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“Measuring” the QCD Hamiltonian: Running as(Q?)

0.5

a(Q)

July 2009

s a Deep Inelastic Scattering

04 L oe e'e” Annihilation
08 Heavy Quarkonia

0.3 |

0.2 |

0.1}

=QCD a4 (Mz)=0.1184 £ 0.0007

10 Q[GeV] 100

1

@ The QCD coupling is scale
dependent (“running”):
as(Q?) ~ [BoIN(Q?/Nacp)] ™

@ The QCD coupling strength ag is
scheme dependent (e.g., “V*
scheme used on lattice, or MS)

@ Extractions from experiment can
be compared (here at Mz ):

T-decays (N3LO) O
Quarkonia (lattice) K;I

Y decays (NLO) '—IO—i
DIS F, (N3LO) —o— E

DIS jets (NLO) —0—i

ete™ jets & shps (NNLO) ——O+—

1
electroweak fits (N3LO) —o—i

1
ete™ jets & shapes (NNLO) —o—

0.I13
ot (M)

0.I11 0.I12
@ cf. QED, where aen(Q@?) is
effectively constant for soft Q?:
aem(Q? =0) ~ 1/137
.. fixed H for quantum chemistry



Running QCD o4(Q?) vs. running nuclear V,

0.5 July 2009
Q) ) ‘
& a Deep Inelastic Scattering
04| oe ¢'e” Annihilation i
o®@ Heavy Quarkonia
03+
&
0.2} ~
0.1}
=QCD (M) =0.1184 £0.0007 &«
L \ =
1 10 100 Nt
Y

Q [GeV]

@ The QCD coupling is scale
dependent (cf. low-E QED):

as(@%) = [Bo In(Qz/AQCD)]_1
@ The QCD coupling strength ag

is scheme dependent (e.g., “V”
scheme used on lattice, or MS)

@ Vary scale (“resolution”) with RG

@ Scale dependence: SRG (or Viow«)
running of initial potential with A
(decoupling or separation scale)

K? (fm?)

K2 (im?)

K? (fm?)

K? (fm?)

0481204812048120481204812

0

4

8

: \
A=3.0fm A=20fm’

A=15fm’

048120481204812

K2 (fm?)

0 4 8 12

.

A=20fm"

K2 (fm?)

\

A=15fm"

0 4 8 12

-0.5

@ Scheme dependence: AV18 vs. N3LO
(plus associated 3NFs)

@ But all are (NN) phase equivalent!

@ Shift contributions between interaction
and sums over intermediate states



JLab: Understanding “short-range correlations” in nuclei

P ® " What is this vertex?
g=k—k
- N B~ E
. v =Ly — Ly
€ \ I & N
/5 @
== N Q*
rp =
©
: = , A-2
Subedi et al., Science 320, 1476 (2008) Higinbotham, arXiv:1010.4433
3fa ;
E5d3 —es ‘+,,+,,,,+,,,,,+, / SRC interpretation:
2 E . oo 00 ~> . .
el L : NN interaction can scatter
i ‘ . ‘+ states with p1,p2 < kp
< : i Jevessee’ ' to intermediate states with
A Py, ph > kp which are
LT ‘ knocked out by the photon
2.0 ,‘,,,.,,,,,,,,,f Y P
WE Jeetese °
T2y eeo .

L oot L L L L L
1 125 15 175 2 225 25 275

14<Q*<26GeV?| ™

Egiyan et al. PRL 96, 1082501 (2006)



Nuclear structure natural with Jow momentum scale

But soft potentials don’t lead to short-range correlations (SRC)!

0.25 \ \ \ : —
[ 3 .. ] L
k. S, deuteron probability density | 1.2[-softened _ Nuclear matter
F s A . / 4
02phe s N
(N softened 4 1 s -
T; 0.15 7(,". —— Argonne v,g i 0.8 - pair-distribution g(r)
5 - 4 . -1
=) T oa=s0m| ]2 ped k= 1.35 fm 1
= “a=30fm’| | Tosr » -
:5’_ 0.1 —== A=20fm" 7 L /Kmlgmdl ]
1 04/ -=- A=10.0fm" (NN only)|]
] ; m |
0.05 . M, © A=30fm”
I 1 021~ —=- A=19fm" B
i &original ] L —— Fermi gas |
‘ ! w ! ! |
% 2 4 6 % 1 2 3 4
r [fm] r [fm]

@ Continuously transformed potential = variable SRC’s in wf!

