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Definition of Beam Optics 
 Beam Optics: the process of guiding a charged particle beam from A to B 

using magnets 
 An array of magnets which accomplishes this is a transport system, or 

magnetic lattice 
 
 
 
 

 Recall Lorentz Force on a particle 
 
 

 Energy changes from electric fields  
 Direction changes (energy conservative) from magnetic fields 

 
   
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Force on a Particle in a Magnetic Field 
 The simplest type of magnetic field is a constant field. A charged particle in 

a constant field executes a circular orbit, with radius ρ and frequency ω 
 

 To find the direction of the force on the particle,  
    use the right-hand-rule. 

 
 
 

 What would happen if the initial velocity had  
    a component in the direction of the field ? 
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Dipole Magnets 
 A dipole magnet gives a constant field B 

 Field lines in a magnet run from the North to  
   South 

 Symbol convention: 
 × : traveling into the page 
 ● : traveling out of the page 

 In the field shown, for a positively charged particle  
    traveling into the page, the force is to the right. 
 In an accelerator lattice, dipoles are used to bend  
    the beam trajectory. The set of dipoles in a lattice defines the reference  
    trajectory 
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Generating B Field from a Current 
 A current in a wire generates a magnetic field B which curls around the 

wire: 
 
 
 

 Winding many turns on a coil generates a strong uniform magnetic field 
 

 Field strength is given by one of Maxwell’s  
    equations: 
 
 
    or Ampere circuital law 
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Dipole Current to Field 
 In an accelerator, we use current-carrying wires 
    and metal cores of high µ (magnetic permeability) to 
    set up a strong dipole field 
  N turns of current generate a field perpendicular  
     to the pole tip surface 
 Relationship between B in the gap and I in the  
    wire: 
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Focusing Particles w/ Magnets 
 Consider the optical analogy of focusing a ray light through a convex lens: 

 The focusing angle depends on the  
    the distance from the center. The  
    farther off axis, the stronger the focusing 
    effect. 
 

 Now consider a magnetic lens 
 
 
 Here 
 Focusing strength 

 
 Beam rigidity 
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Quadrupole Magnets  
 A quadrupole magnet imparts a force proportional to distance from the 

center. This magnet has 4 poles. 
 Consider a positive particle traveling into the 
    the page in the quadrupole magnetic field.  

 
 This magnets is horizontally defocusing.  

 
 What about in the vertical direction? 

 Focusing  ! 
 

 A quadrupole which defocuses in one plane focuses in the other !    
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Quadrupole Current to Field 
 As with a dipole, we can use current-carrying  
    wires wrapped around metal cores to create a 
    quadrupole magnet 
 The field lines are denser near the edges of the 
    of the magnet, meaning the field is stronger there 
 The strength of B is function of the distance  
    to the center of magnet 
 Relationship between focusing strength g  
    and current I in the wire: 
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Focusing Using Arrays of Quadrupoles 
 Quadrupoles focus in one plane while defocusing in the other. So, how can 

this be used to provide net focusing in an accelerator? 
 Consider again the optical analogy of two lenses, with focal length f1 and 

f2, separated by a distance d 
                                              The combined fcombined is  
                                                             
                                                if f1 = -f2 , the net effect is focusing(positive)  

 
 
 

 To focus particles in both planes in an accelerator, one need arrays of 
quadruple magnets ! 
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Other Types of Magnets 
 Examples of magnets: 

 
 
 
 
 
 
 
 In general, poles are 360°/2n apart 
 The skew version of the magnet is obtained by rotating the upright magnet by 180°/2n 

 Combined function magnet: bend and focus simultaneously 
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Trajectories and Phase Space 
 In general, in an accelerator we assume the dipoles define the nominal 

particle trajectory, and we solve for  
    lateral deviations from that trajectory 

 
 At any point along the trajectory,  
    each particle can be represented  
    by its position in “phase space”  
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 We would like to solve for x(s) 
 We assume: 

 Both transverse planes are independent 
 no coupling 

 All particles independent from each other 
 no space charge effects 
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Transfer Matrices 
 The simplest magnetic lattice consists of quadrupoles and the spaces in  

between them (drift). We can express each of these as a linear operation 
in phase space.  
 
 
 
 
 
 
 
 

 By combining these elements, we can represent an arbitrarily complex ring 
or line as the product of matrices. 
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Example: FODO Cell 
 At the heart of every beam line or ring is the FODO cell, consisting of a 

focusing and a defocusing element, separated by drifts: 
 
 
 
 
 

 The transfer matrix is then  
 
 
 
 

 We can build a ring out of N of these, and the overall transfer matrix will be 
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Betatron Motion 
 Skipping a lot of math, we find that we can describe particle motion in 

terms of initial conditions and a “beta function” β(s), which is only a 
function of location in the nominal path. 
 
