## Exotic Hadrons

How are exotic hadrons different from conventional hadrons?

Quantum numbers of conventional baryons
Quantum numbers of mesons: exotic mesons
Glueballs: lattice QCD predictions, experimental status
Models of mesons with excited glue (hybrids)
Exotic mesons in lattice QCD
Experimental status of exotic mesons
The future: GlueX in Hall D at Jefferson Lab

## Parity of baryons

Spatial wave functions: separate CM motion by using Jacobi coordinates
$\vec{\rho}=\frac{1}{\sqrt{2}}\left(\vec{r}_{1}-\vec{r}_{2}\right) \quad \vec{\lambda}=\frac{1}{\sqrt{6}}\left(\vec{r}_{1}+\vec{r}_{2}-2 \vec{r}_{3}\right)$
orbital excitations


$$
\mathrm{I}_{\lambda}=\mathbf{l} \quad \vec{L}=\vec{l}_{\rho}+\vec{l}_{\lambda}
$$

Under inversion $\psi(\vec{\rho}, \vec{\lambda}) \rightarrow \psi(-\vec{\rho},-\vec{\lambda})=(-1)^{l_{\rho}}(-1)^{l_{\lambda}} \psi(\vec{\rho}, \vec{\lambda})$
Radial excitations add even powers of $\rho$ and $\lambda$, don't change parity; quarks all have the same (+ve) intrinsic parity

## Baryon quantum numbers

Assuming only quark degrees of freedom, and a nonrelativistic quark model picture, what are the allowable J ${ }^{\mathrm{P}}$ quantum numbers for baryons? Note $P=(-1)^{l_{\rho}+l_{\lambda}}$

| $J P$ | $L=0$ | $L=I$ | $L=2 \ldots$ |
| :---: | :---: | :---: | :---: |
| $S=I / 2$ | $1 / 2^{+}$ | $1 / 2^{-}, 3 / 2^{-}$ | $3 / 2^{+}, 5 / 2^{+}$ |
| $S=3 / 2$ | $3 / 2+$ | $1 / 2^{-}, 3 / 2^{-}, 5 / 2^{-}$ | $1 / 2^{+}, 3 / 2^{+}, 5 / 2^{+}, 7 / 2^{+}$ |

All possible $J^{p}$ can be made by combining quark orbital angular momentum/parity with quark spin

No exotic baryon quantum numbers!

## Unconventional baryons

The assumption of only quark degrees of freedom is unsafe
Baryons may contain excited glue, or any number of quark-antiquark pairs


Flux-tube model of hybrid baryons

If anti-quark has different flavor than quarks, can change flavor quantum numbers and get 'true' pentaquark, e.g. uudds̄ (called $\theta^{+}$)

Despite a flurry of activity (experimental and theoretical) starting in 2003, the evidence for pentaquarks remains controversial (not discussed here!)

## Constructing meson states

Start by describing mesons as made up of a quark and an antiquark, using a non-relativistic quark model
hadrons are not non-relativistic systems
allows definition of conventional hadrons

$$
\begin{array}{r}
\Psi=C \phi \sum_{i} \psi_{i} \chi_{i} \text { good } J \\
C=\frac{1}{\sqrt{3}}(r \bar{r}+g \bar{g}+b \bar{b})
\end{array}
$$

neutral color

$$
\phi\left(i_{1}, \bar{i}_{2}\right), i_{j}=u, d, s, c, b
$$

flavor

$$
\psi\left(\vec{r}_{1}, \vec{r}_{2}\right) \quad \chi\left(s_{1}, s_{2}\right), s_{j}=\uparrow, \downarrow
$$

space, spin

## Quantum numbers of meson states

## Parity: separate CM motion from spatial wave function

$$
\psi\left(\vec{r}_{q}, \vec{r}_{\bar{q}}\right)=\psi(\vec{R}) \psi(\vec{r}), \vec{R}=\frac{1}{2}\left(\vec{r}_{q}+\vec{r}_{\bar{q}}\right), \vec{r}=\vec{r}_{q}-\vec{r}_{\bar{q}}
$$