@ Therefore, it seems that SRC’s are very scale/scheme dependent

@ Analog in high energy QCD: parton distributions
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Parton distributions as paradigm [c. Keppel]
DIS Kinematics

X + Four-momentum transfer:
‘ q*=(E-E') -(k-k")(k-k") =
=m>+m?-2(EE'- |k || k'|cosO) =
’ ~ —4EE'sin’¢=-0’

Lepton k=(E.K)

;;;;;;;;;;;;;;;;;;

* Mott Cross Section (7ic=1):
2

do = 4a’E” LE
dQ/ Mott — o* E

- cos %
Nucleon P=(Eg,p)

2502 20
L _ : lepton tensor =40 gt 0.
wr * 1P 16 E*Esin*2 2

1
1+£(1-cos0)

W, : hadron tensor ) 2y
o Cos 2 . 1

48 E (Dqin2
4E%sin I+5(2sin” F)

a virtual photon of four-
momentum q is able to resolve

structures of the order h /\/qz ’ Electron scattering of a spinless point particle




Parton distributions as paradigm [c. Keppel]

Simple parton model

K
64./
P

i parton

Pquark = XPproton X = QZ/ZP q

@ Bjorken scaling = structure
function F, independent of Q?

@ Measured Fz(x) gives quark
momentum distribution

Fo(x, Q?) ~ Ze x q(x



Parton distributions as paradigm [c. Keppel]

Simple parton model

P

i parton

Pquark = XPproton X = 02/2P q

@ Bjorken scaling = structure
function F, independent of Q2

@ Measured Fy(x) gives quark
momentum distribution

Fo(x, Q®) ~ Fa(x) = Z e5xq(x)
q

F:":logm(x)

HERAF,

== ZEUS NLO QCD fit
—— HI1 PDF 2000 fit

* H194-00

4 HI (prel.) 99/00

v
4 x=0.0013 = ZEUS 96/97

x=0.0021 BCDMS
.‘,n' .
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o
P g o
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A ™
’ /«-’"‘l a4 x=0.021
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1]
2L MH

e Bpgmanme gl 3005
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Parton distributions as paradigm [c. Keppel]

FZ - x=0.021

Higher the resolution
(i.e. higher the Q?)
more low x partons we 0 ol sl sl

“ " 2 3 4
See'. 10 10 102 10 B
o ® ZEUS96/97 Q" (GeV")
O H194/97
& Fixed Target
—— NLO QCD Ft
---------- MRST99
————— CTEQSD

So what do we expect F, as a function of x at
a fixed Q2 to look like?



Parton distributions as paradigm [c. Keppel]

Fa(x) Three quarks

with 1/3 of
total
K proton

1/3 X ' momentum each.

Three quarks
/\ with some
‘ : momentum

/3 X ¥ smearing.

Fo(x)

F2(x)
The three quarks

radiate partons
at low x.

/3 X : y
....The answer depends on the Q2!



Parton vs. nuclear momentum distributions

24 P
@5 1IN

@ The quark distribution g(x, Q?) is
scale and scheme dependent

@ x g(x, @?) measures the share of
momentum carried by the quarks
in a particular x-interval

@ g(x,@Q?) and q(x, Q?) are related
by RG evolution equations



Parton vs. nuclear momentum distributions

% %272

LS

A2
I

Z
2542
TSI

7:,?' s
5%

505

@ The quark distribution g(x, Q?) is
scale and scheme dependent @ Deuteron momentum distribution

® x g(x, Q%) measures the share of is scale and scheme dependent

momentum carried by the quarks @ Initial AV18 potential evolved with
in a particular x-interval SRG from A = oo to A = 1.5fm™"

@ g(x, @) and g(x, Q3) are related @ High momentum tail shrinks as
by RG evolution equations A decreases (lower resolution)



Factorization: high-E QCD vs. low-E nuclear

-
o &
hard scale “.