 
 
 
 
 
 Closely spaced strong quads -> small β -> small aperture, lots of wiggles 
 Sparsely spaced weak quads -> large β -> large aperture, few wiggles 

 Minor but important note: we need constraints to define β(s)  
 For a ring, we require periodicity (of β, NOT motion): β(s+C)=β(s)  
 For beam line: matched to ring or source 
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Betatron Tune 
 As particles go around a ring, they will undergo a number of betatron 

oscillations ν given by  
 
 
 

 This is referred to as the “tune” (horizontal and vertical) 
 If the tune is an integer, or lower order rational number, 
   the effect of any imperfection or perturbation will be reinforced on  
   subsequent orbits 
 If we also consider coupling between the planes, in general, we  
    want to avoid 
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Avoid lines in 
the “tune plane” “small” integers 



Twiss Parameters: α, β, γ 
 As a particle returns to the same point s on subsequent  

 
 
 
 
 
 
 
 
 
 

 As we examine different locations on the ring, the parameters will change, 
but the area A remains constant 
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Emittance 
 If each particle is described by an ellipse with a particular  
    amplitude, then an ensemble of particles will always remain 
    within a bounding ellipse of a particular area:  

 
 
 

 Since these distributions often have long tails, we typically  
    define the “emittance” as an area which contains some specific fraction of  
    the particles.  
      
    Typically,                             contains 39% of Gaussian particles  

 
                                                contains 95% of Gaussian particles 
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Dispersion and Chromaticity 
 Up until now, we have assumed that momentum is constant 
 Real beams will have a distribution of momenta 
 Two most important parameters describing the behavior of off-momentum 

particles are: 
 Dispersion: describes the position dependence on momentum 
 Most important in the bend plane 
 
 
 

 Chromaticity: describes the tune dependence on momentum 
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Longitudinal Motion 
 We generally accelerate particles using structures that generate time-

varying electric fields (RF cavities), either in a linear arrangement or 
located within a circulating ring 
 
 
 
 

 In both cases, we phase the RF cavities so that a nominal  
    arriving particle will see the same accelerating voltage and therefore get  
    same boost in energy 
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Examples of Accelerating RF Structues 
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Fermilab Drift Tube Linac 
(200MHz): oscillating field 
uniform along length 

Jlab C100 cavity: string of eight 7-cell 
cavities, 1497MHz, design gradient 
19.2MW/m average.  

C-100 Cryomodule assembly 



Transition Energy and Phase Stability 
 Transition energy γt is determined by the lattice design. At transition 

energy, all particles at different energies travel around the ring with equal 
revolution frequency and experience the same acceleration at RF cavities. 

 While  
 
 
 
 
 
 
 
 
 

 Rings have been designed (but never built) with γ =>γt 
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The Case for Colliding Beams 
 For a relativistic beam hitting a fixed target, the center of mass energy is : 

 
 
 

 For colliding beams (of equal mass and energy) 
 
 
 
 To get 14TeV CM design energy of the LHC with a single beam on a 

fixed target would require that beam to have an energy of 100,000 TeV 
 Would required a ring 10 times the diameter of the Earth !!! 
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Evolution of Energy Frontier 
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Luminosity  
 The relationship of the beams to the rate of observed physics processes is 

given by the “luminosity” 
 
 
 
 Standard unit for luminosity is cm-2s-1 
 Standard unit for cross section is “barn”=10-24 cm2 
 Integrated luminosity is usually in barn-1,where 
                                                   nb-1= 109b-1, fb-1= 1015b-1,etc 
 

 For (thin) fixed target: 
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Luminosity (cont’d) 
 For equally intense Gaussian beams 

 
 
 
 
 

 Expressing this in terms of usual beam parameters 
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Energy vs Luminosity Landscape 
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Spin 
 Classical definition  

 the body rotation around its own axis 
 Particle spin 

 an intrinsic property, like mass and charge 
 a quantum degree freedom associated with the intrinsic magnetic 

moment 
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G: anomalous gyromagnetic factor, describes  
     the particle internal structure. For particles: 

                       point-like: G=0 
                       electron: G=0.00115965219 
                       muon: G=0.001165923 
                       proton: G=1.7928474 

m: particle mass 

q: electrical charge  
    of particle 



Discovery of Spin: 1925 
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“This is a good idea. Your idea 
may be wrong, but since both of 
you are so young without any  
reputation, you would not lose 
anything by making a stupid 
mistake.” --- Prof. Ehrenfest 
  
 

G.E. Uhlenbeck and S. Goudsmit, Naturwissenschaften 47 (1925) 953. A 
subsequent publication by the same authors, Nature 117 (1926) 264,  



Spin Motion 
 Spin motion follows Thomas-BMT equation 

 
 
 
 
 

 In a perfect accelerator, spin vector precesses  
    around the bending dipole field direction: vertical 
 
 Spin tune Qs: number of spin precessions  
    in one orbital revolution. In general,  
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Beam Polarization  
 Polarization: statistical average of all the spin vectors over number of 

particles in the beam 
 zero polarization: spin vector point to all directions 
 100% polarization: beam is fully polarized if all spin vectors point to the same 

direction 
 Depolarization: come from the horizontal magnetic field which kicks the 

spin vector away from its vertical direction 
 coherent build-up of perturbation on spin vector when the spin vector 

gets kicked at the same frequency as its precession frequency 
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