Applications of Renormalization Group Methods in Nuclear Physics - 5

Dick Furnstahl

Department of Physics
Ohio State University
HUGS 2014

Outline: Lecture 5

Lecture 5: New methods and IM-SRG in detail
New methods with some applications In-Medium Similarity Renormalization Group

Outline: Lecture 5

Lecture 5: New methods and IM-SRG in detail
New methods with some applications
In-Medium Similarity Renormalization Group

Nuclear Landscape

SciDAC-2 NUCLEI Project

- NUclear Computational Low Energy Initiative
- Collaboration of physicists, applied mathematicians, and computer scientists \Longrightarrow builds on UNEDF project [unedf.org]
- US funding but many international collaborators
- See computingnuclei.org for highlights!

NUCLEI

Explosion of many-body methods using microscopic input

- Ab initio (new and enhanced methods; microscopic NN+3NF)
- Stochastic: GFMC/AFDMC (new: with local EFT); lattice EFT
- Diagonalization: IT-NCSM
- Coupled cluster (CCSD(T), CR-CC(2,3), Bogoliubov, ...)
- IM-SRG (In-medium similarity renormalization group)
- Self-consistent Green's function
- Many-body perturbation theory
- Shell model (usual: empirical inputs)
- Effective interactions from coupled cluster, IM-SRG

Nuclear Landscape

- Density functional theory
- Microscopic input, e.g., through density matrix expansion

Do we really need all of these methods?

Compare to lattice QCD: Are all the different lattice actions needed?

- clover quarks on anisotropic lattices (mass spectrum)
- domain wall quarks (chiral symmetry)
- highly improved staggered quarks (high-precision extrapolations)
- and more!

Answer: yes!

- Complementary strengths
- Cross-check results
- Identify theory error bars

A frame from an animation illustrating the typical four-dimensional structure of gluon-field configurations used in describing the vacuum properties of QCD.

Oxygen chain with 3 methods [from H. Hergert et al. (2013)]

- In-medium SRG, importance-truncated NCSM, coupled cluster
- Same Hamiltonian \Longrightarrow test for consistency between methods
- Impact of three-nucleon force (3NF) on dripline
- Need precision experiment and theory

Hoyle state from lattice chiral EFT [E. Epelbaum et al.]

- Triple- α resonance in ${ }^{12} \mathrm{C}$
- Low-resolution (coarse) lattice
- Suited to adjust to clusters
- Order-by-order improvement: $\mathrm{LO} \Longrightarrow \mathrm{NLO} \Longrightarrow \mathrm{N}^{2} \mathrm{LO}$
- [Also high-precision GFMC!]

Hoyle state from lattice chiral EFT [E. Epelbaum et al.]

- Triple- α resonance in ${ }^{12} \mathrm{C}$
- Low-resolution (coarse) lattice
- Suited to adjust to clusters
- Order-by-order improvement: $\mathrm{LO} \Longrightarrow \mathrm{NLO} \Longrightarrow \mathrm{N}^{2} \mathrm{LO}$
- [Also high-precision GFMC!]

- Probing α cluster structure of 0^{+}states
- How does the triple- α reaction rate depend on the quark mass?
- Much more!
- Most recent:
${ }^{16} \mathrm{O}$ structure

Spectral functions from self-consistent Green's function

[figures from C. Barbieri]

- One-body Greens function (or propagator) $g_{a b}(\omega)$ describes the motion of quasi-particles and quasi-holes
- Contains all the structure information probed by nucleon transfer
- Imaginary (absorptive) part of $g_{a b}(\omega)$ is the spectral function

Confronting theory and experiment to both driplines

- Precision mass measurements test impact of chiral 3NF
- Proton rich [Holt et al. (2012)]
- Neutron rich [Gallant et al. (2012)]
- Many new tests possible!

- Shell model description using chiral potential evolved to $V_{\text {low } k}$ plus $3 N F$ fit to $A=3,4$
- Excitations outside valence space included in 3rd order MBPT

Confronting theory and experiment to both driplines

- Precision mass measurements test impact of chiral 3NF
- Proton rich [Holt et al. (2012)]
- Neutron rich [Gallant et al. (2012)]
- Many new tests possible!

