Fundamental of Accelerators

Fanglei Lin

Center for Advanced Studies of Accelerators, Jefferson Lab

29th Annual Hampton University Graduate Studies Program HUGS 2014, Jefferson Lab, June 2-20, 2014

Definition of Beam Optics

: Beam Optics: the process of guiding a charged particle beam from A to B using magnets

* An array of magnets which accomplishes this is a transport system, or magnetic lattice

* Recall Lorentz Force on a particle

$$
\frac{d(\gamma m \vec{v})}{d t}=q(\vec{E}+\vec{v} \times \vec{B})
$$

- Energy changes from electric fields
- Direction changes (energy conservative) from magnetic fields

Force on a Particle in a Magnetic Field

* The simplest type of magnetic field is a constant field. A charged particle in a constant field executes a circular orbit, with radius ρ and frequency ω
- To find the direction of the force on the particle, use the right-hand-rule.
* What would happen if the initial velocity had a component in the direction of the field ?

Dipole Magnets

* A dipole magnet gives a constant field B
- Field lines in a magnet run from the North to South
* Symbol convention:
- \times : traveling into the page
- : traveling out of the page
* In the field shown, for a positively charged particle traveling into the page, the force is to the right.

$*$ In an accelerator lattice, dipoles are used to bend the beam trajectory. The set of dipoles in a lattice defines the reference trajectory

$$
\frac{p[\mathrm{GeV} / \mathrm{c}]}{q[\mathrm{e}]} \approx 0.3 B[\mathrm{~T}] \rho[\mathrm{m}]
$$

$$
\theta=\frac{l}{\rho}
$$

Generating B Field from a Current

* A current in a wire generates a magnetic field B which curls around the wire:

* Winding many turns on a coil generates a strong uniform magnetic field
* Field strength is given by one of Maxwell's equations: $\frac{\nabla \times \vec{B}}{\mu}=\vec{J}$
or Ampere circuital law

$$
\oint_{C} \frac{\vec{B}}{\mu} \cdot d \vec{l}=\iint_{s} \vec{J} \cdot d \vec{S}=I_{e n c}
$$

Dipole Current to Field

* In an accelerator, we use current-carrying wires and metal cores of high μ (magnetic permeability) to set up a strong dipole field
$* \quad \mathrm{~N}$ turns of current generate a field perpendicular to the pole tip surface
* Relationship between B in the gap and I in the

Dipole magnet from the Advanced Photon 5 Source wire:

$$
\begin{gathered}
\oint_{C} \frac{\vec{B}}{\mu} \cdot d \vec{l}=\int_{0}^{G} \frac{B}{\mu_{\circ}} \cdot d \cdot l+\int_{\text {iron }} \frac{B}{\mu_{\text {iron }}} \cdot d l=I_{\text {enc }}=2 I_{\text {coil }} \\
\mu_{\text {negligible }} \gg \mu_{\mathrm{o}}
\end{gathered}
$$

Pure dipole: NI turns/pole

Focusing Particles wl Magnets

* Consider the optical analogy of focusing a ray light through a convex lens:
- The focusing angle depends on the the distance from the center. The farther off axis, the stronger the focusing effect.

$$
\theta=-\frac{r}{f}
$$

* Now consider a magnetic lens

$$
\theta=-\frac{l}{\rho_{y}}=\frac{l}{(p / e) / B_{y}}=\frac{B_{y} l}{p / e}=\frac{g r l}{B \rho}
$$

- Here
- Focusing strength $g=\frac{\partial B_{y}}{\partial r}$
- Beam rigidity $\frac{p}{e}=(B \rho)_{\text {dipole }}$

Quadrupole Magnets

* A quadrupole magnet imparts a force proportional to distance from the center. This magnet has 4 poles.
: Consider a positive particle traveling into the the page in the quadrupole magnetic field.
* This magnets is horizontally defocusing.
*What about in the vertical direction?
- Focusing !

