The Transverse Spin Structure of the Nucleon

Patrizia Rossi

Jefferson Lab

29th Annual Hampton University Graduate Studies Program Jefferson Lab - June 3-5, 2014

Lessons Scheme

LECTURES 1 \& 2

- Introduction
- Deep Inelastic Scattering and 1D parton distribution functions
- From 1D to 3D nucleon structure: Transverse Momentum Dependent (TMD) parton distribution functions
- TMD Measurements @ Jlab in Hall B

LECTURES 3 \& 4

- Data analysis
- Monte Carlo simulations
- Asymmetries extraction
- TMDs extraction

LECTURE 5

- Where are we? What's next

Physics Reactions \& Observables

HOW ?

to access the quark transverse momentum

HARD PROCESSES

Observables

SPIN AZIMUTHAL ASYMMETRIES due to correlations of spin of quark/nucleon and transverse momentum of quarks (Spin-orbit correlations)

Hard Processes

SIDIS

Drell-Yan

hard scattering Partonic Fragmentation

Partonic Distributions

- Factorization proved
- Universality defined
- Evolution known

Single particle production in hard scattering

High probability to detect leading hadron in the forward detector

- Before

- After Target remnant

- Example: valence struck quark

quarks from the Dirac sea

Mechanisms for SSA

Two fundamental QCD mechanisms have been identified to generate SSA: Collins \& Sivers

Collins (fragmentation): correlation between parton transverse polarization and transverse momentum of the produced hadron

Sivers (distribution):

correlation between parton transverse momentum and nucleon transverse polarization. Requires orbital angular momentum

Collins Mechanisms for SSA

- Collins asymmetries are generated in the hadronization process of transversely polarized quarks.
- It implies a correlation between the transverse polarization of the quark and the transverse momentum of the unpolarized hadron it fragments into

- Behind the leading quark u a string forms.
- The string breaks through the formation of the qqbar pair. The qqbar pair has the vacuum q.n. $J=0^{+} \rightarrow L=1 S=1$ with L and S in the opposite direction and in the case of fragmentation into π (spin 0) L is in the same direction as the spin of the leading quark.
- The qbar that merges with the fragmenting quark retain some of that transverse orbital angular mom., causing it to move in a preferred direction.
- The pion inherits the transverse momentum carried by the antiquark.

Sivers Mechanisms for SSA

The transverse-momentum distribution may be different for quarks of different flavors. In an upolarized proton there are some indications (from exp data and lattice calculations) that the up-quarks are closer to the center than the down-quarks. [PLB, 665 (2008) 20 - PRD 83 (2011) 094507] $f_{1}\left(x, k_{T}^{2}\right)-f_{\frac{1}{T}}^{\perp}\left(x, k_{T}^{2}\right) \frac{\left(\widehat{P} \times \vec{k}_{T}\right) \vec{S}_{T}}{M}$

Sivers Asymmetry: generated in the distribution function of unpolarized quarks in transversely polarized nucleon

Images elaborated from real data: EPJA (2009) 89 - PRL107 (2011) 212001

Semi-Inclusive DIS

$$
e p \rightarrow e^{\prime} h X \quad d \sigma^{h} \propto \sum q_{f}(x) \otimes \mathbf{d} \sigma_{f}(y) \otimes D_{f}^{q \rightarrow h}(z)
$$

$$
x=Q^{2} / 2 M \nu
$$

Parton-Hadron transition by fragmentation function $\mathrm{D}^{\pi+\left(\pi^{-1}\right)}(\mathrm{z})$: probability for a $\mathbf{u -}$ quark to produce a $\pi^{+}\left(\pi^{-}\right)$with momentum fraction z $y=\nu / E$ Hard scattering

Hadron-Parton transition by distribution function $\mathrm{q}_{\mathrm{f}}=\mathrm{f}_{1}{ }^{4}(x)$: probability to find a u-quark with a momentum fraction \boldsymbol{x}

SIDIS Kinematical Plane \& Cross Section

$$
\begin{aligned}
& \cos \phi_{h}=\frac{(\hat{q} \times l)}{|\hat{q} \times l|} \cdot \frac{\left(\hat{q} \times P_{h}\right)}{\left|\hat{q} \times P_{h}\right|}, \quad 乙 \backslash \\
& \sin \phi_{h}=\frac{\left(l \times P_{h}\right) \cdot \hat{q}}{|\hat{q} \times l|\left|\hat{q} \times P_{h}\right|}, \quad \mid=\text { electron }
\end{aligned}
$$

$$
\begin{aligned}
& v=E-E^{\prime} \\
& Q^{2}=4 E E^{\prime} \sin (\theta / 2) \\
& x=Q^{2} / 2 M v \\
& z=E_{h} / v
\end{aligned}
$$