Inversion of coordinates:

$$
\psi_{L}(-\vec{r})=(-1)^{L} \psi_{L}(\vec{r})
$$

Quark and anti-quark
 have opposite intrinsic parities

$$
P \Psi=-(-1)^{L} \Psi=(-1)^{L+1} \Psi
$$

## Quantum numbers of meson states

Charge conjugation changes a particle into its anti-particle and vice-versa, and introduces a phase (intrinsic charge conjugation parity, opposite for fermion and anti-fermion)

$$
\mathcal{C}\{u \bar{d}\}=-\{\bar{u} d\}, \mathcal{C}\{u \bar{u}\}=-\{\bar{u} u\}
$$

This has the effect of inverting the coordinates


## Quantum numbers of meson states

Charge conjugation changes a particle into its anti-particle and vice-versa, and introduces a phase (intrinsic charge conjugation parity, opposite for fermion and anti-fermion)

$$
\mathcal{C}\{u \bar{d}\}=-\{\bar{u} d\}, \mathcal{C}\{u \bar{u}\}=-\{\bar{u} u\}
$$

This has the effect of inverting the coordinates
\& exchanging the spin projections


## Charge conjugation parity

Spin wave functions

$$
\chi_{0}^{0}\left(s_{1}, s_{2}\right)=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

$\chi_{1}^{1}\left(s_{1}, s_{2}\right)=\uparrow \uparrow, \quad \chi_{0}^{1}\left(s_{1}, s_{2}\right)=\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow), \chi_{-1}^{1}\left(s_{1}, s_{2}\right)=\downarrow \downarrow$
Exchanging the spins of the quark and anti-quark introduces a sign $-(-1)^{S}$

$$
\mathcal{C} \chi^{1}=\chi^{1} \mathcal{C}, \mathcal{C} \chi^{0}=-\chi^{0} \mathcal{C}
$$

For self-conjugate mesons, made up of $u \bar{u}, d \bar{d}, s \bar{s}, c \bar{c}, b \bar{b}$ e.g. $\pi^{0}, \rho^{0}, \omega, \phi, \ldots$ can define a charge-conjugation parity

$$
\mathcal{C} \Psi=C \Psi=-(-1)^{L}(-1)(-1)^{S} \Psi=(-1)^{L+S} \Psi
$$

## Charge conjugation parity

Spin wave functions

$$
\chi_{0}^{0}\left(s_{1}, s_{2}\right)=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

$\chi_{1}^{1}\left(s_{1}, s_{2}\right)=\uparrow \uparrow, \chi_{0}^{1}\left(s_{1}, s_{2}\right)=\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow), \chi_{-1}^{1}\left(s_{1}, s_{2}\right)=\downarrow \downarrow$
Exchanging the spins of the quark and anti-quark introduces a sign $-(-1)^{S}$

$$
\mathcal{C} \chi^{1}=\chi^{1} \mathcal{C}, \mathcal{C} \chi^{0}=-\chi^{0} \mathcal{C}
$$

For self-conjugate mesons, made up of $u \bar{u}, d \bar{d}, s \bar{s}, c \bar{c}, b \bar{b}$ e.g. $\pi^{0}, \rho^{0}, \omega, \phi, \ldots$ can define a charge-conjugation parity

$$
\mathcal{C} \Psi=C \Psi=-(-1)^{L}(-1)(-1)^{S} \Psi=(-1)^{L+S} \Psi
$$

intrinsic inversion spin projection exchange

## G parity

For charged, isospin I mesons (made up of light quarks and anti-quarks) e.g. $\pi^{ \pm}, \rho^{ \pm}, \ldots$ charge conjugation has the effect $\mathcal{C} \pi^{+}=\pi^{-}$(up to a phase), which can be undone by a rotation about the $y$-axis in isospin space; define G-parity operator

$$
\mathcal{G}=\mathcal{C} e^{i \pi I_{2}}
$$

conserved by
strong interactions
Usual angular momentum

$$
e^{i \pi I_{2}}\left|I, I_{3}\right\rangle=(-1)^{I-I_{3}}\left|I,-I_{3}\right\rangle
$$

rules

$$
\pi^{+}=-u \bar{d}, \pi^{0}=\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}), \pi^{-}=d \bar{u}
$$