* A quadrupole which defocuses in one plane focuses in the other !

Quadrupole Current to Field

* As with a dipole, we can use current-carrying wires wrapped around metal cores to create a quadrupole magnet
* The field lines are denser near the edges of the of the magnet, meaning the field is stronger there
* The strength of B is function of the distance to the center of magnet
* Relationship between focusing strength g and current I in the wire:
$\oint_{c} \frac{\vec{B}}{\mu} \cdot d \vec{l}=\int_{0}^{R} \frac{B_{r}}{\mu_{0}} \cdot d \cdot r+\int_{\substack{\text { iron } \\ \text { negligible, since }}} \frac{B_{i \text { iron }} . d l_{\text {ron }}}{\mu_{\text {iron }}}+\int_{0}^{X} \frac{B_{y}}{\mu_{0}} \cdot d \cdot x=I_{\text {enc }}$ $\mu_{\text {iron }} \gg \mu_{0}$

$$
I_{e n c}=\frac{g R^{2}}{2 \mu_{0}}
$$

Focusing Using Arrays of Quadrupoles

* Quadrupoles focus in one plane while defocusing in the other. So, how can this be used to provide net focusing in an accelerator?
* Consider again the optical analogy of two lenses, with focal length f_{1} and f_{2}, separated by a distance d

The combined $f_{\text {combined }}$ is $\frac{1}{f_{\text {combined }}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}}$
if $f_{1}=-f_{2}$, the net effect is focusing(positive)

$$
\frac{1}{f_{\text {combined }}}=\frac{d}{f_{1} f_{2}}
$$

* To focus particles in both planes in an accelerator, one need arrays of quadruple magnets !

Other Types of Magnets

* Examples of magnets:

- In general, poles are $360^{\circ} / 2 n$ apart
- The skew version of the magnet is obtained by rotating the upright magnet by $180^{\circ} / 2 n$
* Combined function magnet: bend and focus simultaneously

Trajectories and Phase Space

* In general, in an accelerator we assume the dipoles define the nominal particle trajectory, and we solve for lateral deviations from that trajectory
* At any point along the trajectory,

$$
x^{\prime} \equiv \frac{d x}{d s}
$$

* We would like to solve for $x(s)$
* We assume:
- Both transverse planes are independent
- no coupling
- All particles independent from each other
- no space charge effects

Transfer Matrices

* The simplest magnetic lattice consists of quadrupoles and the spaces in between them (drift). We can express each of these as a linear operation in phase space.

Quadrupole:

$$
x=x(0)
$$

$$
\begin{aligned}
& x=x(0) \\
& x^{\prime}=x^{\prime}(0)-\frac{1}{f} x(0)
\end{aligned} \Rightarrow\binom{x}{x^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)\binom{x(0)}{x^{\prime}(0)}
$$

Drift:

$$
\xrightarrow{\substack{\uparrow_{1} \\
s \rightarrow+\cdots}} \begin{aligned}
& x(s)=x(0)+s x^{\prime}(0) \\
& x^{\prime}(s)=x^{\prime}(0)
\end{aligned} \Rightarrow\binom{x(s)}{x^{\prime}(s)}=\left(\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right)\binom{x(0)}{x^{\prime}(0)}
$$

$*$ By combining these elements, we can represent an arbitrarily complex ring or line as the product of matrices.

$$
M=M_{N} \ldots M_{2} M_{1}
$$

Example: FODO Cell

* At the heart of every beam line or ring is the FODO cell, consisting of a focusing and a defocusing element, separated by drifts:

* The transfer matrix is then

$$
\Rightarrow M=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
+\frac{1}{f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)=\left(\begin{array}{cc}
1-\frac{L}{f}-\left(\frac{L}{f}\right)^{2} & 2 L+\frac{L^{2}}{f} \\
-\frac{L}{f^{2}} & 1+\frac{L}{f}
\end{array}\right)
$$

* We can build a ring out of N of these, and the overall transfer matrix will be

$$
M=M_{F O D O}^{N}
$$

Betatron Motion

* Skipping a lot of math, we find that we can describe particle motion in terms of initial conditions and a "beta function" $\beta(\mathrm{s})$, which is only a function of location in the nominal path.

