

The Transverse Spin Structure of the Nucleon

PATRIZIA ROSSI JEFFERSON LAB

29th Annual Hampton University Graduate Studies Program Jefferson Lab - June 3-5, 2014

Lessons Scheme

LECTURES 1 & 2

- Introduction
- Deep Inelastic Scattering and 1D parton distribution functions
- From 1D to 3D nucleon structure: Transverse Momentum Dependent (TMD) parton distribution functions
- TMD Measurements @ Jlab in Hall B

LECTURES 3 & 4

- Data analysis
- Monte Carlo simulations
- Asymmetries extraction
- TMDs extraction

LECTURE 5

Where are we? What's next

Physics Reactions & Observables

HOW ?

to access the quark transverse momentum

HARD PROCESSES

Observables

SPIN AZIMUTHAL ASYMMETRIES

due to correlations of spin of quark/nucleon and transverse momentum of quarks (Spin-orbit correlations)

Hard Processes

Single particle production in hard scattering

Mechanisms for SSA

Two fundamental QCD mechanisms have been identified to generate SSA: Collins & Sivers

Collins (fragmentation):

correlation between parton transverse polarization and transverse momentum of the produced hadron

Sivers (distribution):

correlation between parton transverse momentum and nucleon transverse polarization. Requires orbital angular momentum

Collins Mechanisms for SSA

- **Collins asymmetries** are generated in the **hadronization** process of transversely polarized quarks.
- It implies a correlation between the **transverse polarization** of the quark and the **transverse momentum** of the unpolarized hadron it fragments into

- Behind the leading quark u a string forms.
- The string breaks through the formation of the qqbar pair. The qqbar pair has the vacuum q.n. $J=0^+ \rightarrow L=1$ S=1 with L and S in the opposite direction and in the case of fragmentation into π (spin 0) L is in the same direction as the spin of the leading quark.
- The qbar that merges with the fragmenting quark retain some of that transverse orbital angular mom., causing it to move in a preferred direction.
- The pion inherits the transverse momentum carried by the antiquark.

Sivers Mechanisms for SSA

Images elaborated from real data: EPJA (2009) 89 - PRL107 (2011) 212001

Jefferson Lab

Semi-Inclusive DIS

 $ep \to e'hX \quad d\sigma^h \propto \sum q_f(x) \otimes d\sigma_f(y) \otimes D_f^{q \to h}(z)$

Parton-Hadron transition by fragmentation function $D^{\pi+(\pi-)}(z)$: probability for a **u**quark to produce a $\pi^+(\pi^-)$ with momentum fraction *z*

SIDIS Kinematical Plane & Cross Section

The possible contributions to the **cross section** of deep-inelastic scattering in a **semi-inclusive measurement** arise from the various combinations in the scattering of unpolarised (U) or longitudinally polarised (L) leptons off unpolarised, longitudinally or transversely polarised (T) nucleons:

$$\sigma = \sigma_{UU} + \frac{\lambda_l \sigma_{LU}}{\gamma} + \frac{S_L \sigma_{UL}}{\gamma} + \frac{\lambda_l S_L \sigma_{LL}}{\gamma} + \frac{S_T \sigma_{UT}}{\gamma} + \frac{\lambda_l S_T \sigma_{LT}}{\gamma}$$

Beam polarization

Target polarization

 S_L, S_T = Longitudinal/Transverse polarization

SIDIS Cross Section

- SIDIS differential cross section studied including the dependence on the azimuthal angles ϕ_h and ϕ_s .
- In OPE approximation: cross section decomposed in a model independent way into 18 structure function F related to the various azimuthal modulations