For all pions

$$
\mathcal{G} \Psi=G \Psi=C(-1)^{I} \Psi=(-1)^{L+S+I} \Psi
$$

Note G and C cannot be defined for $K, D, D_{s}, \ldots$

## Exercise

Prove by expanding the exponential, writing $l_{2}$ in terms of $I_{+}$ and $I_{\text {-, and using the commutation relations for isospin, i.e., }}^{\text {, }}$ $\mathrm{SU}(2)$, that

$$
e^{i \pi I_{2}}\left|I, I_{3}\right\rangle=(-1)^{I-I_{3}}\left|I,-I_{3}\right\rangle
$$

## Use of G parity

The $\omega^{0}(782)$ meson is a ground-state vector meson ( $L=0, S=I, J^{P}=I^{-}$) with one charge state and no strangeness, so $l=0$
$\rho(770)$ meson is a ground-state vector meson ( $\mathrm{L}=0, \mathrm{~S}=\mathrm{I}$, $J^{P}=I^{-}$) with three charge states $\rho^{+}, \rho^{0}, \rho^{-}$so $I=I$

How can they decay to final states with only pions ( $\mathrm{L}=0$, $\mathrm{S}=0, \mathrm{~J}^{\mathrm{P}}=0^{-}$)?

$$
\begin{aligned}
& G_{\pi}=(-1)^{L_{\pi}+S_{\pi}+I_{\pi}}=(-1)^{0+0+1}=-1 \\
& G_{\rho}=(-1)^{L_{\rho}+S_{\rho}+I_{\rho}}=(-1)^{0+1+1}=+1 \\
& G_{\omega}=(-1)^{L_{\omega}+S_{\omega}+I_{\omega}}=(-1)^{0+1+0}=-1
\end{aligned}
$$

So $\rho \rightarrow \pi \pi\left(100 \%,\lceil\sim 150 \mathrm{MeV}), \omega^{0} \rightarrow \pi^{+} \pi^{-} \Pi^{0},(89 \%\right.$, $\Gamma \sim 8.5 \mathrm{MeV}$ )

## Quantum numbers of meson states

Can define isospin I , total angular momentum $\mathrm{J}=\mathrm{L}+\mathrm{S}$, and parity P for all mesons, e.g. for kaon ( $\mathrm{L}=\mathrm{S}=0$ )

$$
I\left(J^{P}\right)=\frac{1}{2}\left(0^{-}\right)
$$

...plus G for charged, $I=I$ mesons, e.g. for $\pi^{+}(L=S=0, I=I)$

$$
I^{G}\left(J^{P}\right)=1^{-}\left(0^{-}\right)
$$

...plus C for self-conjugate ( $I=0$ and $I=I$ ) mesons, e.g. $\rho^{0}$
( $\mathrm{L}=0, S=I, l=I$ )

$$
I^{G}\left(J^{P C}\right)=1^{+}\left(1^{--}\right)
$$

## Quantum numbers of meson states

Assuming only quark and anti-quark degrees of freedom, and a non-relativistic quark model picture, what are the allowable J ${ }^{\mathrm{PC}}$ quantum numbers?

| JPC | L=0 | L= I | L=2 | $L=3$ |
| :---: | :---: | :---: | :---: | :---: |
| $S=0$ | $\begin{aligned} & 0^{-+} \\ & \text {e.g. } \pi \end{aligned}$ | $\begin{gathered} 1^{+-} \\ b_{1}(1235) \text {, with } 1^{6}=1^{+} \end{gathered}$ | $\underset{n_{2}(1235) \text {, with } 6^{6}=0^{+}}{2^{-+}}$ | $3^{+-}$ |
| $S=1$ | ${ }_{\text {e.g. }}^{I^{--}}$ | $\begin{gathered} 0^{++}, I^{++}, 2^{++} \\ f_{0}(980), f(1285), f_{i}(1430), \\ \text { with } 1{ }^{6}=0^{+} \end{gathered}$ | $1^{--}, 2^{--}, 3^{--}$ | $2^{++}, 3^{++}, 4^{++}$ |

## Quantum numbers of meson states

Remarkably, only these J ${ }^{\mathrm{PC}}$ have been conclusively
seen in nature (replace $C$ by $G$ for charged $I=I$ mesons)
Missing $0^{--}$, and the sequence $0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \ldots$. These are known as exotic quantum numbers

## Glueballs

Because gluons self-interact in QCD, states of pure glue can, in principle, exist