The possible contributions to the cross section of deep-inelastic scattering in a semi-inclusive measurement arise from the various combinations in the scattering of unpolarised (U) or longitudinally polarised (L) leptons off unpolarised, longitudinally or transversely polarised (T) nucleons:
$\sigma=\sigma_{U U}+\lambda_{l} \sigma_{L U}+S_{L} \sigma_{U L}+\lambda_{l} S_{L} \sigma_{L L}+S_{T} \sigma_{U T}+\lambda_{l} S_{T} \sigma_{L T}$ Beam polarization

Target polarization
$S_{L}, S_{T}=$ Longitudinal/Transverse polarization

SIDIS Cross Section

- SIDIS differential cross section studied including the dependence on the azimuthal angles ϕ_{h} and ϕ_{S}.
- In OPE approximation: cross section decomposed in a model independent way into 18 structure function F related to the various azimuthal modulations

α	fine structure constant
ϕ_{S}	Azimuthal angle of the target spin
ϕ_{h}	Azimuthal angle between the scattering plane and the hadronic plane
S_{L}	Transverse target pol.
S_{T}	Longitudinal target pol.
λ_{ε}	Beam polarization
$\mathrm{P}_{\mathrm{h} \perp}$	Transverse hadron momentum

$$
\mathbf{F}=\mathbf{F}\left(\mathbf{x}, \mathbf{Q}^{2}, \mathbf{z},\left|\mathbf{P}_{\mathbf{h}, \perp}\right|\right)
$$

$\frac{d \sigma}{d x d y d \phi_{S} d z d \phi_{h} d P_{h \perp}^{2}}$

$$
=\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}\right.
$$

$$
+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}+S_{L}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right]
$$

$$
+S_{L} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{L L}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{h} F_{L L}^{\cos \phi_{h}}\right]
$$

$$
+S_{T}\left[\sin \left(\phi_{h}-\phi_{S}\right)\left(F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}+\varepsilon F_{U T, L}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right)+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}\right.
$$

$$
+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{S} F_{U T}^{\sin \phi_{S}}
$$

$$
\left.+\sqrt{2 \varepsilon(1+\varepsilon)} \sin \left(2 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi_{h}-\phi_{S}\right)}\right]+S_{T} \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right.
$$

$$
\left.\left.+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\sqrt{2 \varepsilon(1-\varepsilon)} \cos \left(2 \phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi_{h}-\phi_{S}\right)}\right]\right\}
$$

arXiv:hep-ph/0611265

SIDIS Cross Section @ Leading Twist

- The contributions to deep-inelastic scattering are commonly classified by twist (t), a quantum number, denoting the order in M/Q at which an effect arises. Dominant contributions are labelled as twist-two, $\mathrm{t}=2$, higher twist contributions, $\mathrm{t}>2$, are suppressed by (M/Q) ${ }^{\mathrm{t}-2}$.
- At leading twist the SIDIS differential cross section depends on 8 Structure Functions:

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d z d \phi_{S} d \phi_{h} d P_{h \perp}^{2}}=\frac{\alpha^{2}}{x Q^{2}} \frac{y}{2(1-\varepsilon)} \underbrace{\cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}+S_{L}-\sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{1}}} \\
& \times\left\{F_{U U, T}+Q^{2}, z,\left|\mathbf{P}_{\mathbf{h}, \perp}\right|\right) \\
& +S_{L} \lambda_{e} \sqrt{1-\varepsilon^{2}} F_{L L}+\left|\boldsymbol{S}_{T}\right|\left[\sin \left(\phi_{h}-\phi_{S}\right) F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right. \\
& \left.+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) \sin _{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}\right] \\
& +\left|\boldsymbol{S}_{T}\right| \lambda_{e}\left[\sqrt{\left.\left.1-\varepsilon<\cos \left(\phi_{h}-\phi_{S}\right\rangle F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right]\right\}}\right.
\end{aligned}
$$

Different ϕ modulation for different TMDs contributions

SIDIS Cross Section @ Leading Twist

$$
\epsilon=\frac{1-y-\frac{1}{4} \gamma^{2} y^{2}}{1-y+\frac{1}{2} y^{2}+\frac{1}{4} y^{2} \gamma^{2}}
$$

$$
\gamma=\frac{2 M x}{Q}
$$

Take into account the dependence of the longitudinal and transverse polarisation of the virtual photon.
$\varepsilon=$ ratio of the longitudinal to the transverse photon flux, which is determined by the kinematics of the lepton:

For small transverse hadron momentum, $\mathrm{P}_{\mathrm{h} \perp}^{2} \ll \mathrm{Q}^{2}$, the structure functions can be interpreted in terms of a convolution over the intrinsic transverse momenta k_{\perp} and p_{\perp} of quark distribution and fragmentation functions factorization proved!

$$
\mathrm{d} \sigma^{l p \rightarrow l h X}=\sum_{q} f_{q}\left(x, \boldsymbol{k}_{\perp} ; Q^{2}\right) \otimes \mathrm{d} \hat{\sigma}^{l q \rightarrow l q}\left(y, \boldsymbol{k}_{\perp} ; Q^{2}\right) \otimes D_{q}^{h}\left(z, \boldsymbol{p}_{\perp} ; Q^{2}\right)
$$

Two scales:

(N.B. In this formula $k_{T} \equiv k_{\perp}$)

- $\mathrm{P}_{\mathrm{h} \perp} \perp \Lambda_{\mathrm{QCD}} \rightarrow$ Non perturbative regime! $\mathrm{P}_{\mathrm{h} \perp}$ is generated from partons inside of hadrons. Transverse momenta of partons: a transparent explanation for SSA
- Q large $\quad \rightarrow$ Hard process

From Structure Functions to Parton Distribution Functions (I)

The formulation of the cross section arises from a contraction of the leptonic ($\mathrm{L}_{\mu \nu}$) and hadronic ($\mathrm{W}^{\mu \nu}$) tensors

$$
\frac{d \sigma}{d x_{B} d y d \psi d z d \phi_{h} d P_{h \perp}^{2}}=\frac{\alpha^{2} y}{8 z Q^{4}} L^{\mu \nu} 2 M W_{\mu \nu}
$$

- The hadronic tensor is defined as:

$$
2 M W^{\mu \nu}=\xrightarrow{\frac{1}{(2 \pi)^{3}}} \sum_{X} \int \frac{d^{3} \boldsymbol{P}_{X}}{2 P_{X}^{0}} \delta^{(4)}\left(q+P-P_{X}-P_{h}\right)\langle P| J^{\mu}(0)|h, X\rangle\langle h, X| J^{\nu}(0)|P\rangle
$$

Sum over the polarizations of all hadrons in the final state

- Calculations limited to the leading term in the 1/Q expansion of the cross section

$$
\begin{array}{ll}
2 M W^{\mu \nu}=2 z & \sum_{a} e_{\substack{r}}^{e_{a}^{2} \int d^{2} \boldsymbol{k}_{T} d^{2} \boldsymbol{p}_{T} \delta^{2}\left(\boldsymbol{k}_{T}+\boldsymbol{q}_{T}-\boldsymbol{p}_{T}\right)} \operatorname{Tr}\{\underbrace{}_{\substack{\Phi^{a} \\
\text { Sum over the quark } \\
\text { and antiquark flavors a charge of the } \\
\text { struck quark or antiquark }}} \text { Correlation functions for quark distributions \& fragmentation } \gamma^{\mu} \Delta^{a}\left(z, p_{T}\right) \gamma^{\nu}\},
\end{array}
$$

Distribution functions with k_{T}

Ralston \& SoperNP B 152 (1979) 109 Tangerman \& Mulders PR D 51 (1995) 3357

Selection via specific probing operators

Calculations in light cone coordinate

DISTRIBUTION FUNCTIONS IN $\Phi\left(x, k_{T}\right)$

$$
\begin{aligned}
\frac{\mathbf{1}}{2} \operatorname{Tr}\left[\Phi \gamma^{+}\right] & =\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{\psi}(0) \gamma^{+} \psi_{i}(\xi)|P, S\rangle\right|_{\xi^{+}=0} \\
& =f_{1}\left(x, k_{T}^{2}-f_{1 T}^{\perp}\left(x, k_{T}^{2}\right) \frac{\left(\hat{P} \times \vec{k}_{T}\right) \vec{S}_{T}}{M}\right.
\end{aligned}
$$

$$
\frac{1}{2} \operatorname{Tr}\left[\Phi \gamma^{+} \gamma_{5}\right]=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P, S| \bar{\psi}(0) \gamma^{+} \gamma_{5} \psi_{i}(\xi)|P, S\rangle\right|_{\xi^{+}=0}
$$

$$
=\vec{S}_{L}\left(_{1 L}\left(x, k_{T}^{2}\right)+k_{1 T}\left(x, k_{T}^{2}\right) \frac{\left.\vec{k}_{T} \vec{S}_{T}\right)}{M}\right.
$$

