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Flow equations in action: NN only
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Flow equations in action: NN only

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s
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Flow equations in action: NN only

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dV ! / /
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Flow equations in action: NN only

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dV ! / /

d—;(k, K') o —(ek — e PVa(K,K') + > (ek + exr — 2¢q) Va(k, q) Va(q, k')
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Flow equations in action: NN only

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dv.
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Flow equations in action: NN only

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dV ’ / /
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Flow equations in action: NN only

@ In each partial wave with ¢, = #2k?/M and \?> = 1/./s

dV ’ / /
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Flow equations in action: NN only

@ In each partial wave with ¢, = #2k?/M and \?> = 1/./s
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Flow equations in action: NN only

@ In each partial wave with ¢, = #2k?/M and \?> = 1/./s

dV ! / /

d—;(k, K') o —(ek — e PVa(K,K') + > (ek + exr — 2¢q) Va(k, q) Va(q, k')
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Flow equations in action: NN only

@ In each partial wave with ¢, = #2k?/M and \?> = 1/./s

dV ’ / /
d—;(k, K') o —(ek — e PVa(K,K') + > (ek + exr — 2¢q) Va(k, q) Va(q, k')
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Flow equations in action: NN only

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dV ’ / /
d—;(k, K') o —(ek — e PVa(K,K') + > (ek + exr — 2¢q) Va(k, q) Va(q, k')
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Flow equations in action: NN only

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dV ’ / /
d—;(k, K') o —(ek — e PVa(K,K') + > (ek + exr — 2¢q) Va(k, q) Va(q, k')
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Flow equations in action: NN only

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s
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Flow equations in action: NN only

@ In each partial wave with ¢, = #2k?/M and )\ = 1/./s

dv.
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Basics: SRG flow equations [e.g., see arXiv:1203.1779]

@ Transform an initial hamiltonian, H = T + V, with Us:
Hs = UsHUS = T + Vs,

where s is the flow parameter. Differentiating wrt s:

aH;
ds

dUs

= [ns, Hs] with Ns = UT _77.1; .

@ 1)s is specified by the commutator with Hermitian Gs:

Tls = [GS) Hs] s
which yields the unitary flow equation (T held fixed),

aHs d Vs
ds

- [[Gs s], HS] :

e Very simple to implement as matrix equation (e.g., MATLAB)

@ G; determines flow = many choices (T, Hp, Hgp, - -)



SRG flow of H = T + V in momentum basis
@ Takes H — H; = USHUST in small steps labeled by s or A
dHs  dV. .
d—; = dss [[Teel, Vs], Hs] with  To|k) = exlk) and )2 =1/y/s
@ For NN, project on relative momentum states |k), but generic

av , ,
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SRG flow of H = T + V in momentum basis
@ Takes H — H; = USHUST in small steps labeled by s or A

dHs dV, .
e = OF ([T, Vel Fe] with  Toalk) = k) and X2 = 1/V
@ For NN, project on relative momentum states |k), but generic
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SRG flow of H = T + V in momentum basis
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“Traditional” nucleon-nucleon interaction (from T. Papenbrock)

00 One-pion exchange
L T ' ‘ 1 ' 1 by Yukawa (1935)
S, channel 1
200 i &S RS
3 Multi-pions
= E | by Taketani (1951
= 100 frapulsive Dy T y ( )
‘: . core (p . 0)
= i 00 lo 0
0
I Repulsive core
B l
Reig;g ] by Jastrow (1951)
-100 AV18 .
- r [fm]
C. v vy ey olo O
0 0.5 1 1.5 2 25

From T. Hatsuda (Oslo 2008)



Local nucleon-nucleon interaction for non-rel S-eqn
@ Depends on spins and isospins of nucleons; non-central

e longest-range part is one-pion-exchange potential
3 e—m,.-l’
mer (o) 7102

Vﬂ(r) x (T1-T2) |:(30'1 -tog-t—oq- 0’2)(1 +

@ Characterize operator structure of shorter-range potential
e central, spin-spin, non-central tensor and spin-orbit