- Shell model description using chiral potential evolved to $V_{\text {low } k}$ plus $3 N F$ fit to $A=3,4$
- Excitations outside valence space included in 3rd order MBPT

Non-empirical shell model [from J. Holt]

Solving the Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Interaction and energies of valence space orbitals from original $V_{\text {low } k}$ This alone does not reproduce experimental data

Non-empirical shell model [from J. Holt]

Solving the Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Interaction and energies of valence space orbitals from original $V_{\text {low } k}$ This alone does not reproduce experimental data - allow explicit breaking of core

Non-empirical shell model [from J. Holt]

Solving the Nuclear Many-Body Problem

Nuclei understood as many-body system starting from closed shell, add nucleons Interaction and energies of valence space orbitals from original $V_{\text {low } k}$ This alone does not reproduce experimental data - allow explicit breaking of core

Effective two-body matrix elements

Single-particle energies (SPEs)

Hjorth-Jensen, Kuo, Osnes (1995)

Chiral 3NFs meet the shell model [from J. Holt]

3N Forces for Valence-Shell Theories

Normal-ordered 3 N : contribution to valence neutron interactions

Effective two-body

Effective one-body

Combine with microscopic NN : eliminate empirical adjustments

GFMC: Calculating observables in light nuclei

- Green's Function Monte Carlo (GFMC) energies are accurate but lowest-order theory of one-body currents (blue) disagrees with experiment (black)
- Including two-nucleon currents based on EFT (red) improves all predictions!

Electromagnetic Transitions

Combining structure and reactions [P. Navratil et al.]

Resonating Group Method + NCSM:

- NCSM/RGM with SRG-N3LO NN potentials

Potential to address unresolved fusion research related questions:
${ }^{3} \mathrm{H}(d, n){ }^{4} \mathrm{He}$ fusion with polarized deuterium and/or tritium,

$$
{ }^{3} \mathrm{H}(d, n \gamma){ }^{4} \mathrm{He} \text { bremsstrahlung, }
$$

Electron screening at very low energies
P.N., S. Quaglioni, PRL 108, 042503 (2012)

- Ab initio fusion! In progress: SRG-evolved NNN interactions

Combining structure and reactions [P. Navratil et al.]

Outline: Lecture 5

Lecture 5: New methods and IM-SRG in detail
New methods with some applications
In-Medium Similarity Renormalization Group

Choose a basis and a reference state $\left|\Phi_{0}\right\rangle$

- The basis could be harmonic oscillators or Hartree-Fock or ...
- Anti-symmetric wave functions: A-particle Slater determinants
- Use second-quantization formalism: creation/destruction operators

- The reference state is filled, so no particles or holes: 0p-0h
- If one particle moved to a higher level, leaves hole behind: $1 p-1 h$
- Complete basis: Slater determinants from all 1p-1h, 2p-2h, ...

In-medium SRG decoupling [slides from H. Hergert]

Consider SRG with $0 p-0 h$ reference state (instead of vacuum)

- Off-diagonal coupling between reference state and $1 \mathrm{p}-1 \mathrm{~h}, 2 \mathrm{p}-2 \mathrm{~h}$ basis states

- Energy calculation requires full basis
K. Tsukiyama, S. K. Bogner, and A. Schwenk, PRL 106, 222502 (2011)

In-medium SRG decoupling [slides from H. Hergert]

IM-SRG: decouples reference state ($0 p-0 h$) from excitations
\Longrightarrow Resummation of correlations into zeroth order E_{0} !

K. Tsukiyama, S. K. Bogner, and A. Schwenk, PRL 106, 222502 (2011)

A new ab-initio structure method that can be applied directly and to generate shell-model effective interactions!

IM-SRG decoupling for ${ }^{40} \mathrm{Ca} \quad$ [slides from H. Hergert]

IM-SRG: decouples reference state ($0 p-0 h$) from excitations
\Longrightarrow Resummation of MBPT correlations into zeroth order E_{0} !

$\begin{array}{lllllll}10 & 20 & 30 & 40 & 50 & 60 & 70\end{array}$

IM-SRG decoupling for ${ }^{40} \mathrm{Ca} \quad$ [slides from H. Hergert]

IM-SRG: decouples reference state ($0 p-0 h$) from excitations
\Longrightarrow Resummation of MBPT correlations into zeroth order E_{0} !

