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Introduction 
 JLab’s fixed target program after the 12 GeV CEBAF upgrade will be 

world-leading for at least a decade 

A Medium energy Electron-Ion Collider (MEIC) at JLab will open new 
frontiers in nuclear science.  

MEIC parameters are chosen to optimize science, technology 
development, and project cost.  

We maintain a well-defined path for future upgrade to higher energies and 
luminosities. 

A design report was released on August, 2012, providing a base for 
performance evaluation, cost estimation, and technical risk assessment. 

We are working for a complete Conceptual Design Report in 2-3 years. 
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Design Strategy for High Luminosity 
 The MEIC design concept for high luminosity is based on high bunch 

repetition rate CW colliding beams 
 

4 

“Traditional” hadrons colliders 
• Small number of bunches 
• Small collision frequency f 
• Large bunch charge n1 and n2 
• Long bunch length 
• Large beta-star 
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KEK-B already reached above 2x1034 /cm2/s 

Linac-Ring colliders 
• Large beam-beam parameter for the   
electron beam 

• Need to maintain high polarized electron 
current  

• High energy/current ERL   

 

 

Beam Design 
• High repetition rate 
• Low bunch charge  
• Short bunch length 
• Small emittance 

IR Design 
• Small β* 
• Crab crossing 

Damping 
• Synchrotron 
radiation 

• Electron cooling 



Design Strategy for High Polarization 
All rings have a figure-8 shape with critical advantages for both ion and 

electron beam 
 Spin precessions in the left & right parts of the ring are exactly cancelled 
 Net spin precession (spin tune) is zero, thus energy independent 
 Spin is easily controlled and stabilized by small solenoids or other compact spin rotators 

Advantage 1: Ion spin preservation during acceleration 
 Ensures spin preservation 
 Avoids energy-dependent spin sensitivity for all species of ions 
 Allows a high polarization for all light ion beams 

Advantage 2: Ease of spin manipulation 
 Delivering  desired polarization at multiple collision points 

Advantage 3: The only practical way to accommodate polarized deuterons 
 ultra small g-2 

Advantage 4: Strong reduction of quantum depolarization thanks to the 
energy independent spin tune 
 Helps to preserve polarization of the electron beam continuously injected from CEBAF 
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MEIC Design Parameters 
Energy 

 Full coverage of center of mass energy from 15 to 65 GeV 
 Electrons 3-12 GeV, protons 25-100 GeV, ions 12-40 GeV/u 

 Ion species 
 Polarized light ions: p, d, 3He, and possibly Li, and polarized heavier ions 
 Un-polarized light to heavy ions up to A above 200 (Au, Pb) 

At least 2 detectors 
 Full acceptance is critical  for the primary detector  

 Luminosity 
 Maximum luminosity >1034 optimized to be around √s=45 GeV  
 Above 1033 cm-2s-1 per IP in a broad CM energy range 

Polarization  
 At IP: longitudinal for both beams, transverse for ions only 
 All polarizations >70%  

Upgrade to higher energies and luminosity possible 
 20 GeV electron, 250 GeV proton, and 100 GeV/u ion 
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MEIC Layout 
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Three compact rings: 
• 3 to 12 GeV electron 
• Up to 25 GeV/c proton (warm) 
• Up to 100 GeV/c proton (cold) 

Warm large booster 
(up to 25 GeV/c) 

Warm 3-12 GeV  
electron collider ring Medium-energy IPs with 

horizontal beam crossing 

Injector 

12 GeV CEBAF 

Pre-booster 
SRF linac Ion 

source 

Cold 25-100 GeV/c 
proton collider ring 

Three Figure-8 rings  
stacked vertically 

Ion Source Pre-booster 

Linac 

12 GeV CEBAF 

12 GeV 

11 GeV 

IP IP 
MEIC 

collider 
rings 

Full Energy EIC 
Collider rings 



EIC at JLab 
Stage I MEIC 

 CEBAF as full-energy e-/e+ injector 
 3-12 GeV e-/e+ 
 25-100 GeV protons 
 12-40 GeV/u ions 

Stage II EIC 
 up to 20 GeV e-/e+ 
 up to 250 GeV protons 
 up to 100 GeV/u ions 

Two independent but  
    complementary detectors 
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Ion Pre-booster 
Purpose of pre-booster 