{1,0’1 -0’2,812,'.-3, L27L20'1 -0’27(L-S)2}® {1,'7'1 -Tg}

200

—— S=1,T=0 deuteron
100k Lprc:)tor}-neutron
— = O relative state — $—0T=
@ Tensor — z o
deuteron wf is § 0
mixed S (L = 0) =
and D (L == 2) ~100} Argonne vi18
@ Non-zero '\
d I -200}+ The quantum numbers of the deuteron
qua rupo € have the deepest potential well!
moment
-300 L L
0 1 2 4 5 6

3
r (fm)




Problems with Phenomenological Potentials

@ The best potential models can describe with x?/dof ~ 1 all of the
NN data (about 6000 points) below the pion production threshold.
So what more do we need?

@ Some drawbacks:

e Usually have very strong repulsive short-range part —-
requires special (non-systematic) treatment in many-body
calculations (e.g. nuclear structure).

e Difficult to estimate theoretical errors and range of
applicability.

e Three-nucleon forces (3NF) are largely unconstrained and
unsystematic models. How to define consistent 3NF’s and
operators (e.g., meson exchange currents)?

@ Models are largely unconnected to QCD (e.g., chiral
symmetry). Don’t connect NN and other strongly interacting
processes (e.g., 7w and wN). Lattice QCD will be able to
predict NN, 3N observables for high pion masses. How to
extrapolate to physical pion masses?

Alternative: Use Chiral Effective Field Theory (EFT)



QCD and Nuclear Forces

@ Quarks and gluons are the fundamental QCD dof’s, but . ..

@ At low energies (low resolution), use “collective” degrees
of freedom = (colorless) hadrons. Which ones?



Different EFTs depending on scale of interest

Degrees of Freedom Energy (MeV)
LQCD

0 Q@@ @ scale

12]

S .

_g - quarks, gluons separation A
g constituent

= 940

5 quarks neutron mass

V>)‘ constituent quarks

=

Q

00 .-
pion mass

ab |n|t|0 .baryons. meson's

8

proton separation
energy in lead

Cl

Resolution

protons, neutrons

Physics of Nuclei

1.12
vibrational
state in tin

. nucleonic densities
CO| |eCtIV6 and currents
models 0.043
rotational
state in uranium

collective coordinates



Effective theories [H. Georgi, Ann. Rev. Nucl. Part. Sci. 43, 209 (1993)]

One of the most astonishing things about the world in which we live is
that there seems to be interesting physics at all scales.

To do physics amid this remarkable richness, it is convenient to be able to
isolate a set of phenomena from all the rest, so that we can describe it
without having to understand everything. ... We can divide up the
parameter space of the world into different regions, in each of which there
is a different appropriate description of the important physics. Such an
appropriate description of the important physics is an “effective theory.”

The common idea is that if there are parameters that are very large or
very small compared to the physical quantities (with the same dimension)
that we are interested in, we may get a simpler approximate description
of the physics by setting the small parameters to zero and the large
parameters to infinity. Then the finite effects of the parameters can be
included as small perturbations about this simple approximate starting
point.

E.g., non-relativistic QM: ¢ — oo

E.g., chiral effective field theory (EFT): m, — 0, My —

E.g., pionless effective field theory (EFT): m,, My — oo

Goals: model independence (completeness) and error estimates



Classical analogy to EFT: Multipole expansion

observer

If we have a localized charge distribution
p(r) within a volume characterized by
distance a, the electrostatic potential is chamg disrioutior

#(R) oc/dsr |R’ir‘

If we expand 1/|R —r| for r < R, we get the multipole expansion
3 14 . q 1 1 N o
/d ”|R,r| = R+mZRiP/+6RSIZj(SH,H/—5UR )Qj+ -
—> pointlike total charge g, dipole moment P;, quadrupole Qj:
a= [row)  Pi= [@romn Q= [orowiEn - i)

@ Hierarchy of terms from separation of scales = a/R expansion

@ Can determine coefficients (LECs) by matching to actual distribution
(if known) or comparing to experimental measurements

@ Completeness = model independent (cf. model of distribution)



Effective Field Theory Ingredients
General procedure for building an EFT ...

