MEIC Project at Jefferson Lab

Fanglei Lin

Center for Advanced Studies of Accelerators, Jefferson Lab

29th Annual Hampton University Graduate Studies Program HUGS 2014, Jefferson Lab, June 2-20, 2014

MEIC Study Group

S. Abeyratne¹², A. Accardi^{1,7}, S. Ahmed¹, D. Barber⁶, J. Bisognano¹⁸, A. Bogacz¹, A. Castilla^{13,17}, P. Chevtsov¹⁴, S. Corneliussen¹, W. Deconinck⁵, P. Degtiarenko¹, J. Delayen¹³, Ya. Derbenev¹, S. DeSilva¹³, D. Douglas¹, V. Dudnikov¹¹, R. Ent¹, B. Erdelyi¹², P. Evtushenko¹, Yu. Filatov^{9,10}, D. Gaskell¹, R. Geng¹, J. Grames¹, V. Guzey¹, T. Horn⁴, A. Hutton¹, C. Hyde¹³, R. Johnson¹¹, Y. Kim⁸, F. Klein⁴, A. Kondratenko¹⁶, M. Kondratenko¹⁶, G. Krafft^{1,13}, R. Li¹, F. Lin¹, S. Manikonda², F. Marhauser¹¹, R. McKeown¹, V. Morozov¹, P. Nadel-Turonski¹, E. Nissen¹, P. Ostroumov², M. Pivi¹⁵, F. Pilat¹, M. Poelker¹, A. Prokudin¹, R. Rimmer¹, T. Satogata¹, H. Sayed³, M. Spata¹, M. Sullivan¹⁵, C. Tennant¹, B. Terzić¹, M. Tiefenback¹, H. Wang¹, S. Wang¹, C. Weiss¹, B. Yunn¹, Y. Zhang¹

¹ Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

² Argonne National Laboratory, Argonne, IL 60439, USA

³ Brookhaven National Laboratory, Upton, NY 11973, USA

⁴ Catholic University of America, Washington, DC 20064, USA

⁵College of William and Mary, Williamsburg, VA 23187, USA

⁶ Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany

⁷ Hampton University, Hampton, VA 23668

⁸ Idaho State University, Pocatello, ID 83209, USA

⁹ Joint Institute for Nuclear Research, Dubna, Russia

¹⁰ Moscow Institute of Physics and Technology, Dolgoprydny, Russia

¹¹ Muons Inc., Batavia, IL 60510, USA

¹² Northern Illinois University, DeKalb, IL 60115, USA

¹³Old Dominion University, Norfolk, VA 23529, USA

¹⁴ Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

¹⁵ SLAC National Accelerator Laboratory, Menlo Park, CA 94305, USA

¹⁶ Science and Technique Laboratory Zaryad, Novosibirsk, Russia

¹⁷Universidad de Guanajuato, 36000 Guanajuato, Mexico

¹⁸ University of Wisconsin-Madison, Madison, WI 53706, USA

Introduction

- JLab's fixed target program after the 12 GeV CEBAF upgrade will be world-leading for at least a decade
- A Medium energy Electron-Ion Collider (MEIC) at JLab will open new frontiers in nuclear science.
- MEIC parameters are chosen to optimize science, technology development, and project cost.
- We maintain a well-defined path for future upgrade to higher energies and luminosities.
- A design report was released on August, 2012, providing a base for performance evaluation, cost estimation, and technical risk assessment.
- ✤ We are working for a complete Conceptual Design Report in 2-3 years.

Design Strategy for High Luminosity

The MEIC design concept for high luminosity is based on high bunch repetition rate CW colliding beams

Design Strategy for High Polarization

- All rings have a figure-8 shape with critical advantages for both ion and electron beam
 - Spin precessions in the left & right parts of the ring are exactly cancelled
 - Net spin precession (*spin tune*) is zero, thus energy independent
 - Spin is easily controlled and stabilized by small solenoids or other compact spin rotators
- Advantage 1: Ion spin preservation during acceleration
 - Ensures spin preservation
 - Avoids energy-dependent spin sensitivity for all species of ions
 - Allows a high polarization for all light ion beams
- Advantage 2: Ease of spin manipulation
 - Delivering desired polarization at multiple collision points
- Advantage 3: The only practical way to accommodate polarized deuterons
 - ultra small g-2
- Advantage 4: Strong reduction of quantum depolarization thanks to the energy independent spin tune
 - Helps to preserve polarization of the electron beam continuously injected from CEBAF

