Fundamental of Accelerators

Fanglei Lin

Center for Advanced Studies of Accelerators, Jefferson Lab

29th Annual Hampton University Graduate Studies Program HUGS 2014, Jefferson Lab, June 2-20, 2014

Definition of Beam Optics

- Beam Optics: the process of guiding a charged particle beam from A to B using magnets
- An array of magnets which accomplishes this is a transport system, or magnetic lattice

✤ Recall Lorentz Force on a particle

$$\frac{d(\gamma m\vec{\upsilon})}{dt} = q(\vec{E} + \vec{\upsilon} \times \vec{B})$$

- Energy changes from electric fields
- Direction changes (energy conservative) from magnetic fields

Force on a Particle in a Magnetic Field

- The simplest type of magnetic field is a constant field. A charged particle in a constant field executes a circular orbit, with radius ρ and frequency ω
 - To find the direction of the force on the particle, use the right-hand-rule.

What would happen if the initial velocity had a component in the direction of the field ?

Dipole Magnets

- ✤ A dipole magnet gives a constant field B
 - Field lines in a magnet run from the North to South
- Symbol convention:
 - × : traveling into the page
 - Itraveling out of the page
- In the field shown, for a positively charged particle traveling into the page, the force is to the right.
- In an accelerator lattice, dipoles are used to bend the beam trajectory. The set of dipoles in a lattice defines the *reference trajectory*

 $\frac{p[GeV/c]}{q[e]} \approx 0.3B[T]\rho[m]$

$$\theta = \frac{l}{\rho}$$

Generating B Field from a Current

A current in a wire generates a magnetic field B which curls around the wire:

- ✤ Winding many turns on a coil generates a strong uniform magnetic field
- ✤ Field strength is given by one of Maxwell's equations: $\frac{\nabla \times \vec{B}}{\mu} = \vec{J}$

or Ampere circuital law

$$\oint_C \frac{\vec{B}}{\mu} \cdot d\vec{l} = \iint_s \vec{J} \cdot d\vec{S} = I_{enc}$$

5

Dipole Current to Field

- In an accelerator, we use current-carrying wires and metal cores of high μ (magnetic permeability) to set up a strong dipole field
- N turns of current generate a field perpendicular to the pole tip surface
- Relationship between B in the gap and I in the wire:

$$\oint_C \frac{\vec{B}}{\mu} \cdot d\vec{l} = \int_0^G \frac{B}{\mu_{\circ}} \cdot dl + \int_{iron} \frac{B}{\mu_{iron}} \cdot dl = I_{enc} = 2I_{coil}$$
negligible, since
$$\mu_{iron} >> \mu_0$$

$$I_{coil} = NI_{wire} = \frac{GB}{2\mu_0}$$

Dipole magnet from the Advanced Photon Source

Focusing Particles w/ Magnets

- * Consider the optical analogy of focusing a ray light through a convex lens:
 - The focusing angle depends on the the distance from the center. The farther off axis, the stronger the focusing effect.

$$\theta = -\frac{r}{f}$$

Now consider a magnetic lens

$$\theta = -\frac{l}{\rho_y} = \frac{l}{(p/e)/B_y} = \frac{B_y l}{p/e} = \frac{grl}{B\rho}$$

• Here

• Focusing strength $g = \frac{\partial B_y}{\partial r}$

• Beam rigidity
$$\frac{p}{e} = (B\rho)_{dipole}$$

Quadrupole Magnets

- Consider a positive particle traveling into the the page in the quadrupole magnetic field.
- ✤ This magnets is horizontally defocusing.
- What about in the vertical direction?
 - Focusing !

* A quadrupole which defocuses in one plane focuses in the other !

Quadrupole Current to Field

- As with a dipole, we can use current-carrying wires wrapped around metal cores to create a quadrupole magnet
- The field lines are denser near the edges of the of the magnet, meaning the field is stronger there
- The strength of B is function of the distance to the center of magnet
- Relationship between focusing strength g and current I in the wire:

$$\oint_{C} \frac{\vec{B}}{\mu} \cdot d\vec{l} = \int_{0}^{R} \frac{B_{r}}{\mu_{\circ}} \cdot d.r + \int_{iron} \frac{B_{iron}}{\mu_{iron}} dl_{iron} + \int_{0}^{X} \frac{B_{y}}{\mu_{\circ}} \cdot d.x = I_{enc}$$
negligible, since =0, since $B_{y} \perp x$

$$\mu_{iron} \gg \mu_{o}$$

$$I_{enc} = \frac{gR^{2}}{2\mu_{o}}$$

Focusing Using Arrays of Quadrupoles

- Quadrupoles focus in one plane while defocusing in the other. So, how can this be used to provide net focusing in an accelerator?
- ✤ Consider again the optical analogy of two lenses, with focal length f_1 and f_2 , separated by a distance d
 1
 1
 1
 1

The combined
$$f_{combined}$$
 is $\frac{1}{f_{combined}} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{u}{f_1 f_2}$
if $f_1 = -f_2$, the net effect is focusing(positive)
 $\frac{1}{f_{combined}} = \frac{d}{f_1 f_2}$

To focus particles in both planes in an accelerator, one need arrays of quadruple magnets !