El Use the most general £ with low-energy dof’s consistent with
global and local symmetries of underlying theory

HE Declaration of regularization and renormalization scheme

E Well-defined power counting = small expansion parameter

@ General procedures: E heavy dof
e QFT: trees + loops — renormalization A

@ Include long-range physics explicitly

@ Short-distance physics captured in a
light dof

few LEC’s (calculated from underlying é
or fit to data). Check naturalness. e



Effective Field Theory Ingredients
General procedure for building an EFT ...

El Use the most general £ with low-energy dof’s consistent with
global and local symmetries of underlying theory

e What are the low-energy dof’s for QCD?
e What are the relevant symmetries?
H Declaration of regularization and renormalization scheme
e What choices are there?
@ Will we be able to use dimensional regularization?
E Well-defined power counting = small expansion parameter
@ Usually Q/A. What are the QCD scales?

@ General procedures: é heavy dof
e QFT: trees + loops — renormalization A

e Include long-range physics explicitly

e Short-distance physics captured in a
light dof

few LEC’s (calculated from underlying é
or fit to data). Check naturalness. e
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Symmetries of the QCD Lagrangian
@ Besides space-time symmetries and parity, what else?
@ Is SU(3) color gauge “symmetry” in the EFT?
@ Consider chiral symmetry ...

_ . _ . 1 _ _
Locp = q1iPqL + GriPar — 5 Tr G G*—GaMaL — GLMAR
D=9 —igs@ET?; T2 = SU(3) Gell-Mann matrices

_(m O .
M= ( 0 my ) SU(2) quark mass matrix

1
gL = E(1 +5)q , projection on left,right-handed quarks

@ my, and my are small compared to typical hadron masses
(5 and 9 MeV at 1 GeV renormalization scale vs. about 1 GeV)

M ~ 0 = approximate SU(2), @ SU(2)g chiral symmetry



Chiral Symmetry of QCD

@ What happens if we have a symmetry of the Hamiltonian?

e Could have a multiplet of equal mass particles
o Could be a spontaneously broken (hidden) symmetry

@ Experimentally we notice

e Isospin multiplets like p,n or ¥+, ~,59 (that is, they have
close to the same mass). So isospin symmetry is manifest.

e But we don’t find opposite parity partners for these states with
close to the same mass. The “axial” part of chiral symmetry is
spontaneously broken down!

@ Isospin symmetry is “vectorial subgroup” with L = R

@ The pions are pseudo-Goldstone bosons. The symmetry is
explicitly broken by the quark masses, which means the pion is
light (m2 < MZ.,) but not massless.

@ Chiral symmetry relates states with different numbers of pions
and dictates that pion interactions get weak at low energy —
pion as calculable long-distance dof in yEFT!



Effective Field Theory Ingredients

Specific answers for chiral EFT:

El Use the most general £ with low-energy dof’s consistent with
the global and local symmetries of the underlying theory

B Declaration of regularization and renormalization scheme

E Well-defined power counting = expansion parameters



Effective Field Theory Ingredients: Chiral NN

Specific answers for chiral EFT:

El Use the most general £ with low-energy dof’s consistent with
the global and local symmetries of the underlying theory

@ Lett = Lan + Lon + LN
e chiral symmetry — systematic long-distance pion physics
B Declaration of regularization and renormalization scheme

e momentum cutoff and “Weinberg counting” (still unsettled!)
= define irreducible potential and sum with LS egn

e use cutoff sensitivity as measure of uncertainties
E Well-defined power counting = expansion parameters
@ use the separation of scales = % with A, ~ 1 GeV

X
o chiral symmetry = Vv = > 2, ¢, Q" with v >0

e naturalness: LEC’s are O(1) in appropriate units



Chiral Lagrangian

@ Unified description of 7w, 7N, and NN --- N

@ Lowest orders [Can you identify the vertices?]:

1
£O = §8H7r SOt — %miﬂ'z + Nt [i(“)o + g—fATU -V — %‘r (mxw)|N

- %CS(NW)(NTN) - %CT(NTJN)(NTUN) +...,

2c Co . C:
£ = Ntldcim? — T;mfrwz + éwz + f—g(ﬁ,ﬂr - OMr)

C.
— 2—;26,-/;( €abc 7iTa(Vjmp) (Vi 71'0)} N
- %(NTN)(NTUTN) -V — %E(NTN)(NTTN) ~(NTTN) + ...

@ Infinite # of unknown parameters (LEC’s), but leads to hierarchy
of diagrams: v = -4 + 2N+ 2L+ > ,(di +n;/2—-2) >0



Nucleon-nucleon force up to N3LO

Ordonez et al. '94; Friar & Coon '94; Kaiser et al. '97; Epelbaum et al. '98,‘03; Kaiser '99-'01; Higa et al. '03; ...

Chiral expansion for the 2N force:

S0 02 (3) (4)
Von = Vop +Vop+ Vop + Vo + ... ‘

sno 1R

renormalization of Iz-exchange

& N2LO:

— renormalization of In-exchange

& NLo:

renormalization of In-exchange

:'_'_‘% #ciiﬁl &ciiﬁl #fl ¢

sub-subleading 2r-exchange

¢
PR
+

(Short-range LECs are
fitted to NN-data

leading 2-exchange
Single-nucleon LECs are}

G| fitted to mN-data

15 LECs renormalization of contact terms

T -

Sr-exchange (small)

+ 1/m and isospin-breaking corrections...

figure from H. Krebs



Chiral effective field theory for two nucleons

@ Epelbaum, MeiBner, et al.

@ Also Entem, Machleidt

@ Organize by (Q/N)” where

Q= {p,m;}, N ~05-1GeV

@ L,y + match at low energy
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Chiral effective field theory for two nucleons

@ Epelbaum, MeiB3ner, et al. 150 as1
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20+ o 1 100
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Chiral effective field theory for two nucleons

@ Epelbaum, MeiBner, et al.

@ Also Entem, Machleidt

@ Organize by (Q/N)” where
Q={p,m;}, N ~0.5-1GeV

@ L,y + match at low energy
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Chiral effective field theory for two nucleons

@ Epelbaum, MeiBner, et al. 150 3s1
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Chiral effective field theory for two nucleons

@ Epelbaum, MeiBner, et al.
@ Also Entem, Machleidt

@ Organize by (Q/N)” where
Q={p,m;}, N ~0.5-1GeV

@ L,y + match at low energy
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Chiral effective field theory for two nucleons

@ Epelbaum, MeiBner, et al.
@ Also Entem, Machleidt

@ Organize by (Q/N)” where
Q={p,m;}, N ~0.5-1GeV

@ L,y + match at low energy

QV

QO

Q1

(32

QS

CQ4

80

150 3s1
T T 150 T T
sii;zhg‘hi‘hgi‘—ighﬂ‘h? 100 E
.,
. 50 i
- —
3 o oy
1 1 1 1
0 0.1 0.2 0 0.1 0.2 03
3P0 1D2
T T
P
o
1 1
01 0.2 03
3G5
T T
o6 3
1 1 3
01 02 03



NN scattering up to N°LO (Epelbaum, nucl-th/0509032)
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@ Theory error bands from varying cutoff over “natural” range



NN scattering up to N°LO (Epelbaum, nucl-th/0509032)
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Few-body chiral forces

@ Atwhat orders? v = —4 +
2N +2L+ ) ,(di+ ni/2 - 2),
S0 adding a nucleon
suppresses by Q2/A2.

