Applications of Renormalization Group Methods in Nuclear Physics - 4

Dick Furnstahl

Department of Physics
Ohio State University
HUGS 2014

Outline: Lecture 4

Lecture 4: 3NF and applications
RG-induced many-body forces
Some places where the 3NF matters
Results for infinite matter
Future trends for chiral 3NF

Outline: Lecture 4

Lecture 4: 3NF and applications
RG-induced many-body forces
Some places where the 3NF matters
Results for infinite matter
Future trends for chiral 3NF

Recap: Evolving to lower resolution seems to be a big win

- Harmonic oscillator basis with $N_{\max }$ shells for excitations

- Graphs show that convergence for soft chiral EFT potential is accelerated for evolved SRG potentials
- But we've jumped ahead here. Calculate just with NN.

Calculate triton and α masses at different $\lambda \mathbf{s}$

- Unitary transformation \Longrightarrow energy unchanged
- Plot calculated binding energies ${ }^{4} \mathrm{He}$ vs. ${ }^{3} \mathrm{H}$
- Oh, no! The energies change with λ !
- They follow a trajectory; cf. "Tjon line"

Symmetric infinite matter E / A vs. ρ is also a disaster \Longrightarrow no equilibrium

Deja vu all over again?

- There were active attempts to transform away hard cores and soften the tensor interaction in the late sixties and early seventies.
- But the requiem for soft potentials was given by Hans Bethe (1971): "Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high density. In particular, a substantial tensor force is required."
- Next $30+$ years struggling to solve accurately with "hard" potential

Deja vu all over again?

- There were active attempts to transform away hard cores and soften the tensor interaction in the late sixties and early seventies.
- But the requiem for soft potentials was given by Hans Bethe (1971): "Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high density. In particular, a substantial tensor force is required."
- Next 30+ years struggling to solve accurately with "hard" potential
- But the story is not complete: three-nucleon forces (3NF)!

Tidal analog to nuclear 3-body forces

- Three-body forces between pointlike protons and neutrons are not negligible
- Analogous to tidal forces: the gravitational force on the Earth is not just the pairwise sum of the point-like Earth-Moon and Earth-Sun forces

Atomic 3-body forces: Axilrod-Teller term (1943)

- Three-body potential for atoms/molecules from triple-dipole mutual polarization (3rd-order perturbation correction)

$$
V(i, j, k)=\frac{\nu\left(1+3 \cos \theta_{i} \cos \theta_{j} \cos \theta_{k}\right)}{\left(r_{i j} r_{i k} r_{j k}\right)^{3}}
$$

- Usually negligible in metals and semiconductors
- Can be important for ground-state energy of solids bound by van der Waals potentials
- Bell and Zuker (1976): 10\% of energy in solid xenon

Origin of nuclear three-body forces

- Three-body forces arise from eliminating/decoupling dof's
- excited states of nucleon
- relativistic effects
- high-momentum intermediate states
- Omitting 3-body forces leads to model dependence
- observables depend on λ
- cutoff dependence as tool
- NNN at different λ must be evolved like NN
- NNN contribution is critical at low resolution

Flow equations lead to many-body operators

- Consider a's and a^{\dagger} 's wrt given s.p. basis and reference state:

$$
\frac{d V_{s}}{d s}=[[\sum \underbrace{a^{\dagger} a}_{1 \text {-body }}, \sum \underbrace{a^{\dagger} a^{\dagger} a a}_{2 \text {-body }}], \sum \underbrace{a^{\dagger} a^{\dagger} a a}_{2 \text {-body }}]=\cdots+\sum \underbrace{a^{\dagger} a^{\dagger} a^{\dagger} a a a}_{3 \text {-body! }}+\cdots
$$

so there will be A-body forces (and operators) generated!