MEIC Design Parameters

Energy

- Full coverage of center of mass energy from 15 to 65 GeV
- Electrons 3-12 GeV, protons 25-100 GeV, ions 12-40 GeV/u

Ion species

- Polarized light ions: p, d, ³He, and possibly Li, and polarized heavier ions
- Un-polarized light to heavy ions up to A above 200 (Au, Pb)

✤ At least 2 detectors

Full acceptance is critical for the primary detector

Luminosity

- Maximum luminosity >10³⁴ optimized to be around \sqrt{s} =45 GeV
- Above 10³³ cm⁻²s⁻¹ per IP in a *broad* CM energy range

Polarization

- At IP: longitudinal for both beams, transverse for ions only
- All polarizations >70%
- Upgrade to higher energies and luminosity possible
 - 20 GeV electron, 250 GeV proton, and 100 GeV/u ion

MEIC Layout

EIC at JLab

Stage I MEIC

- CEBAF as full-energy e⁻/e⁺ inj
- 3-12 GeV e⁻/e⁺
- 25-100 GeV protons
- 12-40 GeV/u ions

✤ Stage II EIC

- up to 20 GeV e⁻/e⁺
- up to 250 GeV protons
- up to 100 GeV/u ions

Two independent but complementary detectors

Ion Pre-booster

Purpose of pre-booster

- Accumulation of ions injected from linac
- Acceleration of ions
- Extraction and transfer of ions to the large booster

Design concepts

- Figure-8 shape
- (Quasi-independent) modular design
- FODO arcs for simplicity and ease optics corrections

Design considerations

- Maximum bending field: 1.5 T
- Maximum quad field gradient: 20 T/m
- Momentum compaction smaller than 1/25
- Maximum beta functions less than 35 m
- Maximum full beam size less than 2.5 cm
- 5m dispersion-free drifts between triplets for RF, cooling, collimation and extraction

9

Ion Large Booster

- Accelerates protons from 3 to 25 GeV (and ion energies with similar magnetic rigidity)
- Follow electron/ion collider ring footprints, housed in same tunnel
- Made of warm magnets and warm RF
- No transition energy crossing (always below γ_t =26.65)
- Quadrupole based dispersion suppression *

MEIC Ion Collider Ring

11

Ion Arc FODO Cell

- ✤ Arc basic building block
 - Dipole field ~5.8T at 100 GeV/c
 - Quad gradient ~150 T/m with 60° phase advance at 100 GeV/c

Ion Chromaticity Compensation Block

* CCB

- Based on and matched to regular FODO lattice
- Provides necessary orbital and magnetic symmetries
- Placed in arc to save space in straights
- Adjustable max β function values for non-linear dynamics optimization
- Chromatic contribution ~-8 in both planes

Ion Vertical Doglegs

- ✤ Bring ion beam to electron ring plane at arc ends
 - Combined with horizontal bend to save space
 - Suppressed/compensated horizontal/vertical dispersions
- Dogleg upstream of IP: shaped to provide 50mrad crossing angle

Dogleg downstream of IP: shaped to provide 2m separation from electron beam

Ion Interaction Region

IR design features

 $\beta_{x}(m), \beta_{y}(m)$

- Based on triplet final focusing blocks (FFB)
- Asymmetric design to satisfy detector requirements and reduce chromaticity
- Spectrometer dipoles before and after downstream FFB, second focus downstream of IP
- No dispersion at IP, downstream dispersion suppression designed to function as CCB

12 GeV CEBAF

Electron Collider Ring Layout

17

Electron Collider Ring Optics

Universal Spin Rotator (USR)

* Schematic drawing of USR

✤ Illustration of spin rotation by USR

Half Quad. Decoupling Insert Half Solenoid

Collider Ring and IR Layout

- Lattice design satisfying
 - **Detector** requirements: full acceptance and high resolution
 - Beam dynamics requirements: consistent with non-linear dynamics requirements
 - Geometric constraints: matched collider ring footprints and decouple the ring geometry from IR layout