@ Power counting confirms
2NF > 3NF > 4NF

@ NLO diagrams cancel

@ 3NF vertices may appear
in NN and other
processes

@ Fits to the ¢;’s have
sizable error bars

3N

4N

Lo 0(%)

NLO O (%)

NLO O (%) Re

NLO 0 (%) N




Status of chiral EFT forces [H. Krebs, TRIUMF Workshop (2014)]

Two-nucleon force Three-nucleon force Four-nucleon force

oo X H _ _
wo XHEME  — -
com L HEBOK -
o X EHELM - L EX- TR -

@ converged @ not yet converged @ converged ??

@ accurate description of NN at @ higher orders in progress

least up to Eia ~ 200 MeV o impact on few- & many-N

systems?

Also in progress: versions with A included = better expansion?



Summary: Conceptual basis of (chiral) effective field theory
I g energy
@ Separate the short-distance JWWVVU\/\/\/\/\/\/\
(UV) from long-distance (IR) ~
physics = defines a scale i

0. OO?I nm 0.01 nm 10 nm 100? nm O.OII em 1 I:m Ilm 10(3 m
@ Exploit chiral symmetry — i xeon |uko || inhored i
hierarchical treatment of

Radar TV FM AM
long-distance physics
_/),v;;g\hr\_\_“\\_
@ Use complete basis for
Short-dIStance phySICS 400 nm 500 nm 600 nm 700 nm

= hierarchy a la multipoles



Summary: Conceptual basis of (chiral) effective field theory

g energy
@ Separate the short-distance

(UV) from long-distance (IR) ITIYAVAVAVAVAVA VA VAN

physics = defines a scale i

0.0001 nm 0.01 nm 10nm 1000 nm 0.01 cm 1em Tm 100 m
i I 1 1 1 1

@ Exploit chiral symmetry —
hierarchical treatment of

Gamma rays Xrays Yo || Infrared Radio waves
wviolet

Radar TV FM AM
long-distance physics
) _/)—:f;l;g\hrk_\_\\\_
@ Use complete basis for
Short-diStance phySiCS 400 nm 500 nm 600 nm 700 nm
= hierarchy a la multipoles
. QD ChPT .
—— p —
: + 7 +{< >¢
— = >< - [H. Krebs]
\ . ) CE o+ N+

Generate a nonrelativistic -
. A _v? .
potential for many-body [(2 i +0(mr\9>) + yrmH/;Nw;w“jm = E|¥) | weinberg 91

= 2mn

methods (controversies!) —

Where/how do we draw the line? What if we draw it in different places?



How do we draw the line in an EFT? Regulators!

g energy

@ In coordinate space, define Ro  [[I\l\/\/\ )\ \/ N\ N\ N\ N\

to separate short and long gt

dIStance 0‘00(‘31 nm 0.01 nm 10 nm \OO? nm 0.0! cm Ilcm Ilm 'IO?m
@ In momentum space, use Ato Gamma rays Xays Ua || Infared Radia woves

separate high and low momenta Rador TV B4 AM
@ Much freedom how this is done e T

— different scales / schemes

400 nm 500 nm 600 nm 700 nm



How do we draw the line in an EFT? Regulators'

- g energy

@ In coordinate space, define Ro  [[I\l\/\/\ )\ \/ N\ N\ N\ N\

to separate short and long gt

dlStanCe 0‘00(‘31 nm 0.01 nm 10 nm \OO? nm O.OII cm I::m Ilm 'IO?m
@ In momentum space, use A to o L Rl s

separate high and low momenta Rador TV B4 AM
@ Much freedom how this is done e T

— different scales / schemes

400 nm 500 nm 600 nm 700 nm

Non-local regulator in momentum (e.g., with n = 3 for N3LO):
Vewrer(p, p) — € —BF /Ny Verrr(p, p')e —(# /Ny
Local regulator in coordinate space for long-range and delta function:
Viong (F) — Viong(N)(1 — &~ (7R)") "and  6(r) — Ce~ (/R

Or local in momentum space [Gazit, Quaglioni, Navratil (2009)]
Rough relation: A =450...600MeV <— Ry =1.0...1.2fm



What does changing a cutoff do in an EFT?
@ (Local) field theory version in perturbation theory (diagrams)
o Loops (sums over intermediate states) <:> LECs

el o ><}

Ac dsq CoMCy  Co(Ae)oc Lyt
e et & C) 2n?