- Is this a problem?
- Ok if "induced" many-body forces are same size as natural ones
- Nuclear 3-body forces already needed in unevolved potential
- In fact, there are A-body forces (operators) initially!
- Natural hierarchy from chiral EFT
\Longrightarrow stop flow equations before unnaturally large
- SRG is a tractable method to evolve many-body operators

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]

3B-Jacobi HO matrix elements

$$
\alpha=\underset{\lambda=\infty \mathrm{fm}^{-1}}{0.00} \mathrm{fm}^{4}
$$

$$
\begin{gathered}
\left\langle E^{\prime} i^{\prime} J T\right| \tilde{\mathrm{H}}_{\alpha}-\mathrm{T}_{\text {int }}|E i j T\rangle \\
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=24 \mathrm{MeV}
\end{gathered}
$$

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]

3B-Jacobi HO matrix elements

$\alpha=0.0025 \mathrm{fm}^{4}$
$\lambda=4.47 \mathrm{fm}^{-1}$

$$
\begin{gathered}
\left\langle E^{\prime} i^{\prime} J T\right| \tilde{\mathrm{H}}_{\alpha}-\mathrm{T}_{\text {int }}|E i J T\rangle \\
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=24 \mathrm{MeV}
\end{gathered}
$$

NCSM ground state ${ }^{\mathbf{3}} \mathrm{H}$

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]

3B-Jacobi HO matrix elements

$$
\alpha=\underset{\lambda=3.76 \mathrm{fm}^{-1}}{0.005 \mathrm{fm}^{4}}
$$

$$
\begin{gathered}
\left\langle E^{\prime} i^{\prime} J T\right| \tilde{\mathrm{H}}_{\alpha}-\mathrm{T}_{\text {int }}|E i J T\rangle \\
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=24 \mathrm{MeV}
\end{gathered}
$$

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]

3B-Jacobi HO matrix elements

$$
\alpha=\underset{\lambda=3.16 \mathrm{fm}^{-1}}{0.01} \mathrm{fm}^{4}
$$

$$
\left\langle E^{\prime} i^{\prime} J T\right| \tilde{\mathrm{H}}_{\alpha}-\mathrm{T}_{\text {int }}|E i J T\rangle
$$

$$
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=24 \mathrm{MeV}
$$

NCSM ground state ${ }^{\mathbf{3}} \mathbf{H}$

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]

3B-Jacobi HO matrix elements

$\alpha=0.02 \mathrm{fm}^{4}$ $\lambda=2.66 \mathrm{fm}^{-1}$

$$
\begin{gathered}
\left\langle E^{\prime} i^{\prime} J T\right| \widetilde{\mathrm{H}}_{\alpha}-\mathrm{T}_{\text {int }}|E i J T\rangle \\
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=24 \mathrm{MeV}
\end{gathered}
$$

NCSM ground state ${ }^{\mathbf{3}} \mathbf{H}$

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]

3B-Jacobi HO matrix elements

$$
\alpha=\underset{\lambda=2.24 \mathrm{fm}^{-1}}{0.04} \mathrm{fm}^{4}
$$

$$
\left\langle E^{\prime} i^{\prime} J T\right| \tilde{\mathrm{H}}_{\alpha}-\mathrm{T}_{\text {int }}|E i J T\rangle
$$

$$
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=24 \mathrm{MeV}
$$

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]

3B-Jacobi HO matrix elements

$$
\alpha=\underset{\lambda=1.88 \mathrm{fm}^{-1}}{0.08} \mathrm{fm}^{4}
$$

$$
\begin{gathered}
\left\langle E^{\prime} i^{\prime} J T\right| \tilde{\mathrm{H}}_{\alpha}-\mathrm{T}_{\text {int }}|E i J T\rangle \\
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=24 \mathrm{MeV}
\end{gathered}
$$

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]