 Accumulation of ions injected from linac 
 Acceleration of ions 
 Extraction and transfer of ions to the large 

booster 

Design concepts 
 Figure-8 shape 
 (Quasi-independent) modular design 
 FODO arcs for simplicity and ease optics 

corrections 

Design considerations 
 Maximum bending field: 1.5 T 
 Maximum quad field gradient: 20 T/m 
 Momentum compaction smaller than 1/25 
 Maximum beta functions less than 35 m 
 Maximum full beam size less than 2.5 cm 
 5m dispersion-free drifts between triplets 

for RF, cooling, collimation and extraction 
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Ion Large Booster 
 Accelerates protons from 3 to 25 GeV (and ion energies with similar magnetic rigidity) 
 Follow electron/ion collider ring footprints, housed in same tunnel 
 Made of warm magnets and warm RF 
 No transition energy crossing (always below γt=26.65) 
 Quadrupole based dispersion suppression 
 Tunable to any working point 
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• Vertical chicane to bring low energy ions 
to the plane of the electron ring 

• Add electron cooling and SRF 
• Share detector with MEIC 

Possible to convert the large 
booster to a low energy 

collider ring 



MEIC Ion Collider Ring  
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Arc, 2400 

IPs 

Detector elements 

CCB/dispersion suppressor 

60° 



Ion Arc FODO Cell 
 Arc basic building block 

 Dipole field ~5.8T at 100 GeV/c 
 Quad gradient ~150 T/m with 60° phase advance at 100 GeV/c 
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Ion Chromaticity Compensation Block 
 CCB 

 Based on and matched to regular FODO lattice 
 Provides necessary orbital and magnetic symmetries 
 Placed in arc to save space in straights 
 Adjustable max β function values for non-linear dynamics optimization 
 Chromatic contribution ~-8 in both planes 
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Ion Vertical Doglegs 
 Bring ion beam to electron ring plane at arc ends 

 Combined with horizontal bend to save space 
 Suppressed/compensated horizontal/vertical dispersions 

 Dogleg upstream of IP: shaped to provide 50mrad crossing angle 

 
 
 
 
 

 Dogleg downstream of IP: shaped to provide 2m separation from electron beam 
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Ion Interaction Region 
 IR design features 

 Based on triplet final focusing blocks (FFB) 
 Asymmetric design to satisfy detector requirements and reduce chromaticity 
 Spectrometer dipoles before and after downstream FFB, second focus downstream of IP 
 No dispersion at IP, downstream dispersion suppression designed to function as CCB 
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12 GeV CEBAF  

16 11 GeV max 
energy 

12 GeV max 
energy 

 CEBAF fixed target program 
 5-pass recirculating SRF linac 

 CEBAF will provide  
 Up to 12 GeV CW electron beam 
 High repetition rate (3) 
 High polarization (>85%) 
 Good beam quality up to mA level 
 Exciting science program beyond 2025 



Electron Collider Ring Layout 
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Arc 445m, 2400 

IPs 
Forward e- detection 



Electron Collider Ring Optics 
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Arc FODO cell Matching      +     USR LS FODO cell 

CCB + LS + IR    

• Chromaticity needs to be compensated  
− locally using sextupole families in the CCBs 

for the IR and  
− globally using sextupole families in the Arcs 



Universal Spin Rotator (USR) 
 Schematic drawing of USR 
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 Illustration of spin rotation by USR 
 

IP 

Arc 

S
 S



P. Chevtsov et al., Jlab-TN-10-026 

Half  
Solenoid 

Half  
Solenoid 

Quad. Decoupling Insert 



Collider Ring and IR Layout 
 Lattice design satisfying  

 Detector requirements: full acceptance and high resolution  
 Beam dynamics requirements: consistent with non-linear dynamics requirements 
 Geometric constraints: matched collider ring footprints and decouple the ring 

geometry from IR layout 
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Full Acceptance Detection System  
 50 mrad crossing angle  

 Improved detection, no parasitic collision, fast beam separation  
 Forward 

 Endcap with 50 mrad crossing angle 
 Small dipole covering angles up to a few degrees 
 Far forward covering up to one degree for particles passing the accelerator quadrupoles 