——
factorization
V"’L ‘/LLL

Fa(x, 02)’\“2 fa(X, pif) ® F. (X, Q/ )

long-distance ﬁ short-distance
parton densify Wilson coefficient

@ Separation between Iong- and
short-distance physics is not
unique = introduce uy

@ Choice of i defines border
between long/short distance

@ Form factor F is independent
of uy, but pieces are not

@ @ running of fy(x, Q%) comes
from choosing p+ to optimize
extraction from experiment



Factorization: high-E QCD vs. low-E nuclear

o
' hard scale

oo WL ®__
", factorization

e

Fa(x, Q®) ~ 2, falx. 1) @ F£(x, Q/p1r)

long-distance short-distance
parton density by, Wilson coefficient

@ Separation between long- and
short-distance physics is not
unique = introduce

@ Choice of i defines border
between long/short distance

@ Form factor F is independent
of uy, but pieces are not

@ @ running of fy(x, Q%) comes
from choosing p+ to optimize
extraction from experiment

“4,

@ Also has factorization assumptions

(e.g., from D. Bazin ECT™ talk, 5/2011)

Observable: Structure model: Reaction model:
cross section spectroscopic factor single-particle

\ \ cross section
ol = Z ijﬂ_«,,‘/
[Jp=Ji|<i<Js+Ji
Is the factorization general/robust?
(Process dependence?)

What does it mean to be consistent
between structure and reaction
models? Treat separately? (No!)

How does scale/scheme
dependence come in?

What are the trade-offs? (Does
simpler structure always mean
much more complicated reaction?)



Scheming for parton distributions

Need schemes for both renormalization and factorization

From the “Handbook of perturbative QCD” by G. Sterman et al.

“Short-distance finite parts at higher orders may be
apportioned arbitrarily between the C’s and ¢’s. A prescription
that eliminates this ambiguity is what we mean by a
factorization scheme. ... The two most commonly used
schemes, called DIS and MS, reflect two different uses to
which the freedom in factorization may be put.”

“The choice of scheme is a matter of taste and convenience,
but it is absolutely crucial to use schemes consistently, and to
know in which scheme any given calculation, or comparison to
data, is carried out.”

Specifying a scheme in low-energy nuclear physics includes
specifying a potential, including regulators, and how a reaction is
analyzed.



Standard story for (e, €p) [from C. Ciofi degli Atti]

=, A
q
P\
Pa Pa-
O Fr.",
REALITY © ™y €
759 bk, +q
A1
Impulse Approximation Final State Interaction

@ In IA: “missing” momentum p, = ki and energy E,, = E

@ Common assumption: FSI and two-body currents treatable
as independent add-ons to impulse approximation

@ |s this valid?



Source of scale-dependence for low-E structure

@ Measured cross section as convolution: reaction ® structure
e but separate parts are not unique, only the combination

@ Short-range unitary transformation U leaves m.e.s invariant:
Omn = (Wn|O|W,) = (W,|UT) UOUT (UW,) = (W] OV,,) = O

Note: matrix elements of operator O itself between the
transformed states are in general modified:

Omn = <\TJm|O|\TJn> #Om = eg, (\Uﬁ_1 |aa|\|/é> changes



Source of scale-dependence for low-E structure

@ Measured cross section as convolution: reaction ® structure
e but separate parts are not unique, only the combination

@ Short-range unitary transformation U leaves m.e.s invariant:
Omn = (Wn|O|W,) = (W,|UT) UOUT (UW,) = (W] OV,,) = O

Note: matrix elements of operator O itself between the
transformed states are in general modified:

Omn = <\TJm|O|\Tjn> #Om = eg, (\Uﬁ_1 |aa|\|/é> changes

@ In a low-energy effective theory, transformations that modify
short-range unresolved physics —- equally valid states.
So Omn # Omp = scale/scheme dependent observables.

@ RG unitary transformations change the decoupling scale —-
change the factorization scale. Use to characterize and explore
scale and scheme and process dependence!