3B-Jacobi HO matrix elements

$$
\alpha=\underset{\lambda=1.58 \mathrm{fm}^{-1}}{0.16 \mathrm{fm}^{4}}
$$

$\left\langle E^{\prime} i^{\prime} J T\right| \tilde{\mathrm{H}}_{\alpha}-\mathrm{T}_{\text {int }}|E i j T\rangle$

$$
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=24 \mathrm{MeV}
$$

NCSM ground state ${ }^{\mathbf{3}} \mathrm{H}$

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]

3B-Jacobi HO matrix elements

$$
\alpha=0.32 \mathrm{fm}^{4}
$$

$$
\lambda=1.33 \mathrm{fm}^{-1}
$$

$\left\langle E^{\prime} i^{\prime} J T\right| \tilde{\mathrm{H}}_{\alpha}-\mathrm{T}_{\text {int }}|E i j T\rangle$
$J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=24 \mathrm{MeV}$

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]

3B-Jacobi HO matrix elements

$$
\alpha=0.64 \mathrm{fm}^{4}
$$

$$
\lambda=1.12 \mathrm{fm}^{-1}
$$

$\left\langle E^{\prime} i^{\prime} J T\right| \tilde{\mathrm{H}}_{\alpha}-\mathrm{T}_{\text {int }}|E i j T\rangle$
$J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=24 \mathrm{MeV}$

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]

3B-Jacobi HO matrix elements

$\alpha=\underset{\lambda=0.94 \mathrm{~m}^{-1}}{1.28 \mathrm{fm}^{4}}$
$\lambda=0.94 \mathrm{fm}^{-1}$
$\left\langle E^{\prime} i^{\prime} J T\right| \tilde{\mathrm{H}}_{\alpha}-\mathrm{T}_{\text {int }}|E i J T\rangle$
$J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=24 \mathrm{MeV}$

3NF evolution in Jacobi HO basis [Angelo Calci, Trento, 2013]

3B-Jacobi HO matrix elements

$$
\alpha=\underset{\lambda=0.94 \mathrm{fm}^{-1}}{1.28 \mathrm{fm}^{4}}
$$

$$
\begin{gathered}
\left\langle E^{\prime} i^{\prime} J T\right| \tilde{\mathrm{H}}_{\alpha}-\mathrm{T}_{\text {int }}|E i j T\rangle \\
J^{\pi}=\frac{1}{2}^{+}, T=\frac{1}{2}, \hbar \Omega=24 \mathrm{MeV}
\end{gathered}
$$

NCSM ground state ${ }^{\mathbf{3}} \mathbf{H}$ acceleration of convergence in many-body calculations

SRG evolution of NN and NNN

- Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]
- first in anti-symmetric Jacobi HO basis from NCSM
- directly obtain SRG matrix elements in HO basis
- more recently: evolution in k-space [Hebeler (2012)] and in hyperspherical harmonics basis [Wendt (2013)]
- Compare 2-body only to full $2+3$-body evolution:

SRG evolution of NN and NNN

- Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]
- first in anti-symmetric Jacobi HO basis from NCSM
- directly obtain SRG matrix elements in HO basis
- more recently: evolution in k-space [Hebeler (2012)] and in hyperspherical harmonics basis [Wendt (2013)]
- Compare 2-body only to full $2+3$-body evolution:

SRG evolution of NN and NNN

- Can evolve in any basis [E. Jurgenson, P. Navrátil, rjf (2009)]
- first in anti-symmetric Jacobi HO basis from NCSM
- directly obtain SRG matrix elements in HO basis
- more recently: evolution in k-space [Hebeler (2012)] and in hyperspherical harmonics basis [Wendt (2013)]
- Compare 2-body only to full $2+3$-body evolution:

Tjon line revisited

- Unitary transformation \Longrightarrow energy unchanged
- Plot calculated binding energies ${ }^{4} \mathrm{He}$ vs. ${ }^{3} \mathrm{H}$
- Now include initial and evolved three-body force
- Energies barely change! (see inset)
- Residual λ dependence \Longrightarrow theory error bars
- Is the growth of $3+$ body forces under control?

