e,e'pN)pn SRC

Neuron Array – HAND

Recoil neutron detection:

- Lead wall
- 64 veto bars
- 112 scintillators

Work completed:

- Design and assembly of the new frame
- Design and ordered new Lead wall (Half as thick!)
- Expanded HAND from 4 to 6 layers (112 scintillators instead of 88) Lead Wall

Neuron Array – HAND

Recoil neutron detection:

- Lead wall
- 64 veto bars
- 112 scintillators

Work completed:

- Design and assembly of the nev frame
- Design and ordered new Lead v (Half as thick!)
- Expanded HAND from 4 to 6 lay (112 scintillators instead of 88)

Absolute Neutron Detector Efficiency

- Used HRS quasi-elastic D(e,e'p)n to tag neutrons
- Tested Result Against Neutron Efficiency Code

UNIVERSITY of

VIRGINIA

 – R. A. Cecil, B. D. Anderson, R. Madey, Nucl. Instrum. Meth. 161 (1979) 430.

BigBite – Hadron Package

Detection of recoiled protons from SRC pair

Non focusing dipole

2nd Generation Final Results

Implications for Neutron Stars

D.Higinbotham, E. Piasetzky, M. Strikman, CERN Courier 49N1 (2009) 22.

Effect on Neutrino Measurements

Until very recently, the neutrino community's Monte Carlos did not include nuclear effects.

 while traditional nuclear effects <u>decrease</u> the σ, there are processes that can <u>increase</u> the total yield ...

The EMC Effect

- Nuclear structure: σ_A ≠ Z.σ_p + N.σ_n
 > Effects found in several experiments at CERN, SLAC, DESY
- Same x-dependence in all nuclei
 - Shadowing: x<0.1
 Anti-shadowing: 0.1<x<0.3
 - EMC effect: x>0.3
- The size of the effect is a function of A

Existing EMC Data

> SLAC E139 most extensive and precise data set for $x_B > 0.2$

$\succ \sigma_A / \sigma_D$ for A=4 to 197

Size at fixed x_B varies with A, but shape is nearly constant

Hall C Results on The EMC Effect

J. Seely, et al., PRL 103 (2009) 202301.

- ➢ Higher precision data for ⁴He
- ➤ Addition of ³He data
- Precision data at large x and on heavy nuclei

Lower Q² to reach high x region

Jefferson Lab EMC Effect Data

J. Seely et al., Phys, Rev. Lett. 103 (2009) 202301.

- > Plot shows slope of ratio σ_A/σ_D in the EMC region.
- EMC effect correlated with local density not average density. UNIVERSITY of VIRGINIA

Holistic View of the EMC & SRC Data

D. Higinbotham et al., arXiv:1003.4497.

• So could the EMC slopes (x_B<0.7) and SRC plateaus (x_B>1.5) correlated?! UNIVERSITY / VIRGINIA

x>1 Ratios and EMC Slope Correlation

L. Weinstein et al., Phys. Rev. Lett. 106 (2011) 052301.

22

Three Nucleon Correlations

K. Sh. Egiyan et al., Phys. Rev. Lett. 96 (2006) 082501.

Results on ¹²C From the (e,e') and (e,e'p)

- 80 +/- 5% single particles moving in an average potential
 - 60 70% independent single particle in a shell model potential
 - 10 20% shell model long range correlations
- 20 +/- 5% two-nucleon short-range correlations
 - No Q² Dependence Of Ratio Magnitude Q²: 1 to 4 GeV to few percent
 - Plateaus Start When Minimum Missing Momentum > Fermi Momentum
- Less than 1% multi-nucleon correlations

BUT Hall C x_B > 2 *Plateaus* **Different**

CLAS: 1.4 - 2.6 [GeV/c]² Hall C: 2.5 – 3.0 [GeV/c]²

- > Excellent agreement for $x \le 2$
- Very different shape and error bars in the x>2 region
- Time for a third measurement!

Preliminary Hall A Data with B & C

Analysis done by Zhihong Ye.

Preliminary Hall A Results

Analysis done by Zhihong Ye.