α	fine structure constant			
ϕ_{S}	Azimuthal angle of the target spin			
ϕ_h	Azimuthal angle between the scattering plane and the hadronic plane			
SL	Transverse target pol.			
S _T	Longitudinal target pol.			
λ_{ϵ}	Beam polarization			
$P_{h\perp}$	Transverse hadron momentum			

$$\frac{d\sigma}{dx\,dy\,d\phi_{S}\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} = \frac{\alpha^{2}}{x\,y\,Q^{2}}\frac{y^{2}}{2(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon\,F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\,\cos\phi_{h}\,F_{UU}^{\cos\phi_{h}} + \varepsilon\,\cos(2\phi_{h})\,F_{UU}^{\cos2\phi_{h}} + \lambda_{\varepsilon}\,\sqrt{2\varepsilon(1-\varepsilon)}\,\sin\phi_{h}\,F_{LU}^{\sin\phi_{h}} + S_{L}\left[\sqrt{2\varepsilon(1+\varepsilon)}\,\sin\phi_{h}\,F_{UL}^{\sin\phi_{h}} + \varepsilon\,\sin(2\phi_{h})\,F_{UL}^{\sin2\phi_{h}}\right] + S_{L}\,\lambda_{\varepsilon}\left[\sqrt{1-\varepsilon^{2}}\,F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\,\cos\phi_{h}\,F_{LL}^{\cos\phi_{h}}\right] + S_{T}\left[\sin(\phi_{h} - \phi_{S})\left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon\,F_{UT,L}^{\sin(\phi_{h} - \phi_{S})}\right) + \varepsilon\,\sin(\phi_{h} + \phi_{S})\,F_{UT}^{\sin(\phi_{h} + \phi_{S})} + \varepsilon\,\sin(3\phi_{h} - \phi_{S})\,F_{UT}^{\sin(3\phi_{h} - \phi_{S})} + \sqrt{2\varepsilon(1+\varepsilon)}\,\sin\phi_{S}\,F_{UT}^{\sin\phi_{S}} + \sqrt{2\varepsilon(1+\varepsilon)}\,\sin(2\phi_{h} - \phi_{S})\,F_{LT}^{\cos(\phi_{h} - \phi_{S})}\right] + S_{T}\,\lambda_{\varepsilon}\left[\sqrt{1-\varepsilon^{2}}\,\cos(\phi_{h} - \phi_{S})\,F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \sqrt{2\varepsilon(1-\varepsilon)}\,\cos\phi_{S}\,F_{LT}^{\cos(2\phi_{h} - \phi_{S})}\,F_{LT}^{\cos(2\phi_{h} - \phi_{S})}\right]\right]$$
arXiv:hep-ph/0611265

 $\mathbf{F} = \mathbf{F}(\mathbf{x}, \mathbf{Q}^2, \mathbf{z}, |\mathbf{P}_{\mathbf{h}}|)$

SIDIS Cross Section @ Leading Twist

- The contributions to deep-inelastic scattering are commonly classified by twist (t), a quantum number, denoting the order in M/Q at which an effect arises. Dominant contributions are labelled as twist-two, t = 2, higher twist contributions, t > 2, are suppressed by $(M/Q)^{t-2}$.
- At leading twist the SIDIS differential cross section depends on **8 Structure Functions**:

$$\frac{d\sigma}{dx\,dy\,dz\,d\phi_S\,d\phi_h\,dP_{h\perp}^2} = \frac{\alpha^2}{xQ^2}\frac{y}{2(1-\varepsilon)} \qquad F(x,Q^2,z,|\mathbf{P}_{\mathbf{h},\perp}|)$$

$$\times \left\{ F_{UU,T} + \cos(2\phi_h)F_{UU}^{\cos 2\phi_h} + S_L\varepsilon\sin(2\phi_h)F_{UL}^{\sin 2\phi} + S_L\lambda_e\sqrt{1-\varepsilon^2}F_{LL} + |\mathbf{S}_T| \left[\sin(\phi_h - \phi_S)F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon\sin(3\phi_h - \phi_S)F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon\sin((\phi_h + \phi_S)F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon\sin((\phi_h - \phi_S)F_{UT}^{\sin(\phi_h - \phi_S)}) \right] + |\mathbf{S}_T|\lambda_e \left[\sqrt{1-\varepsilon}\cos(\phi_h - \phi_S)F_{LT}^{\cos(\phi_h - \phi_S)} \right] \right\},$$