e Momentum-dependent vertices = Taylor expansion in k?
@ Claim: V,,,, x RG and SRG decoupling work analogously

“Viowk” SRG (“T” generator)
E’ E’
0 b




Outline: Lecture 3

Lecture 3: Effective field theory
Recap from lecture 2: How SRG works
Motivation for nuclear effective field theory
Chiral effective field theory
Universal potentials from RG evolution
Extra: Quantitative measure of perturbativeness



S. Weinberg on the Renormalization Group (RG)

@ From “Why the RG is a good thing” [for Francis Low Festschrift]
“The method in its most general form can | think be understood as
a way to arrange in various theories that the degrees of freedom
that you're talking about are the relevant degrees of freedom for
the problem at hand.”
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
e RG: shift between couplings and loop integrals to reduce logs
o Nuclear: decouple high- and low-momentum modes

@ Identifying universality in critical phenomena
o RG: filter out short-distance degrees of freedom
@ Nuclear: evolve toward universal interactions
@ Nuclear: simplifying calculations of structure/reactions
o Make nuclear physics look more like quantum chemistry!
e RG gains can violate conservation of difficulty!
o Use RG scale (resolution) dependence as a probe or tool



Flow of different N3LO chiral EFT potentials

1Sy from N3LO (500 MeV) of Entem/Machleidt
k2 (fm) k2 (fm?) k2 (fm?) k2 (fm?) K
4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12

‘ \ 0 (fm)

A=15fm"
-0.5

2 (fm?)
0.5

0

A=3.01fm" A=20fm"

1Sy from N3LO (550/600 MeV) of Epelbaum et al.
- k2 (fm)

k2 (fm™) k2 (fm™) k2 (fm?) k2 (fm™?)
4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12
L) 0.5
15 0 (fm)
BT
A=301fm" A=20fm" A=15fm"
0.5
@ Decoupling = perturbation theory is more effective
(k|V|K") k’|V|k>
Vii+ Vi V;
i Z if ]I k2)/

(k|V|Kk)+
; (k2 — k'®)/m



Flow of different N3LO chiral EFT potentials
38; from N3LO (500 MeV) of Entem/Machleidt

k2 (fm?) k2 (fm?) k2 (fm?)

k2 (fm) k2 (fm?)
Q4.8 12 0 4.8 12 0 4.8 12 0.4 8 12 0.4 8 12 05
— 4
£ s 0 (fm)
= 12 =1 = =
h=3.0fm L=20fm h=15fm
05
38; from N3LO (550/600 MeV) of Epelbaum et al.

k2 (fm™) k2 (fm™) k2 (fm?) k2 (fm™?) k2 (fm)

4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 05
£ - 0 (fm)
L

A=301fm" A=20fm" A=15fm"
05

@ Decoupling = perturbation theory is more effective

k|V|k’ k'|V|k>
(k|V|K)+ +> ViV
; k/2 )/m Vi Z i /’ k2)/




Approach to universality (fate of high-g physics)

Run NN to lower X via SRG — ~Universal low-k Vin
Off-Diagonal Vi (k, 0)

L0 \\/</<)\//
05F
_00f <q > )> Co
=~ -05 . Rt
S [ Lo ]
& [ 3 ]
>.< _10E '/:. ] / \
F o — 550/600 [E/GM] ] k<A
[ 4 --=600/700 [E/G/M] ] i .
-LSE o “=+ 500 [E/M] b g > A (or )\) intermediate states
L ~m GO0 IEM] ] — replace with contact term:
20F - 3
N T S B R N e CO(S (X—X/)
0.0 05 1.0 1.5 20 25 30 35 1 2
k [fm’l] [Cf ACeft =+ §CO(wTw) +

As resolution changes, shift high-k details to contacts, e.g., C(><



Approach to universality (fate of high-g physics)

Run NN to lower X via SRG — ~Universal low-k Vin
Off-Diagonal Vi (k, 0)
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Approach to universality (fate of high-g physics)