Lateral deviation in one plane

$$
\longrightarrow x(s)=A[\beta(s)]^{1 / 2} \sin (\psi(s)+\delta)
$$

$$
\text { Phase advance } \longrightarrow \psi(s)=\int_{0}^{s} \frac{d s}{\beta(s)}
$$

The "betatron function" $\beta(s)$ is effectively the local wavenumber and also defines the beam envelope.

- Closely spaced strong quads -> small β-> small aperture, lots of wiggles
- Sparsely spaced weak quads -> large $\beta->$ large aperture, few wiggles
$*$ Minor but important note: we need constraints to define $\beta(\mathrm{s})$
- For a ring, we require periodicity (of β, NOT motion): $\beta(\mathrm{s}+\mathrm{C})=\beta(\mathrm{s})$
- For beam line: matched to ring or source

Betatron Tune

* As particles go around a ring, they will undergo a number of betatron oscillations v given by

$$
v=\frac{1}{2 \pi} \int_{s}^{s+C} \frac{d s}{\beta(s)}
$$

* This is referred to as the "tune" (horizontal and vertical)
- If the tune is an integer, or lower order rational number, the effect of any imperfection or perturbation will be reinforced on subsequent orbits
- If we also consider coupling between the planes, in general, we want to avoid

Twiss Parameters: α, β, γ

* As a particle returns to the same point s on subsequent

$$
\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime}(s)^{2}=A^{2}
$$

Twiss Parameters

$$
\begin{aligned}
& \beta=(\text { betatron function }) \\
& \alpha=-\frac{1}{2} \frac{d \beta}{d s} \\
& \gamma=\frac{1+\alpha^{2}}{\beta}
\end{aligned}
$$

* As we examine different locations on the ring, the parameters will change, but the area A remains constant

Emittance

* If each particle is described by an ellipse with a particular amplitude, then an ensemble of particles will always remain within a bounding ellipse of a particular area:

$$
\gamma(s) x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}=\varepsilon
$$

* Since these distributions often have long tails, we typically define the "emittance" as an area which contains some specific fraction of the particles.

Typically,

$$
\begin{aligned}
& \varepsilon_{r m s}=\frac{\sigma^{2}}{\beta} \quad \text { contains } 39 \% \text { of Gaussian particles } \\
& \varepsilon_{95}=6 \varepsilon_{r m s} \quad \text { contains } 95 \% \text { of Gaussian particles }
\end{aligned}
$$

Dispersion and Chromaticity

* Up until now, we have assumed that momentum is constant
* Real beams will have a distribution of momenta
* Two most important parameters describing the behavior of off-momentum particles are:
- Dispersion: describes the position dependence on momentum
- Most important in the bend plane

$$
D_{x} \equiv \frac{\Delta x}{(\Delta p / p)}
$$

- Chromaticity: describes the tune dependence on momentum

$$
\xi_{x} \equiv \frac{\Delta v}{(\Delta p / p)} \quad \text { OR } \quad \xi_{x} \equiv \frac{\Delta v / v}{(\Delta p / p)}
$$

Longitudinal Motion

* We generally accelerate particles using structures that generate timevarying electric fields (RF cavities), either in a linear arrangement or located within a circulating ring

* In both cases, we phase the RF cavities so that a nominal arriving particle will see the same accelerating voltage and therefore get same boost in energy

$$
\frac{\Delta E_{s}}{\Delta n}=e V_{0} \sin \phi_{s}
$$

Examples of Accelerating RF Structues

Fermilab Drift Tube Linac (200MHz): oscillating field uniform along length

Transition Energy and Phase Stability

* Transition energy γ_{t} is determined by the lattice design. At transition energy, all particles at different energies travel around the ring with equal revolution frequency and experience the same acceleration at RF cavities.
* While