Other Types of Magnets

✤ Examples of magnets:

- In general, poles are 360°/2n apart
- The skew version of the magnet is obtained by rotating the upright magnet by 180°/2n
- Combined function magnet: bend and focus simultaneously

Trajectories and Phase Space

- In general, in an accelerator we assume the dipoles define the nominal particle trajectory, and we solve for
 lateral deviations from that trajectory
- At any point along the trajectory, each particle can be represented by its position in "phase space"

- We would like to solve for x(s)
- ✤ We assume:
 - Both transverse planes are independent
 - no coupling
 - All particles independent from each other
 - no space charge effects

Transfer Matrices

The simplest magnetic lattice consists of quadrupoles and the spaces in between them (drift). We can express each of these as a linear operation in phase space.

 By combining these elements, we can represent an arbitrarily complex ring or line as the product of matrices.

$$M = M_N \dots M_2 M_1$$

Example: FODO Cell

At the heart of every beam line or ring is the FODO cell, consisting of a focusing and a defocusing element, separated by drifts:

✤ The transfer matrix is then

$$\Rightarrow M = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ +\frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & L \\ -\frac{1}{f} & 1 \end{pmatrix} = \begin{pmatrix} 1 - \frac{L}{f} - \left(\frac{L}{f}\right)^2 & 2L + \frac{L^2}{f} \\ -\frac{L}{f^2} & 1 + \frac{L}{f} \end{pmatrix}$$

* We can build a ring out of N of these, and the overall transfer matrix will be

$$M = M_{FODO}^{N}$$

Betatron Motion

* Skipping a lot of math, we find that we can describe particle motion in terms of initial conditions and a "beta function" $\beta(s)$, which is only a function of location in the nominal path.

Lateral deviation
in one plane
Phase advance
$$\psi(s) = \int_{0}^{s} \frac{ds}{\beta(s)}$$
 The "betatron function" $\beta(s)$ is
effectively the local wavenumber
and also defines the beam
envelope.

- Closely spaced strong quads -> small β -> small aperture, lots of wiggles
- Sparsely spaced weak quads -> large β -> large aperture, few wiggles
- * Minor but important note: we need constraints to define $\beta(s)$
 - For a ring, we require periodicity (of β , NOT motion): $\beta(s+C)=\beta(s)$
 - For beam line: matched to ring or source

Betatron Tune

✤ As particles go around a ring, they will undergo a number of betatron oscillations v given by

$$\nu = \frac{1}{2\pi} \int_{s}^{s+C} \frac{ds}{\beta(s)}$$

- This is referred to as the "tune" (horizontal and vertical)
 - trajectory If the tune is an integer, or lower order rational number, the effect of any imperfection or perturbation will be reinforced on subsequent orbits
 - If we also consider coupling between the planes, in general, we want to avoid

$$k_x v_x \pm k_y v_y = \text{integer} \Rightarrow (\text{resonant instability})$$

Avoid lines i
"small" integers
 $k_x v_x \pm k_y v_y = \text{integer} \Rightarrow (\text{resonant instability})$

the "tune plane"

Ideal orbit

Particle

Twiss Parameters: α , β , γ

 As we examine different locations on the ring, the parameters will change, but the area A remains constant

Emittance

 If each particle is described by an ellipse with a particular amplitude, then an ensemble of particles will always remain within a bounding ellipse of a particular area:

$$\gamma(s)x^2 + 2\alpha x x' + \beta {x'}^2 = \varepsilon$$

 Since these distributions often have long tails, we typically define the "emittance" as an area which contains some specific fraction of the particles.