Run NN to lower X via SRG — ~Universal low-k Vin
Off Diagonal VA(k 0)

1.0 s \\k/ < )/
045; 1 ' y .
—_ 0'0} / i . _.»—""'—”: <q>>)> C(]
E I /o ]
~ 05 e
5 st
i
>.<71.0; / \
s —— 550/600 [E/G/M] k<A
[ --=600/700 [E/G/M] ] ) .
-Lsp -=++ 500 [E/M] . g > A (or )\) intermediate states
o T O0IEMI 1 = replace with contact term:
72'0:”‘\HumH‘\HH\HH\HHMHF 0053()(—)(/)
0.0 05 1.0 1.5 20 25 30 35

k [fm’l] [Cf Eeft =+ %Co(ww)z +

As resolution changes, shift high-k details to contacts, e.g., C(><



Approach to universality (fate of high-g physics)

Run NN to lower X via SRG — ~Universal low-k Vin

Off-Diagonal Vi (k, 0)
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g > A (or )\) intermediate states
= replace with contact term:
Cod3(x — x)

[cf. Lo =+ + $Co(vT)? +

As resolution changes, shift high-k details to contacts, e.g., C(><



Approach to universality (fate of high-g physics)

Run NN to lower X via SRG — ~Universal low-k Vin

Off-Diagonal Vi (k, 0)
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g > A (or )\) intermediate states
= replace with contact term:
Cod3(x — x)

[cf. Lo =+ + $Co(vT)? +

As resolution changes, shift high-k details to contacts, e.g., C(><



Approach to universality (fate of high-g physics)

Run NN to lower X via SRG — ~Universal low-k Vin
Off-Diagonal Vi (k, 0)

1O \\]¢<)/
FA=15fm ]
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5 05f
i
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’ - G00[EM) ] — replace with contact term:
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As resolution changes, shift high-k details to contacts, e.g., C(><



NN Vsrg universality from phase equivalent potentials

Diagonal elements collapse where phase equivalent [Dainton et al, 2014]

160

60

d(k) [degrees]
d(k) [degrees]
a(k) tdeéreés]




NN Vsrg universality from phase equivalent potentials

Diagonal elements collapse where phase equivalent [Dainton et al, 2014]
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Use universality to probe decoupling

o
o

— ISSP \ — ISSP
. . — =10 : - \ __ i
@ What if not phase equivalent § - AVigl TR
o~ T\ 20 i
everywhere? qg), 30 'p, g
S @ 'p,
@ Use Py as example = —40 = w0
(for a change :) 550 £ 50
. = -60) 1
@ Result: local decoupling! -70 oL@
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Use universality to probe decoupling
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S. Weinberg on the Renormalization Group (RG)

@ From “Why the RG is a good thing” [for Francis Low Festschrift]
“The method in its most general form can | think be understood as
a way to arrange in various theories that the degrees of freedom
that you're talking about are the relevant degrees of freedom for
the problem at hand.”
@ Improving perturbation theory; e.g., in QCD calculations
e Mismatch of energy scales can generate large logarithms
e RG: shift between couplings and loop integrals to reduce logs
o Nuclear: decouple high- and low-momentum modes

@ Identifying universality in critical phenomena
o RG: filter out short-distance degrees of freedom
@ Nuclear: evolve toward universal interactions
@ Nuclear: simplifying calculations of structure/reactions
o Make nuclear physics look more like quantum chemistry!
e RG gains can violate conservation of difficulty!
o Use RG scale (resolution) dependence as a probe or tool



Flow of different N3LO chiral EFT potentials

1Sy from N3LO (500 MeV) of Entem/Machleidt
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@ Decoupling = perturbation theory is more effective
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Flow of different N3LO chiral EFT potentials
38; from N3LO (500 MeV) of Entem/Machleidt
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@ Decoupling = perturbation theory is more effective
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Convergence of the Born series for scattering