Contributions to the ground-state energy

- Look at ground-state matrix elements of KE, NN, 3N, 4N

- Clear hierarchy, but also strong cancellations at NN level
- What about the A dependence? We can test it now!

$R G$ softening \Longrightarrow quantum chemistry methods work!

Softened potentials (SRG, $V_{\text {low } k}$, UCOM, ...) enhance convergence

- Convergence for no-core shell model (NCSM):

- (Already) soft chiral EFT potential and evolved (softened) SRG potentials, including NNN
- Softening allows importance truncation (IT) and converged coupled cluster (CCSD)

[Roth et al. (2012)]

SRG-evolved ${ }^{3}$ LO(500) with NNN [R. Roth et al. (2012)]

 Use dependence on SRG λ to test evolved Hamiltonian!- NN-only: doesn't include induced NNN $\Longrightarrow \lambda$ dependent
- NN+3N-induced: λ independent but doesn't match experiment
- NN+3N-full: includes (two) initial NNN fit to $A=3,4$ properties

- Coupled cluster method \Longrightarrow Pure predictions!

What is feasible for ab initio structure with SRG today?

- Similarity-RG-evolved Hamiltonians with coupled-cluster method
- Figure from Binder et al., arXiv:1312.5685 (Dec. 2013)
- Energy/particle (in MeV) from oxygen to tin ($A=132$!)

- Use cutoff dependence as tool
- Uncertainty quantification (theory error bars)
- Test and refine nuclear EFT Hamiltonians (NN+NNN)
- Status: precise but not accurate

Outline: Lecture 4

Lecture 4: 3NF and applications
RG-induced many-body forces
Some places where the 3NF matters
Results for infinite matter
Future trends for chiral 3NF

Historical perspective: ab initio structure 10-15 years ago

- From the start of the SciDAC UNEDF project (2007)

Nuclear Landscape

-	Ab initio
710\%	Configuration Interaction
-1\%	Density Functional Theory

Interfaces provide
crucial clues

- Ab initio: Where did details of 3NF forces make a difference?

No-Core Shell Model (NCSM) with 3NF in 2007

- Nuclear structure results point to importance of 3NF
- Note ${ }^{10} \mathrm{~B}$ ground state
- Note spin-orbit splittings
- Needed better convergence (which we now have!)

[Navratil et al., (2007)]

Oxygen spectra and transitions from MPBT

- J. Menendez et al.
- Many-body perturbation theory (MBPT)
- Enabled by RG softening
- Chiral EFT interaction with NN and 3 N forces
- Needs error bands!

"Why does Carbon-14 live so long?"

Carbon-14 dating relies on $\sim 5,730$ year half-life, but other light nuclei undergo similar beta decay with half-lives less than a day!

UNEDF SciDAC Collaboration
Universal Nuclear Energy Density Functional

- Members of UNEDF collaboration made microscopic nuclear structure calculations to solve the puzzle
- Used systematic chiral Hamiltonian from low-energy effective field theory of QCD
- Key feature: consistent 3-nucleon interactions

(2011) Computational ref.: Procedia Computer Science 1, 97 (2010)

Asides on Carbon-14 decay calculation

- Atomic masses [1 amu $=1 / 12$ mass of ${ }^{12} \mathrm{C}$] ${ }^{14} \mathrm{O}: 14.0085953 \pm 0.0000001 \mathrm{amu}$ ${ }^{14} \mathrm{~N}: 14.0030740 \pm 0.0000000 \mathrm{amu}$ ${ }^{14} \mathrm{C}: 14.0032420 \pm 0.0000000 \mathrm{amu}$ (from online "table of nuclides") How does each decay?
- Compare lifetimes: ${ }^{14} \mathrm{C}$ lives long!
- Calculation with NCSM using chiral EFT potentials and operator for β^{-}decay $\left({ }_{6}^{14} \mathrm{C} \rightarrow{ }_{7}^{14} \mathrm{~N}+e^{-}+\bar{\nu}_{e}\right)$
- Scaling enabled by CS/AM collaborations
- Role of 3NF is key
- Determining the contribution of one part of Hamiltonian \Longrightarrow Hellmann-Feynman