$\begin{array}{lllllll}10 & 20 & 30 & 40 & 50 & 60 & 70\end{array}$

IM-SRG decoupling for ${ }^{40} \mathrm{Ca} \quad$ [slides from H. Hergert]

IM-SRG: decouples reference state ($0 p-0 h$) from excitations
\Longrightarrow Resummation of MBPT correlations into zeroth order E_{0} !

$\begin{array}{lllllll}10 & 20 & 30 & 40 & 50 & 60 & 70\end{array}$

IM-SRG decoupling for ${ }^{40} \mathrm{Ca} \quad$ [slides from H. Hergert]

IM-SRG: decouples reference state ($0 p-0 h$) from excitations
\Longrightarrow Resummation of MBPT correlations into zeroth order E_{0} !

$\begin{array}{lllllll}10 & 20 & 30 & 40 & 50 & 60 & 70\end{array}$

IM-SRG decoupling for ${ }^{40} \mathrm{Ca}$ [slides from H. Hergert]

IM-SRG: decouples reference state ($0 p-0 h$) from excitations
\Longrightarrow Resummation of MBPT correlations into zeroth order E_{0} !

$\mathrm{V}\left[\mathrm{MeV} \mathrm{fm}^{3}\right]$

IM-SRG decoupling for ${ }^{40} \mathrm{Ca}$ [slides from H. Hergert]

IM-SRG: decouples reference state ($0 p-0 h$) from excitations
\Longrightarrow Resummation of MBPT correlations into zeroth order E_{0} !

$\begin{array}{lllllll}10 & 20 & 30 & 40 & 50 & 60 & 70\end{array}$

$\mathrm{V}\left[\mathrm{MeV} \mathrm{fm}^{3}\right]$

IM-SRG decoupling for ${ }^{40} \mathrm{Ca}$ [slides from H. Hergert]

IM-SRG: decouples reference state ($0 p-0 h$) from excitations
\Longrightarrow Resummation of MBPT correlations into zeroth order E_{0} !

$\begin{array}{lllllll}10 & 20 & 30 & 40 & 50 & 60 & 70\end{array}$

IM-SRG decoupling for ${ }^{40} \mathrm{Ca}$ [slides from H. Hergert]

IM-SRG: decouples reference state ($0 p-0 h$) from excitations
\Longrightarrow Resummation of MBPT correlations into zeroth order E_{0} !

$\begin{array}{lllllll}10 & 20 & 30 & 40 & 50 & 60 & 70\end{array}$

$\mathrm{V}\left[\mathrm{MeV} \mathrm{fm}^{3}\right]$

IM-SRG decoupling for ${ }^{40} \mathrm{Ca} \quad$ [slides from H. Hergert]

IM-SRG: decouples reference state ($0 p-0 h$) from excitations
\Longrightarrow Resummation of MBPT correlations into zeroth order E_{0} !

$\mathrm{V}\left[\mathrm{MeV} \mathrm{fm}^{3}\right]$

IM-SRG equations: Flow equations

0-body Flow

1-body Flow

IM-SRG equations: Flow equation

2-body Flow

ladders
t channel
u channel
rings

IM-SRG iteration: Nonperturbative resummation of MBPT

$\Gamma(\delta s) \sim$
\quad
$\Gamma(2 \delta s) \sim$

IM-SRG iteration: Nonperturbative resummation of MBPT

$$
\begin{gathered}
\Gamma(\delta s) \sim \\
\|_{\nabla} \\
\Gamma(2 \delta s) \sim
\end{gathered}
$$

\& many more...

IM-SRG results for closed-shell nuclei [slides from H. Hergert]

IM-SRG results for closed-shell nuclei [slides from H. Hergert]

Phys. Rev. C 87, 034307 (2013), arXiv: 1212.1190 [nucl-th]

IM-SRG results for closed-shell nuclei [slides from H. Hergert]

Phys. Rev. C 87, 034307 (2013), arXiv: 1212.1190 [nucl-th]

Multi-reference IM-SRG results for Oxygen chains

- Reference state: number-projected Hartree-Fock-Bogoliubov vacuum (pairing correlations)

Phys. Rev. Lett. 110, 242501 (2013)

Multi-reference IM-SRG results for Oxygen chains

- Variation of initial 3N cutoff only
- Diagnostics for chiral EFT interactions
- Dripline at $A=24$ is robust under variations

Phys. Rev. Lett. 110, 242501 (2013)

IM-SRG results for Calcium and Nickel chains [preliminary]

- Reference state: number-projected Hartree-Fock-Bogoliubov vacuum (pairing correlations)

IM-SRG valence-space decoupling [slides from H. Hergert]

IM-SRG valence-space decoupling [slides from H. Hergert]

IM-SRG shell-model effective interaction [slides from H. Hergert]

arXiv: 1402.1407 [nucl-th], [figures by J. Holt]

- 3 N forces crucial
- IM-SRG improves on finite-order MBPT effective interaction
- Competitive with phenomenological calculations

IM-SRG shell-model effective interaction [preliminary!]