@ Consider whether the Born series converges for given z

1 1 1
V+V V——V+...
Z*Ho + Z*Ho Z*Ho +

T(2)=V+V

@ If bound state |b), series must diverge at z = E,, where

(Ho + V)Ib) = Eplb) = VI|b) = (Ep — Ho)[b)



Convergence of the Born series for scattering

@ Consider whether the Born series converges for given z

1
V+V viv
7H0 + Z*Ho 7H0 +

T(z) = V+V

@ If bound state |b), series must diverge at z = E,, where
(Ho + V)|b) = Eplb) = VI|b) = (E» — Ho)|b)
@ For fixed E, generalize to find eigenvalue 7, [Weinberg]

1 1
mv|b>:|b> = E FHo VIF,) =n.Ilw)

@ From T applied to eigenstate, divergence for |, (E)| > 1:
T(E)N) = VIE) (1 4 405 + )

— T(E) diverges if bound state at E for V/n, with |n,| > 1



Weinberg eigenvalues as function of cutoff A/

@ Consider n,(E = —2.22MeV)

@ Deuteron = attractive
eigenvalue n, = 1

e A | = unchanged
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Weinberg eigenvalues as function of cutoff A/

@ Consider n,(E = —2.22MeV)

@ Deuteron — attractive 300 [
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Weinberg eigenvalues as function of cutoff A/

@ Consider n,(E = —2.22MeV)
@ Deuteron — attractive
eigenvalue n, = 1
e A | = unchanged

@ But 7, can be negative, so
V /n, = flip potential
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Weinberg eigenvalues as function of cutoff A/

@ Consider n,(E = —2.22MeV) ’s, (B, =-2.223 MeV)
25 —

@ Deuteron = attractive L free space, >0
eigenvalue Ny, = 1 [ —— free space,n <0

e A | = unchanged

@ Butn, can be negative, so s

V /n, = flip potential PER

@ Hard core = repulsive i
eigenvalue 7, !

e A | = reduced 0.5




Weinberg eigenvalues as function of cutoff A/

@ Consider n,(E = —2.22MeV)
@ Deuteron — attractive
eigenvalue n, = 1
e A | = unchanged
@ But 7, can be negative, so
V /n, = flip potential
@ Hard core = repulsive
eigenvalue 7,
e AN | = reduced
@ In medium: both reduced
o < 1forA~2fm™’
— perturbative (at least for
particle-particle channel)

257

_>
=
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3
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15}

L R R
—— free space,n >0
—— free space,m <0
-1
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Weinberg eigenvalue analysis of convergence

oo _ 1
Born Series: T(E)=V + V V+ VE ™ VE s
@ For fixed E, find (complex) eigenvalues 1, (E) [Weinberg]
1
VI =nln) = TE)N) = VIL)(tn,+af 4

= T diverges if any |n,(E)| > 1 [nucl-th/0602060]
Imn

Imn
1

V4+...

+1

g’ﬁ
_3{/_2 1 5 I 1 }lRen —— _;, _II\\‘M %Ren

= AVI8
+ e CD-Bonn 1
= AVIS8 o N
o CD-Bonn 1 NLO

+-2
* N’LO (500 MeV)

13 43



Lowering the cutoff increases “perturbativeness”

@ Weinberg eigenvalue analysis
(repulsive) [nucl-th/0602060]

Imn
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Lowering the cutoff increases “perturbativeness

@ Weinberg eigenvalue analysis
(repulsive) [nucl-th/0602060]

o—o Argonne v,
o—o N’LO-550/600
v NLO-550/600

[ == N'LO [Entem]

L |
1.5 2 2.5 3 35 4

A (fm™)




Lowering the cutoff increases “perturbativeness”

@ Weinberg eigenvalue analysis
(n, at —2.22 MeV vs. density)

[ T T ‘ : | | 7
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1 r M, . 81 with Pauli blOCklng .
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L A:40fm1 S STl B
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6> OF .—.- o T ]
: : ) T e Tl :
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@ Pauli blocking in nuclear matter increases it even more!
e at Fermi surface, pairing revealed by |7, | > 1
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