These are bosons with the same quantum numbers as isoscalar mesons; can and will mix strongly with mesons via quark pair creation, complicates interpretation

Discovery will rely on overpopulation of states in particular sector, especially light isoscalar scalar mesons

Exotic glueballs can exist

## Lattice QCD calculations of glueballs

## Y. Chen et al., 2006

Glueballs with exotic quantum numbers (oddballs) are high in the spectrum


## Lattice QCD calculations of glueballs

## Y. Chen et al., 2006

Glueballs with exotic quantum numbers (oddballs) are high in the spectrum
Expt'l. searches have looked for overpopulation and decay signatures in scalar, tensor and pseudoscalar mesons

## Experimental signatures for glueballs

Excellent recent review article:V. Crede and C. Meyer (2009)

| Name | Mass $\left[\mathrm{MeV} / c^{2}\right]$ | Width $\left[\mathrm{MeV} / c^{2}\right]$ | Decays |
| :--- | :--- | :--- | ---: |
| $f_{0}(600) *$ | $400-1200$ | $600-1000$ | $\pi \pi, \gamma \gamma$ |
| $f_{0}(980) *$ | $980 \pm 10$ | $40-100$ | $\pi \pi, K \bar{K}, \gamma \gamma$ |
| $f_{0}(1370) *$ | $1200-1500$ | $200-500$ | $\pi \pi, \rho \rho, \sigma \sigma, \pi(1300) \pi, a_{1} \pi, \eta \eta, K \bar{K}$ |
| $f_{0}(1500) *$ | $1507 \pm 5$ | $109 \pm 7$ | $\pi \pi, \sigma \sigma, \rho \rho, \pi(1300) \pi, a_{1} \pi, \eta \eta, \eta \eta^{\prime}$ |
|  |  |  | $K \bar{K}, \gamma \gamma$ |
| $f_{0}(1710) *$ | $1718 \pm 6$ | $137 \pm 8$ | $\pi \pi, K \bar{K}, \eta \eta, \omega \omega, \gamma \gamma$ |
| $f_{0}(1790)$ |  |  |  |
| $f_{0}(2020)$ | $1992 \pm 16$ | $442 \pm 60$ | $\rho \pi \pi, \pi \pi, \rho \rho, \omega \omega, \eta \eta$ |
| $f_{0}(2100)$ | $2103 \pm 7$ | $206 \pm 15$ | $\eta \pi \pi, \pi \pi, \pi \pi \pi \pi, \eta \eta, \eta \eta^{\prime}$ |
| $f_{0}(2200)$ | $2189 \pm 13$ | $238 \pm 50$ | $\pi \pi, K \bar{K}, \eta \eta$ |

Isoscalar $\mathrm{J}^{\mathrm{PC}}=0^{++}$meson states from Particle Data Group
(* means well established)

## Experimental signatures for glueballs

## Excellent recent review article:V. Crede and C. Meyer (2009)

| Name | Mass $\left[\mathrm{MeV} / c^{2}\right]$ | 2 | Decays |
| :--- | :--- | :--- | ---: |
| $f_{0}(600) *$ | 400 | $600-1000$ | $\pi \pi, \gamma \gamma$ |
| $f_{0}(980) *$ | $980 \pm 10$ | $40-100$ | $\pi \pi, K \bar{K}, \gamma \gamma$ |
| $f_{0}(1370) *$ | $1200-1500$ | $200-500$ | $\pi \pi, \rho \rho, \sigma \sigma, \pi(1300) \pi, a_{1} \pi, \eta \eta, K \bar{K}$ |
| $f_{0}(1500) *$ | $1507 \pm 5$ | $109 \pm 7$ | $\pi \pi, \sigma \sigma, \rho \rho, \pi(1300) \pi, a_{1} \pi, \eta \eta, \eta \eta^{\prime}$ |
|  |  |  | $K \bar{K}, \gamma \gamma$ |
| $f_{0}(1710) *$ | $1718 \pm 6$ | $137 \pm 8$ | $\pi \pi, K \bar{K}, \eta \eta, \omega \omega, \gamma \gamma$ |
| $f_{0}(1790)$ |  |  |  |
| $f_{0}(2020)$ | $1992 \pm 16$ | $442 \pm 60$ | $\rho \pi \pi, \pi \pi, \rho \rho, \omega \omega, \eta \eta$ |
| $f_{0}(2100)$ | $2103 \pm 7$ | $206 \pm 15$ | $\eta \pi \pi, \pi \pi, \pi \pi \pi \pi, \eta \eta, \eta \eta^{\prime}$ |
| $f_{0}(2200)$ | $2189 \pm 13$ | $238 \pm 50$ | $\pi \pi, K \bar{K}, \eta \eta$ |

only two states required to complete a flavor nonet, with isovector $\mathrm{a}_{0}(\mathrm{I} 450)$, and $\mathrm{K} *(1430)$