 Low-Q2 tagger: small-angle electron detection 
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Crab Crossing  
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π/
2 

3π/2 

Location of 
crab 

cavities 

Incoming At IP Outgoing 

 Required for supporting high bunch 
repetition rate (small bunch spacing) 

 Local crab scheme 
 Two cavities are placed at (n+1) π/2 

phase advance relative to IP 
 Large βx at location of crab cavities for 

minimizing the required kicking voltage 
 Crab cavities under final testing 



Electron Cooling for Ion Beams 
 Cooling of protons/ions: => small emittance and short bunch (w strong SRF) 
                                               => enabling ultra strong final focusing and crab crossing 
                                               => suppressing IBS, expanding high luminosity lifetime 
 MEIC adopts traditional electron cooling 
 Multi-phased scheme takes advantages of high  
    cooling efficiency at low energy and small 6D emittance 
 Needs two coolers: a DC cooler & ERL cooler 
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ion sources SRF Linac pre-booster (3 GeV) 
(accumulation) 

large booster 
(25 GeV) 

medium energy 
collider ring 

High Energy cooling DC cooling 

dzcool 4
2~ εσ

γ
γγτ ∆

ion bunch 

electron 
bunch 

circulator ring 

Cooling section 

solenoid 

Fast kicker Fast kicker 

SRF Linac dump injector 

recirculating 10+ turns  
reduction of current from 
an ERL by a same factor 

energy 
recovery 

 Cooler design solution 
• Magnetized beam to mitigate space 

charge and CSR  
• Energy recovery linac (ERL) to 

minimize power requirements    
• Circulator cooler ring (CCR) to reduce 

source and ERL requirements 



Ion Polarization 
 Figure-8 structure as  

 No preferred periodic spin direction, energy-independent zero spin tune => polarization 
can be controlled by small magnetic fields 

 Avoids energy-dependent spin sensitivity for all species of ions 
 Works for all ion species including deuterons with small anomalous magnetic moment  

 Acceleration and spin matching 
 Polarization is stabilized by weak (< 3 Tm) solenoids in all ion rings 
 Injection and extraction from straight with solenoid 
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Solenoid 

Prebooster 

Solenoid 

Large Booster 

Pinj/ext 
(GeV/c) 

(BL)inj/ext 
(T.M) 

L 
(cm) 

νdeut/νprot 

Pre-booster 
(1 solenoid) 

0.785 / 
3.83 0.06 / 0.28 60 0.003 / 0.01 

Large booster 
(1 solenoid) 

3.83 / 20 0.28 / 1.5 120 0.003 / 0.01 



Ion Polarization (cont’d) 
 Polarization control in the collider ring  

 Beam is injected longitudinally polarized, accelerated and then the desired spin 
orientation is adjusted 

 Weak solenoid for deuterons (< 1.5 Tm each) 
 Weak radial-field dipoles for protons (< 0.25 Tm each) 
 Small or no orbit excursions, easy magnet field ramp 

 
 Deuteron polarization control 

 
 
 

 Proton polarization control 
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longitudinal polarization radial polarization 



Electron Polarization 
 Highly polarized electron beams are injected from CEBAF 
 Polarization is designed to be vertical in the arc to avoid spin diffusion and 

longitudinal at collision points using spin rotators 
 
 
 
 

 New developed universal spin rotator rotates polarization from 3 to 12GeV  
 Desired spin flipping can be implemented by changing the source 

polarization 
 Compton polarimeters are considered to measure the electron polarization 

 Two long opposite polarized bunch trains simplify the compton polarimetry 
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Electron Polarization Configuration 
 Polarization configuration 

 Unchanged polarization (for any polarization direction) in two arcs 
 1st order spin perturbation for the off-momentum particles vanishes due 

to zero net integral of solenoid fields in the long straight section 
 Figure-8 removes spin tune energy dependence => significant reduction 

of quantum depolarization 
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• Magnetic field 
 

• Polarization  

IP 
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Continuous Injection Technique 
 Continuous injection to preserve 

electron polarization 
 
 
 
 

 Polarization at t+Δt 
 

 Equilibrium polarization 
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 Note that: 
 Continuous injection mainly considered at higher energies 
 A relatively low averaged beam current of tens-of-nA level needed 
 Constant beam current maintained 
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