Full Acceptance Detection System

- ✤ 50 mrad crossing angle
 - Improved detection, no parasitic collision, fast beam sepa
- ✤ Forward
 - Endcap with 50 mrad crossing angle
 - Small dipole covering angles up to a few degrees
 - Far forward covering up to one degree for particles passir
- Low-Q² tagger: small-angle electron detection

Crab Crossing

- Required for supporting high bunch repetition rate (small bunch spacing)
- ✤ Local crab scheme
- Two cavities are placed at (n+1) π/2 phase advance relative to IP
- Large β_x at location of crab cavities for minimizing the required kicking voltage
- Crab cavities under final testing

Electron Cooling for Ion Beams

Cooling of protons/ions: => small emittance and short bunch (w strong SRF) => enabling ultra strong final focusing and crab crossing => suppressing IBS, expanding high luminosity lifetime MEIC adopts traditional electron cooling * $\tau_{cool} \sim \gamma^2 \frac{\Delta \gamma}{\gamma} \sigma_z \varepsilon_{4d}$ Multi-phased scheme takes advantages of high cooling efficiency at low energy and small 6D emittance Needs two coolers: a DC cooler & ERL cooler ••• **High Energy cooling DC** cooling pre-booster (3 GeV) large booster medium energy ion sources SRF Linac (accumulation) (25 GeV) collider ring **Cooling section** ion bunch Cooler design solution ** Magnetized beam to mitigate space electron charge and CSR solenoid recirculating 10+ turns -> bunch reduction of current from Energy recovery linac (ERL) an ERL by a same factor minimize power requirements circulator ring Circulator cooler ring (CCR) to reduce Fast kicker enerav **Fast kicker** recovery 23 source and ERL requirements

SRF Linac

injector

dump

Ion Polarization

✤ Figure-8 structure as

- No preferred periodic spin direction, energy-independent zero spin tune => polarization can be controlled by small magnetic fields
- Avoids energy-dependent spin sensitivity for all species of ions
- Works for all ion species including **deuterons** with small anomalous magnetic moment

Beam from Linac

Acceleration and spin matching

- Polarization is stabilized by weak (< 3 Tm) solenoids in all ion rings
- Injection and extraction from straight with solenoid

	P _{inj/ext} (GeV/c)	(BL) _{inj/ext} (T.M)	L (cm)	v _{deut} ∕v _{prot}
Pre-booster (1 solenoid)	0.785 / 3.83	0.06 / 0.28	60	0.003 / 0.01
Large booster (1 solenoid)	3.83 / 20	0.28 / 1.5	120	0.003 / 0.01
24				

Ion Polarization (cont'd)

- ✤ Polarization control in the collider ring
 - Beam is injected longitudinally polarized, accelerated and then the desired spin orientation is adjusted
 - Weak solenoid for deuterons (< 1.5 Tm each)
 - Weak radial-field dipoles for protons (< 0.25 Tm each)
 - Small or no orbit excursions, easy magnet field ramp

Deuteron polarization control

Electron Polarization

- ✤ Highly polarized electron beams are injected from CEBAF
- Polarization is designed to be vertical in the arc to avoid spin diffusion and longitudinal at collision points using spin rotators

- New developed universal spin rotator rotates polarization from 3 to 12GeV
- Desired spin flipping can be implemented by changing the source polarization

26

- Compton polarimeters are considered to measure the electron polarization
 - Two long opposite polarized bunch trains simplify the compton polarimetry

Electron Polarization Configuration

- Polarization configuration
 - Unchanged polarization (for any polarization direction) in two arcs
 - 1st order spin perturbation for the off-momentum particles vanishes due to zero net integral of solenoid fields in the long straight section
 - Figure-8 removes spin tune energy dependence => significant reduction of quantum depolarization

Continuous Injection Technique

- Equilibrium polarization $P_{equ} = P_0 (1 + \frac{T_{rev}I_{ring}}{\tau_{dk}I_{inj}})^{-1}$
- Note that:

28

- Continuous injection mainly considered at higher energies
- A relatively low averaged beam current of tens-of-nA level needed
- Constant beam current maintained