TMDs at Leading Twist

Main Players in the game

$$
27 \mathrm{GeV} \mathrm{e}^{+/-}
$$

$190 \mathrm{GeV} \mu$

Mall $\mathrm{A}=\mathrm{GGeve}$

 Man Holl c

Experimental Tools

- First large high-power CW recirculating e-linac (based on SRF technology)
- Energy: $0.8-5.7 \mathrm{GeV} \rightarrow(10>\lambda>0.1 \mathrm{fm})$
- $\Delta \mathrm{E} / \mathrm{E}=10^{-4}(4 \sigma)$
- Current: 0.1nA - $200 \mu \mathrm{~A}$
- Polarization: 75-85\%

Experimental Tools

The CLAS Detector

Basic Tools for Particle Identification (PID)

PID: methods based on the momentum measurement pand another kinematical variable (β or γ)

$$
p=\gamma m_{0} \beta c
$$

Cerenkov Detectors

Based on Čerenkov effect: a cone of light is produced when a particle traverses a medium with a velocity greater than the speed of light in that medium: $v=\beta c>c / n$,
(n being the refractive index)

Calorimeter

If we stop a particle in a scintillator (or other suitable material, es. Liquid Argon), then the amount of light detected provides a measure of the total energy that the particle had

Drift Chamber (Tracking)

1. Particle ionizes gas

2. Electrons drift from
drift time
3. Measure the drift time and get x (position)

Time-of-Flight (TOF)

Knowing the separation of the scintillators and measuring the difference in arrival time of the signals gives us the particle speed

$$
\frac{\mathbf{L}}{\Delta \mathbf{t}}=\beta \mathbf{c}=\mathbf{c} \frac{\mathbf{p}}{\sqrt{\left(\mathbf{p}^{2}+\mathbf{m}^{2} \mathbf{c}^{4}\right)}}
$$

k_{T}-effects with longitudinally polarized target

$$
\vec{e} \vec{p} \rightarrow \mathrm{e}^{\prime} \pi \mathrm{X}
$$

Correlation between the transverse momentum and transverse spin of quarks in longitudinally polarized proton

Scattering $\overrightarrow{\mathrm{e}} \overrightarrow{\mathrm{p}}$

Polarized Target

Charged Particle Identification

- Tracks measured in the Drift Chambers

$$
\rho=\frac{p}{q B} \quad \square \quad p=q B \rho
$$

B known; ρ measured in DC

- β measured with TOF

$$
\beta=\frac{L}{c \Delta t}
$$

$L=$ path length from target to TOF scintillator $\Delta t=$ time of flight

$$
\gamma=\frac{1}{\sqrt{1-\beta^{2}}}
$$

$$
\mathrm{M}=\frac{\mathrm{p}}{\beta \gamma}
$$

e / π Rejection with Cherenkov

Particles emit Cherenkov light only when their velocity is :

$$
\beta>\frac{c}{n} \quad \underset{\rightarrow \mathrm{P}_{\pi}>2.7 \mathrm{GeV} / \mathrm{c}}{\text { in CLAS } n=1.0013}\left(\mathrm{C}_{4} \mathrm{~F}_{10}\right)
$$

Number of emitted γ is:

$$
\frac{d N_{\gamma}^{2}}{d \lambda d L} \propto \sin _{\theta_{C}}^{2}(\lambda)
$$

The angle of emission increases with β

At energies $\sim \mathrm{GeV}$ it is difficult to separate e^{-} / π^{-}using only TOF and path length \rightarrow we need information from the Cherenkov and the electromagnetic calorimeter. In fact, hadron interaction in the scintillator is very different from e^{-} interaction.

Min p.e. $=2$ for \mathbf{e}^{-}

e / π Rejection with e.m. Calorimeter

The e- $/ \pi$ - rejection in the calorimeter e.m. is based on the fact that most of the incident pions lose energy only for ionization (and therefore a small fraction of their total energy) thus they can be rejected placing a suitable threshold in the released energy.

Sampling fraction $\cong 0.3$
(fraction of the deposited energy deposited in the active mediumand then detectable- with respect to the total energy lost)

- To improve the e- / π - rejection a comparative analysis of the energy deposited in the inner and outer part of the calorimeter is used.
- The π - deposite uniformly their energy in the inner and outer part of the calorimeter while this is not the case for e -

π^{-} / π^{+}

e/л Rejection: e.m. Calorimeter + Cherenkov

Combined cuts on Cherenkov and the e.m. calorimeter select correctly the electron

Fiducial Region

- A z-coordinate cut of the electron vertex is made to select events that are created in the target

- Momentum dependent fiducial cuts on ϑ and ϕ are made for electrons and charged pions to constrain the data to a region in CLAS that can be accurately recreated by simulation

Kinematical Cuts for SIDIS events