3NF improves descriptions along isotope chains

- Self-consistent Green's function (SCGF) approach
- Chiral EFT interaction with NN and 3 N forces
- Evolved by SRG to $\lambda=2 \mathrm{fm}^{-1}$
- Compare NN-only (ind) to full
- Needs error bands!

Outline: Lecture 4

Lecture 4: 3NF and applications
RG-induced many-body forces
Some places where the 3NF matters
Results for infinite matter
Future trends for chiral 3NF

Nuclear and neutron matter energy vs. density

- Uniform with Coulomb turned off
- Density n (or often ρ)
- Fermi momentum $n=\left(\nu / 6 \pi^{2}\right) k_{F}^{3}$
- Neutron matter $(Z=0)$ has positive pressure
- Symmetric nuclear matter ($N=Z=A / 2$) saturates
- Empirical saturation at about $E / A \approx-16 \mathrm{MeV}$ and $n \approx 0.17 \pm 0.03 \mathrm{fm}^{-3}$

What causes nuclear saturation?

Low resolution \Longrightarrow MBPT is feasible!

- MBPT \equiv Many-Body Perturbation Theory
- Compare high resolution to low resolution

Low resolution \Longrightarrow MBPT is feasible!

- MBPT \equiv Many-Body Perturbation Theory
- Compare high resolution to low resolution
- (pp) MBPT converges!
- Like quantum chemistry!

Low resolution \Longrightarrow MBPT is feasible!

- MBPT \equiv Many-Body Perturbation Theory
- Compare high resolution to low resolution
- (pp) MBPT converges!
- Like quantum chemistry!
- Need 3-body force for saturation (minimum)
- Hebeler et al. \Longrightarrow apply to nuclear, neutron matter
- Holt et al. \Longrightarrow apply to shell model with MBPT
- UNEDF \Longrightarrow add pion physics to energy functionals

Diagrams for MBPT to second order

Diagrams contributing to the energy per particle up to second order in MBPT, taking two- and three-body interactions into account.

Energy per particle in SNM vs. Fermi momentum

- Compare NN-only results to NN+3NF
- Two representative NN cutoffs
- Fixed 3N cutoff
- 3N constants fit to few-body nuclei
\Longrightarrow prediction!
- Hebeler et al. (2011)

There's nothing new under the sun ...

- Is the idea that repulsive three-nucleon forces could be the dominant nm saturation mechanism a new one?
- Consider this quote:
". . . if we accept the potentials . . . as a semiphenomenological working basis for our calculations, we find that the many-body forces, and in particular the three-body repulsion, provide a satisfactory qualitative understanding of nuclear saturation."
- Where does it come from?

There's nothing new under the sun ...

- Is the idea that repulsive three-nucleon forces could be the dominant nm saturation mechanism a new one?
- Consider this quote:
". . . if we accept the potentials . . . as a semiphenomenological working basis for our calculations, we find that the many-body forces, and in particular the three-body repulsion, provide a satisfactory qualitative understanding of nuclear saturation."
- Where does it come from? Drell and Huang, 1953!

[^0]- Disclaimer: Pion forces, but not chiral symmetry! ...