IM-SRG normal ordering [slides from H. Hergert]

Normal-Ordered Hamiltonian

$$
H=E_{0}+\sum_{k l} f_{l}^{k}: A_{l}^{k}:+\frac{1}{4} \sum_{k l m n} \Gamma_{m n}^{k l}: A_{m n}^{k l}:+\frac{1}{36} \sum_{i j k l m n} W_{l m n}^{i j k}: A_{l m n}^{j j k}:
$$

$$
r=\chi+\chi
$$

$$
w=\not
$$

$$
\begin{aligned}
& E_{0}=\circlearrowleft+\infty+\infty \\
& f=\downarrow+\circledast+\infty
\end{aligned}
$$

IM-SRG normal ordering [slides from H. Hergert]

Normal-Ordered Hamiltonian

$$
H=E_{0}+\sum_{k l} f_{l}^{k}: A_{l}^{k}:+\frac{1}{4} \sum_{k l m n} \Gamma_{m n}^{k l}: A_{m n}^{k l}:+\frac{1}{36} \sum_{i j k l m n} W_{l m n}^{i j k}: A_{l m n}^{i j k}:
$$

$$
\begin{aligned}
& E_{0}=\circlearrowleft+\circlearrowleft+\infty \\
& f=\quad+ \\
& + \\
& r=\lambda \\
& + \\
& w=\not
\end{aligned}
$$

IM-SRG normal ordering [slides from H. Hergert]

Normal-Ordered Hamiltonian

$$
H=E_{0}+\sum_{k l} f_{l}^{k}: A_{l}^{k}:+\frac{1}{4} \sum_{k l m n} \Gamma_{m n}^{k l}: A_{m n}^{k l}:+\frac{1}{36} \sum_{i j k l m n} W_{l m n}^{i j k}: A_{l m n}^{i j k}:
$$

$+$

$\Gamma=$

$+$

$w=\not$
two-body formalism with in-medium contributions from three-body interactions

IM-SRG normal ordering [slides from H. Hergert]

Normal-Ordered Hamiltonian

$$
H=E_{0}+\sum_{k l} f_{l}^{k}: A_{l}^{k}:+\frac{1}{4} \sum_{k l m n} \Gamma_{m n}^{k l}: A_{m n}^{k l}:+\frac{1}{36} \sum_{i j k l m n} W_{l m n}^{i j k}: A_{l m n}^{i j k}:
$$

two-body formalism with in-medium contributions from three-body interactions

IM-SRG equations: Choice of generator

$$
\begin{aligned}
\left\langle{ }_{h}^{p}\right| H|\Psi\rangle & =\sum_{k l} f_{l}^{k}\langle\Psi|: A_{p}^{h}:: A_{l}^{k}:|\Psi\rangle=-n_{h} \bar{p}_{p} f_{h}^{p} \\
\left\langle{ }_{h h^{\prime}}^{p}\right| H|\Psi\rangle & =\sum_{k l m n} \Gamma_{m n}^{k l}\langle\Psi|: A_{p p^{\prime}}^{h h^{\prime}}:: A_{m n}^{k l}:|\Psi\rangle \sim \Gamma_{h h^{\prime}}^{p p^{\prime}}
\end{aligned}
$$

Off-Diagonal Hamiltonian \& Generator

$$
H^{o d} \equiv f^{o d}+\Gamma^{o d}, \quad f^{o d} \equiv \sum_{p h} f_{h}^{p}: A_{h}^{p}:+ \text { H.c. }, \quad \Gamma^{o d} \equiv \sum_{p p^{\prime} h h^{\prime}} \Gamma_{h h^{\prime}}^{p p^{\prime}}: A_{h h^{\prime}}^{p p^{\prime}}:+ \text { H.c. }
$$