All three states may contain admixtures of a glueball; largest in $\mathrm{f}_{0}(1500)$

## Models of exotic quantum-number mesons

Recall $0^{--}$, and the sequence $0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, \ldots$. are exotic quantum numbers

How could we extend the quark model to build exotic meson states with these quantum numbers?

Add excitations of the gluons binding the quarks; called hybrid mesons

Not all exotics!

Hybrid mesons in the bag model
In the bag model, could add a 'constituent gluon' confined to the same spherical cavity (bag) as the quarks

## Barnes, Close, de Viron \& Weyers, 1983 Chanowitz \& Sharpe, 1983

Gluon (vector boson) in a spherical cavity has transverse electric (TE) mode, with $\mathrm{J}^{\mathrm{PC}}=1^{+-}$, and transverse magnetic (TM) mode, with $J^{\mathrm{PC}}=1^{-+}$

TE mode lowest energy; combine with lowest energy $\mathrm{L}=0, \mathrm{~S}=0\left(\mathrm{O}^{-+}\right) \& \mathrm{~L}=0, \mathrm{~S}=\mathrm{I}\left(\mathrm{I}^{+-}\right)$quark quantum numbers:

Hybrid mesons in the bag model


Expect four roughly degenerate flavor nones, ~ $1.2-1.4 \mathrm{GeV}$

name same as normal meson with same $P$,
C(G), I
exotics

Hybrid mesons in the bag model


name same as normal meson with same $P$, C(G), I

## Isovector exotic hybrid mesons

Focus on isovector exotics, easier to see in experiments than isoscalars (see in more than one, independent expt.)

Bag model predicts isovector exotics $\mathrm{b}_{0}\left(0^{+-}\right)$and $\mathrm{b}_{2}\left(2^{+-}\right)$ should have higher mass than the isovector exotic $\Pi_{l}\left(I^{-+}\right)$
exotics

| JPC | quarks | glue | IG: name |
| :--- | :---: | :---: | :---: |
| $I^{-+}$ | $L=0, S=I$ | $T E$ | $I^{-}: \Pi_{1}$ |
| $0^{+-}$ | $L=0, S=I$ | TM | $I^{+}: b_{0}$ |
| $2^{+-}$ | $L=0, S=I$ | TM | $I^{+}: b_{2}$ |

normal mesons

| $J P C$ | quarks | $I^{G}:$ name |
| :--- | :--- | :--- |
| $0^{-+}$ | $L=0, S=0$ | $I^{-}: \pi$ |
| $I^{+-}$ | $L=I, S=0$ | $I^{+}: \mathrm{b}_{I}(1235)$ |

name same as normal meson with same $P, C(G), I$

## Hybrid mesons in the flux-tube model



Schlichter, Bali, \& Schilling, 1997

Abelian action, quenched lattice QCD with static sources


Ichie, Bornyakov, Streuer, \& Schierholz (2002)

Abelian action for heavy quarks QQQ in full lattice QCD (with dynamical quarks)

## Hybrid mesons in the flux-tube model

Hybrid mesons have gluonic Isgur \& Paton, 1985
flux-tube between quarks in an Isgur, Kokoski, \& Paton, 1985 excited state


Build hybrid mesons with quarks moving in potential of excited flux-tube (adiabatic approximation)

## Juge, Kuti and Morningstar, 1999



## Hybrid mesons in the flux-tube model

Flux tube has definite angular momentum projection, $m$, along quark-antiquark axis

Normal mesons based on ground-state flux-tube, $m=0$;
PC= $=(-1)^{L+1}(-1)^{L+S}=(-1)^{S+1}$
Hybrid mesons based on excited flux-tube, $m=1$;
$P C=-(-I)^{L+1}(-I)^{L+S}=(-I)^{S}$