Low resolution calculations of nuclear matter

- Evolve NN by RG to low momentum, fit NNN to $A=3,4$
- Predict nuclear matter in MBPT [Hebeler et al. (2011)]

- Use residual cutoff dependence as a tool
- Cutoff dependence at 2nd order significantly reduced
- 3rd order contributions are small
- Remaining cutoff dependence: many-body corrections, 4NF?
- New: coupled cluster calculations of SNM! [Hagen et al. (2013)]

Low resolution calculations of neutron matter

- Evolve NN to low momentum, fit NNN to $A=3,4$ or evolve
- Neutron matter in perturbation theory [Hebeler et al. (2010-2013)]

- Estimate theory uncertainties: cutoff and LEC dependence

Low resolution calculations of neutron matter

- Evolve NN to low momentum, fit NNN to $A=3,4$ or evolve
- Neutron matter in perturbation theory [Hebeler et al. (2010-2013)]

[from Wikipedia]

- Constrain neutron stars: $R=10-14 \mathrm{~km}$ for $1.4 M_{\text {sun }}$
- Constrain nuclear symmetry energy

Hierarchy of many-body contributions to SNM and PNM

neutron matter

nuclear matter

- E_{NN} denotes the energy contributions from NN interactions
- $E_{3 \mathrm{~N}}$ all contributions which include at least one 3 N interaction
- Large cancellation of kinetic and potential energy
- Chiral hierarchy of 2NF and 3NF up to saturation density

Hierarchy of many-body contributions to SNM and PNM

neutron matter

nuclear matter

- E_{NN} denotes the energy contributions from NN interactions
- $E_{3 \mathrm{~N}}$ all contributions which include at least one 3 N interaction
- Large cancellation of kinetic and potential energy
- Chiral hierarchy of 2NF and 3NF up to saturation density

Hierarchy of many-body contributions to SNM and PNM

neutron matter

nuclear matter

- E_{NN} denotes the energy contributions from NN interactions
- $E_{3 \mathrm{~N}}$ all contributions which include at least one 3 N interaction
- Large cancellation of kinetic and potential energy
- Chiral hierarchy of 2NF and 3NF up to saturation density

Outline: Lecture 4

Lecture 4: 3NF and applications
RG-induced many-body forces
Some places where the 3NF matters
Results for infinite matter
Future trends for chiral 3NF

Few-body chiral forces

- At what orders? $\nu=-4+$ $2 N+2 L+\sum_{i}\left(d_{i}+n_{i} / 2-2\right)$, so adding a nucleon suppresses by Q^{2} / Λ^{2}.
- Power counting confirms $2 N F>3 N F>4 N F$
- NLO diagrams cancel
- 3NF vertices may appear in NN and other processes
- Fits to the c_{i} 's have sizable error bars

What's new with chiral 3NF [from H. Krebs]

Three-nucleon forces at $\mathrm{N}^{3} \mathrm{LO}$Long range contributions
Bernard, Epelbaum, H.K., Meißner '08; Ishikawa, Robilotta '07

- No additional free parameters
- Expressed in terms of g_{A}, F_{π}, M_{π}
- Rich isospin-spin-orbit structure
- Δ (1232)-contr. are important

Shorter range contributions

Bernard, Epelbaum, H.K., Meißner '11

- LECs needed for shorter range contr.

$$
g_{A}, F_{\pi}, M_{\pi}, C_{T}
$$

- Central NN contact interaction does not contribute
- Unique expressions in the static limit for a renormalizable 3NF

Initiative to make \mathbf{N}^{3} LO forces available for calculations

LENPIC
 Low Energy Nuclear Physics International Collaboration

Sven Binder, Angelo Calci, Kai Hebeler, Joachim Langhammer, Robert Roth

RUB Evgeny Epelbaum, Hermann Krebs universitätbonn Ulf-G. Meißner

Veronique Bernard

- JÜLICH Andreas Nogga

JaGiellonian
UNIVERSITY IN KRAKOW

Hiroyuki Kamada

Adding the Δ resonance [H. Krebs et al.]

- Including Δ should provide more natural expansion
- Method of unitary transformations used to decouple Δ states

[^0]: Many-Body Forces and Nuclear Saturation* \dagger
 S. D. Drell and Kerson Huang \ddagger

 Department of Physics and Laboratory of Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received June 10, 1953)