Typically,

contains 39% of Gaussian particles

x'

 $\sqrt{etaarepsilon}$

Area = ε

 \mathcal{X}

 $\sqrt{\gamma \varepsilon}$

 $\varepsilon_{95} = 6\varepsilon_{rms}$ contains 95% of Gaussian particles

Dispersion and Chromaticity

- ✤ Up until now, we have assumed that momentum is constant
- Real beams will have a distribution of momenta
- Two most important parameters describing the behavior of off-momentum particles are:
 - Dispersion: describes the position dependence on momentum
 - Most important in the bend plane

$$D_x \equiv \frac{\Delta x}{(\Delta p / p)}$$

Chromaticity: describes the tune dependence on momentum

$$\xi_x \equiv \frac{\Delta v}{(\Delta p / p)} \quad \text{OR} \ \xi_x \equiv \frac{\Delta v / v}{(\Delta p / p)}$$

Longitudinal Motion

We generally accelerate particles using structures that generate timevarying electric fields (RF cavities), either in a linear arrangement or located within a circulating ring

✤ In both cases, we phase the RF cavities so that a nominal arriving particle will see the same accelerating voltage and therefore get same boost in energy V(t)

$$\frac{\Delta E_s}{\Delta n} = eV_0 \sin \phi_s$$

Examples of Accelerating RF Structues

Fermilab Drift Tube Linac (200MHz): oscillating field uniform along length

Jlab C100 cavity: string of eight 7-cell cavities, 1497MHz, design gradient 19.2MW/m average.

C-100 Cryomodule assembly

Transition Energy and Phase Stability

- * Transition energy γ_t is determined by the lattice design. At transition energy, all particles at different energies travel around the ring with equal revolution frequency and experience the same acceleration at RF cavities.
- ✤ While

22

• Rings have been designed (but never built) with $\gamma => \gamma_t$

The Case for Colliding Beams

✤ For a relativistic beam hitting a fixed target, the center of mass energy is :

$$E_{\rm CM} = \sqrt{2E_{\rm beam}m_{\rm target}c^2}$$

For colliding beams (of equal mass and energy)

$$E_{\rm CM} = 2E_{\rm beam}$$

- To get 14TeV CM design energy of the LHC with a single beam on a fixed target would require that beam to have an energy of 100,000 TeV
 - Would required a ring 10 times the diameter of the Earth !!!

Evolution of Energy Frontier

Luminosity

- * The relationship of the beams to the rate of observed physics processes is given by the "luminosity" $R = L \sigma_{\text{rel}}$
 - RateLuminosityStandard unit for luminosity is cm⁻²s⁻¹
 - Standard unit for cross section is "barn"=10⁻²⁴ cm²
 - Integrated luminosity is usually in barn⁻¹, where

 $b^{-1} = (1 \text{ sec}) \times (10^{24} \text{ cm}^{-2} \text{s}^{-1})$ $nb^{-1} = 10^9 b^{-1}$, $fb^{-1} = 10^{15} b^{-1}$, etc

Cross section (physics)

* For (thin) fixed target: $R = N\rho_n t \sigma \Rightarrow L = N\rho_n t$ Incident rate
Target number density

Luminosity (cont'd)

Energy vs Luminosity Landscape

27

Spin

- Classical definition
 - the body rotation around its own axis
- ✤ Particle spin
 - an intrinsic property, like mass and charge
 - a quantum degree freedom associated with the intrinsic magnetic moment
 g: electrical charge

Discovery of Spin: 1925

"This is a good idea. Your idea may be wrong, but since both of you are so young without any reputation, you would not lose anything by making a stupid mistake." --- Prof. Ehrenfest

G.E. Uhlenbeck and S. Goudsmít, Naturwíssenschaften **47** (1925) 953. A subsequent publication by the same authors, Nature **117** (1926) 264,

Spin Motion

Spin motion follows Thomas-BMT equation

$$\frac{dS}{dt} = \vec{\Omega} \times \vec{S} = -\frac{e}{\gamma m} [G\gamma \vec{B}_{\perp} + (1+G)\vec{B}_{\prime\prime}] \times \vec{S}$$

Spin vector in particle's rest frame

- In a perfect accelerator, spin vector precesses around the bending dipole field direction: vertical
- Spin tune Qs: number of spin precessions in one orbital revolution. In general,

$$\mathbf{Q}_{s} = \mathbf{G} \boldsymbol{\gamma}$$

Beam Polarization

- Polarization: statistical average of all the spin vectors over number of particles in the beam
 - zero polarization: spin vector point to all directions
 - 100% polarization: beam is fully polarized if all spin vectors point to the same direction
- Depolarization: come from the horizontal magnetic field which kicks the spin vector away from its vertical direction
 - coherent build-up of perturbation on spin vector when the spin vector gets kicked at the same frequency as its precession frequency

References

- Sarah Cousineau, et al., "Fundamentals of Accelerator Physics and Technology with Simulations and Measurements Lab", U.S. Particle Accelerator School, 2014, January
- Serie Prebys, "Accelrator Physics", U.S. Particle Accelerator School, 2014 January