Below γ_{t} : velocity dominates

Above γ_{t} : path length dominates

$*$ Rings have been designed (but never built) with $\gamma=>\gamma_{t}$

The Case for Colliding Beams

* For a relativistic beam hitting a fixed target, the center of mass energy is :

$$
E_{\mathrm{CM}}=\sqrt{2 E_{\text {beam }} m_{\text {target }} c^{2}}
$$

* For colliding beams (of equal mass and energy)

$$
E_{\mathrm{CM}}=2 E_{\text {beam }}
$$

- To get 14 TeV CM design energy of the LHC with a single beam on a fixed target would require that beam to have an energy of $100,000 \mathrm{TeV}$
- Would required a ring 10 times the diameter of the Earth !!!

Evolution of Energy Frontier

~a factor of 10 every 15 years

Luminosity

* The relationship of the beams to the rate of observed physics processes is given by the "luminosity"

Cross section (physics)

- Standard unit for luminosity is $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$
- Standard unit for cross section is "barn" $=10^{-24} \mathrm{~cm}^{2}$
- Integrated luminosity is usually in barn ${ }^{-1}$, where

$$
b^{-1}=(1 \mathrm{sec}) \times\left(10^{24} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right) \quad \mathrm{nb}^{-1}=10^{9} \mathrm{~b}^{-1}, \mathrm{fb}^{-1}=10^{15} \mathrm{~b}^{-1}, \text { etc }
$$

* For (thin) fixed target:

Luminosity (cont'd)

* For equally intense Gaussian beams

* Expressing this in terms of usual beam parameters

Energy vs Luminosity Landscape

Lepton-Proton Scattering Facilities

Spin

* Classical definition
- the body rotation around its own axis
: Particle spin
- an intrinsic property, like mass and charge
- a quantum degree freedom associated with the intrinsic magnetic moment

G: anomalous gyromagnetic factor, describes the particle internal structure. For particles:
point-like: G=0
electron: $G=0.00115965219$
muon: G=0.001165923
proton: $G=1.7928474$

Discovery of Spin: 1925

"This is a good idea. Your idea you are so young without any reputation, you would not lose anything by making a stupid mistake." --- Prof. Ehrenfes \dagger
G.E. Uhlenظeck and S. Goudsmit, Naturwissenschaften 47 (1925) 953. \mathcal{A} subsequent publication by the same authors, $\mathcal{N a t u r e} 117$ (1926) 264,

Spin Motion

* Spin motion follows Thomas-BMT equation

$$
\frac{d \vec{S}}{d t}=\vec{\Omega} \times \underset{\uparrow}{\vec{S}}=-\frac{e}{\gamma m}\left[G \gamma \vec{B}_{\perp}+(1+G) \vec{B}_{/ /}\right] \times \vec{S}
$$

Spin vector in particle's rest frame

* In a perfect accelerator, spin vector precesses around the bending dipole field direction: vertical
* Spin tune Qs: number of spin precessions in one orbital revolution. In general,

$$
\mathbf{Q}_{\mathrm{s}}=\mathbf{G}_{\gamma}
$$

Beam Polarization

* Polarization: statistical average of all the spin vectors over number of particles in the beam
- zero polarization: spin vector point to all directions
- 100% polarization: beam is fully polarized if all spin vectors point to the same direction
* Depolarization: come from the horizontal magnetic field which kicks the spin vector away from its vertical direction
- coherent build-up of perturbation on spin vector when the spin vector gets kicked at the same frequency as its precession frequency

2nd full betatron Oscillation period

References

* Sarah Cousineau, et al., "Fundamentals of Accelerator Physics and Technology with Simulations and Measurements Lab", U.S. Particle Accelerator School, 2014, January
* Eric Prebys, "Accelrator Physcs", U.S. Particle Accelerator School, 2014 January