Build hybrid meson states by adding one unit of angular momentum and $\mathrm{PC}=-$ I, i.e. $J^{\mathrm{PC}}=1^{+-}$or $J^{\mathrm{PC}}=1^{-+}$to quarks

Same hybrids as bag model, except all 8 nonets predicted degenerate in mass, at $\sim 1.9 \mathrm{GeV}$

## Lattice QCD calculations of hybrid mesons

Recent rapid progress; now include dynamical quarks
(unquenched);
pion masses
approaching the physical mass


Lightest $J^{P C}=I^{-+}$exotic hybrid,
unquenched, unquenched calculations

- Latest results from Lattice Hadron Spectrum

Collaboration (LHSC; JLab, Trinity College): Dudek, Edwards, Peardon, Richards and C.E.Thomas (2010)

## Lattice Hadron Spectrum Collaboration

Include dynamical quarks (unquenched); two light flavors and one heavier (s) quark

Finer lattice spacing in time direction to better see excited states

Variational calculation using a large basis of interpolating meson operators, allows extraction of masses of many excited states

Operators constructed with known continuum behavior
Continuum meson operators (definite J,M) have their various M components distributed into cubic (lattice) irreducible representations

## LHSC calculation of isovector meson spectrum



LHSC calculation of isovector meson spectrum


## Lattice QCD calculations of hybrid mesons

$\Pi_{1}\left(\mathrm{~J}^{\mathrm{PC}}=\mathrm{I}^{-+}\right)$lighter than roughly degenerate $\mathrm{b}_{0}\left(\mathrm{O}^{+-}\right)$ and $b_{2}\left(2^{+-}\right)$

Lightest hybrid $\pi$ ।
$\sim 1.2 \mathrm{GeV}$ above $\rho$

> Looks like bag model spectrum, and not flux-tube model!


Pion-mass and lattice-size dependence of exotic masses

## Experimental status of exotic mesons

To find them we need to know how they decay: flux-tube model predicts angular momentum of glue stays in one of daughter mesons


## Isgur, Kokoski, \& Paton, 1985 <br> Close \& Page, 1995 <br> Page, Swanson, \& Szczepaniak, 1999

Close and Page: decays to two $\mathrm{L}=0$ mesons are suppressed, but not zero; $\pi$ । hybrid has $b_{1} \pi: f_{1} \pi: \rho \pi: \eta \pi: \eta^{\prime} \pi$ 170: 60:5-20:0-10:0-10
Multi-particle final states with charged and neutral $b_{1} \pi \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0} \pi^{0}$ pions ( $\rightarrow 2$ photons), e.g.

## Experimental status of exotic mesons

Convincing evidence exists for effects in $J^{\mathrm{PC}}=I^{-+}$partial wave
BNL-E852 (200I)
$\pi^{-} p \rightarrow p \eta^{\prime} \pi^{-}$


also seen by
VES (2005)

Also seen in flux-tube model favored modes $b_{1}(1235) \pi$, $f_{l}(1285) \pi$ by both collaborations, and in $\rho \pi$
Interpretation as $\pi_{1}(1600)$ hybrid is controversial!

## Experimental status of exotic mesons



Reasonable, but not great, consistency between states seen using several decay modes

Results from all channels suggest Pomeron exchange mechanism for production from proton with pions

## GlueX experiment at Jefferson Lab

Use a polarized photon beam on proton instead of pions
Vector beam ( $\rho$ ) should enhance production of exotic hybrids compared to $\pi$ beam

GlueX detector optimized for partial wave analysis of multi-particle (neutral and charged) final state

## GlueX Experiment

## GlueX Detector

time-of-flight
Goal: map the spectrum of exotic hybrid mesons

Method: Photo-produce hybrids off proton target and identify the quantum states using Partial Wave Analysis of decay product distributions


## Resources

C.A. Meyer and Y. Van Haarlem, The Status of Exotic-quantum-number Mesons, PRC (2010)
V. Crede and C.A. Meyer, The Experimental Status of Glueballs, Prog. Nuc. Part. Phys. (20I0)

## GlueX experiment at Jefferson Lab



Hall D: ground broken April 2009
GlueX detector construction complete

Current plan: first beam in Hall D/GlueX late 2014