Monte Carlo Test Of Resolution Effects

O. Hen and D.Higinbotham using XEMC code for (e,e') cross sections.

Isospin Effect of SRCs

⁴⁰Ca versus ⁴⁸Ca

Assuming Isospin-independence in inclusive measurements:

$$R = \frac{\sigma_{48Ca}/48}{\sigma_{40Ca}/40} = \frac{(20\sigma_p + 28\sigma_n)/48}{(20\sigma_p + 20\sigma_n)/40}$$

Using $\sigma_p \approx 3\sigma_n, R = 0.92$

For 2N-SRC, n-p pairs dominate: $R = \frac{\sigma_{48Ca}/48}{\sigma_{40Ca}/40} = \frac{(20 \times 28)/48}{(20 \times 20)/40} → 1.17$

Preliminary Ratio Results (Ca to D)

⁴⁰Ca/D and ⁴⁸Ca/D ratios: (statistical errors only)

Preliminary Ratio Results (⁴⁸Ca to ⁴⁰Ca)

(statistical errors only)

31

JLab 12 GeV Upgrade

- JLab's 12 GeV upgrade is currently in the construction phase
- A fourth hall will be added
- The three current halls are being upgraded
- Several new experiments are already approved to run after the 12-GeV upgrade with 5 approved N-N Correlation experiments

PR12-06-105: (e,e') x>1

11 GeV Beam

θ	E' settings	x	Q^2
(deg)	(GeV)		${\rm GeV}^2$
8.0	10.6	0.7 - 4.0	2.1 - 2.3
10.0	10.4	0.7 - 3.0	3.0 - 3.5
12.0	9.8	0.7 - 2.6	4.0 - 5.0
22.0	5.7, 7.0	0.7 - 1.55	8.1 - 12
26.0	4.8, 6.0	0.7 - 1.45	9.5 - 14
32.0	3.3, 3.9, 4.6	0.7 - 1.35	11 - 17
40.0	2.4, 2.8, 3.3	0.7 - 1.25	12 - 18
55.0	1.5, 1.7, 2.0	0.7 - 1.20	13 - 20

Red is the range of CLAS Data Black is the range of 6 GeV Data Blue is 11 GeV Proposed Data Solid Line = 10% Uncertainty; Dashed Line = 5% Uncertainty

E12-11-107

In Medium Nucleon Structure Function, SRC and the EMC Effect

<u>Goal</u>: Measure DIS off high momentum nucleons

- Spectator tagging D(e,e'N_s):
 - DIS in coincidence with a fast,

backwards recoil nucleon.

VIRGINIA

- Selects DIS off high momentum (high virtuality) nucleons $x' = \frac{Q^2}{2p_{\mu}q^{\mu}}$
- Cross Section ratio:

I NIVERSITY of

 $\frac{\sigma_{DIS}(x_{high},Q_1^2,\vec{p}_s)}{\sigma_{DIS}(x_{low},Q_2^2,\vec{p}_s)} = \frac{\sigma_{DIS}^{free}(x_{low},Q_2^2)}{\sigma_{DIS}^{free}(x_{high},Q_1^2)} \cdot R_{FSI} = \frac{F_2^{bound}(x_{high},Q_1^2,\vec{p}_s)}{F_2^{free}(x_{high},Q_1^2)}$ $\frac{\sigma_{DIS}(x_{low},Q_2^2,\vec{p}_s)}{x_{high}^2} = 0.45 \qquad 0.25 \ge x_{low}^2 \ge 0.35$ $R_{FSI} \text{ is the FSI correction factor}$

34

Experimental Setup

Large Acceptance Detector (LAD)

Beam

- Use retired CLAS-6 TOF
 Counters
- 5-cm thick counters (12 panels)
- 1.5 Sr, ~20% neutron detector efficiency
- Also planned to be used for LOI-11-104: tagged EMC effect^{85°}
 ⁴He(e,e'N_s) to D(e,e'N_s) ratio measurements
- Technique being investigated first
 LAD Sector 1
 with E07-006 data

(Ph.D. work of Tai Muangma)

Expected Results

- Direct measurement of the nucleon structure function in the nuclear medium as a function of light-cone variable
- Approved for 40 days in Hall C

$$\partial_s = (E_s - p_s^z) / m_s$$

SRC Motivation and Summary

Short-Range Nucleon-Nucleon Correlation Experiments:

- Goal to probe the repulsive part of the nucleon-nucleon potential
- Long History of Reaction Mechanisms Dominating Cross Section
- With high luminosity and the right kinematics, we seem to finally be cleanly probing the short distance behavior.
- > Many other new results compliment what has been shown.
- The high luminosity and precision available at JLab has made these measurements possible.
- The Jefferson Lab 12-GeV energy upgrade will allow us to explore and discover new insights and challenges.

Thank You!