Different ϕ modulation for **different TMDs** contributions

Jefferson Lab

SIDIS Cross Section @ Leading Twist

$$\epsilon = \frac{1 - y - \frac{1}{4}\gamma^2 y^2}{1 - y + \frac{1}{2}y^2 + \frac{1}{4}y^2 \gamma^2} \qquad \gamma = \frac{2M}{Q}$$

Take into account the dependence of the longitudinal and transverse polarisation of the virtual photon. ε = ratio of the longitudinal to the transverse photon flux, which is determined by the kinematics of the lepton:

For small transverse hadron momentum, $P_{h\perp}^2 \ll Q^2$, the structure functions can be interpreted in terms of a **convolution** over the intrinsic transverse momenta k₁ and p₁ of quark distribution and fragmentation functions factorization proved!

$$\mathrm{d}\sigma^{lp \to lhX} = \sum_{q} f_q(x, \boldsymbol{k}_{\perp}; Q^2) \otimes \mathrm{d}\hat{\sigma}^{lq \to lq}(y, \boldsymbol{k}_{\perp}; Q^2) \otimes D_q^h(z, \boldsymbol{p}_{\perp}; Q^2)$$

13

Two scales:

(N.B. In this formula $k_{T} \equiv k_{\perp}$)

- $P_{h^{\perp}} \sim \Lambda_{QCD} \rightarrow Non perturbative regime! P_{h^{\perp}} is generated from partons inside of hadrons.$ Transverse momenta of partons: a transparent explanation for SSA

 \mathcal{X}

Q large

From Structure Functions to Parton Distribution Functions (I)

The formulation of the cross section arises from a contraction of the leptonic ($L_{\mu\nu}$) and hadronic ($W^{\mu\nu}$) tensors

$$\frac{d\sigma}{dx_B dy d\psi dz d\phi_h dP_{h\perp}^2} = \frac{\alpha^2 y}{8zQ^4} L^{\mu\nu} 2M W_{\mu\nu}$$

• The hadronic tensor is defined as:

 $J^{\mu}(\xi)$ = e.m. current divided by the elementary charge

$$2MW^{\mu\nu} = \frac{1}{(2\pi)^3} \sum_X \int \frac{d^3 \mathbf{P}_X}{2P_X^0} \,\delta^{(4)} \left(q + P - P_X - P_h \right) \langle P|J^{\mu}(0)|h, X\rangle \langle h, X|J^{\nu}(0)|P\rangle$$

Sum over the polarizations of all hadrons in the final state

 Calculations limited to the leading term in the 1/Q expansion of the cross section

$$2MW^{\mu\nu} = 2z \sum_{a} e_a^2 \int d^2 \mathbf{k}_T \, d^2 \mathbf{p}_T \, \delta^2(\mathbf{k}_T + \mathbf{q}_T - \mathbf{p}_T) \, \operatorname{Tr} \left\{ \Phi^a(x, k_T) \gamma^{\mu} \Delta^a(z, p_T) \gamma^{\nu} \right\},$$

Sum over the quark and antiquark flavors a

fractional charge of the struck guark or antiguark Correlation functions for quark distributions & fragmentation

Distribution functions with k_T

15

Ralston & SoperNP B 152 (1979) 109 Tangerman & Mulders PR D 51 (1995) 3357

Jefferson Lab

Selection via specific probing operators

Calculations in light cone coordinate

TMDs at Leading Twist

Main Players in the game

27 GeV e^{+/-}

190 GeV µ

Experimental Tools

Experimental Tools

The CLAS Detector

EC= Electromagnetic Calorimeter

Basic Tools for Particle Identification (PID)

PID: methods based on the momentum measurement **p** and another kinematical variable (β or γ)

p=γ**m**₀β**c**

Cerenkov Detectors

Based on Čerenkov effect: a cone of light is produced when a particle traverses a medium with a **velocity** greater than the speed

of light in that medium:

 $v = \beta c > c/n$,

(n being the refractive index)

Calorimeter

If we stop a particle in a scintillator (or other suitable material, es. Liquid Argon), then the amount of light detected provides a measure of the total **energy** that the particle had

Drift Chamber (Tracking)

1. Particle ionizes gas.

2. Electrons drift from track to wire start drift time

3. Measure the drift time and qet x (position)

Photon

Tube

Photomultiplier

Jefferson Lab

Time-of-Flight (TOF)

Knowing the separation of the scintillators and measuring the difference in arrival time of the Scintillato signals gives us the Scintillato particle speed

stop

$$rac{\mathbf{L}}{\mathbf{\Delta t}} = eta \mathbf{c} = \mathbf{c} rac{\mathbf{p}}{\sqrt{(\mathbf{p^2} + \mathbf{m^2 c^4})}}$$

k_{T} -effects with longitudinally polarized target

$\vec{e} \vec{p} \rightarrow e' \pi X$

Correlation between the transverse momentum and transverse spin of quarks in longitudinally polarized proton

Scattering $\vec{e} \vec{p}$

Charged Particle Identification

e-

Tracks measured in the Drift Chambers

$$\rho = \frac{p}{qB} \quad \Longrightarrow \quad p = qB\rho$$

B known; ρ measured in DC

e/π Rejection with Cherenkov

Particles emit Cherenkov light only when their velocity is :

$$\beta > \frac{c}{n}$$
 in CLAS n=1.0013 (C₄F₁₀)
 \rightarrow P _{π} >2.7 GeV/c

Number of emitted $\boldsymbol{\gamma}$ is:

 $\frac{dN_{\gamma}^2}{d\lambda dL} \propto \sin^2_{\theta_C}(\lambda)$

The angle of emission increases with $\boldsymbol{\beta}$

25

At energies ~ GeV it is difficult to separate e⁻ / π^- using only TOF and path length \rightarrow we need information from the Cherenkov and the electromagnetic calorimeter. In fact, hadron interaction in the scintillator is very different from e⁻ interaction.

Jefferson Lab

e/π Rejection with e.m. Calorimeter

The e- $/\pi$ - rejection in the calorimeter e.m. is based on the fact that most of the incident pions lose energy only for ionization (and therefore a small fraction of their total energy) thus they can be rejected placing a suitable threshold in the released energy.

Sampling fraction ≅ 0.3

(fraction of the deposited energy deposited in the active mediumand then detectable- with respect to the total energy lost)

- To improve the e- / π rejection a comparative analysis of the energy deposited in the inner and outer part of the calorimeter is used.
- The π deposite uniformly their energy in the inner and outer part of the calorimeter while this is not the case for e-

e/π Rejection: e.m. Calorimeter + Cherenkov

Combined cuts on Cherenkov and the e.m. calorimeter select correctly the electron

Fiducial Region

• A z-coordinate cut of the electron vertex is made to select events that are created in the target

150

Kinematical Cuts for SIDIS events

				1.5 $E = 10 \text{ GeV}$
Q ² (GeV ²)	> 1	Virtuality	Hard process	$W = \frac{4.5}{2}$ $W = \frac{4.5}{2}$ $U = \frac{4.5}{2$
W ² (GeV ²)	> 4	Inv. mass squared of the final state	Removes resonance region contributions	
Z	> 0.4 < 0.7	Fraction of the γ* energy carried by the detected hadron	Excludes events in the target fragmentation region (lower limit) and the exclusive region (upper limit)	
y	< 0.85	Fraction of the electron energy carried by the γ^*	Removes region of low energy e^{-1} coming mainly from π^{0} decay	
M _x ² (GeV ²)	> 2	invariant mass of the residual system after detection of $e'\pi$	Remove exclusive $\pi\Delta$, πn	

0.9 y