All pieces mix with unitary transformation
@ A one-body current becomes many-body (cf. EFT current):

~

Uplq)Ut = +a + -

@ New wf correlations have appeared (or disappeared):

T3 A\ Oy T L ro— €E e €

U‘\UO> =U 1P Z 1Py —00— P2
—0-0-00— 1p,, —0-0-0-0— 1p,, —0-0—— 1p,,
—oo0—1s —0-0— 1s —_—-0—1s

o Similarly with [Wy) = ah|wp™")
e Thus spectroscopic factors are scale dependent
@ Final state interactions (FSI) are also modified by U

@ Bottom line: the cross section is unchanged only if all pieces are
included, with the same U: H()\), current operator, FSI, ...



How should one choose a scale and/or scheme?

@ To make calculations easier or more convergent

@ QCD running coupling and scale: improved perturbation
theory; choosing a gauge: e.g., Coulomb or Lorentz

e Low-k potential: improve many-body convergence,
or to make microscopic connection to shell model or ...

@ (Near-) local potential: quantum Monte Carlo methods work
@ Better interpretation or intuition = predictability
e SRC phenomenology?
@ Cleanest extraction from experiment
o Can one “optimize” validity of impulse approximation?
o Ideally extract at one scale, evolve to others using RG
@ Plan: use range of scales to test calculations and physics
e Find (match) Hamiltonians and operators with EFT

e Use renormalization group to consistently relate scales and
quantitatively probe ambiguities (e.g., in spectroscopic factors)



Operator flow in practice [e.g., see arXiv:1008.1569]

@ Evolution with s of any
operator O is given by:

O, = Us0U!
so Os evolves via

dOg
ds

@ Us =3 [4i(s))(4i(0)]

or solve dU;/ds flow

= [[Gs, Hs], Os]

@ Matrix elements of evolved
operators are unchanged

@ Consider momentum
distribution < 1g|alaq|vg >
at g = 0.34 and 3.0fm™"
in deuteron

4 [u(q)’+ w(q)] [fm’]
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o
N

-
o_\

-
o
=]

N
On

=
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N

-
ol
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N
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8

-
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o

D ‘ i 4
- ( q q)deuteron -
E — N®LO unevolved 3
E -=-%=20fm" 3
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E A : ]
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E \ \ 3
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High and low momentum operators in deuteron
o Integrand of (Ua}a,U') for g = 0.34fm™"

K (fm) K (m™") K (fm™) Kk (m™)
Q. 1 2 3 01 2 3 01 2 3 01 2 3 y @ Momentum
; 05 distribution
FE 2 0 NG T T
= - +
= al 05 10'E (aqaq)deuteron
A =6.0 fm! 2=3.0 fm’’! 2 =2.0 fm! A =1.5fm" E
R = 0F — N°LO unevolved 7
S o --A=20fm"
| 3 10¢ “a=15fm
@ Integrand for g = 3.02 fm B
s
P P T P =
K () K ('l K (fm™ K (i) 3 0k
Q0 1 2 3 01 2 3 0 1 2 3 01 23 0.01 ol \
e ! 0.005 10750 ; ‘1 2 3
E2 0 qlfm™]
=
3 [] [] [ ] -0.005
2 =6.0 fm" 2=3.0 fm’”! % =2.0 fm"! 2 =1.5fm" 001

@ One-body operator does not evolve (for “standard” SRG)

@ Induced two-body operator = regularized delta function: ><



High and low momentum operators in deuteron
@ Integrand of (y,4| (UalaqUt) |14) for g = 0.34fm™"

K m") K (fm™) K (fm™) K (fmi")
Q1 2 3 01 2 3 01 23012 3 ; @ Momentum
| 05 distribution
Flé 2 | 0 107} T‘ !
=3 05 10'E (aqaq)deuteron
2 =6.0fm"’ 2.=3.0 fm’’ 2 =20 fm! 2=15fm" )
-1 10 — N°LO unevolved 3
. ---A=20fm"
1 - a=15Mm"

@ Integrand for g = 3.02fm™

4 [u(@)+ w(a)] [fm’]
-

K (fm") K (fm™) K (fm™") K (fm") ok
0 1 2 3 01 2 3 01 2 3 01 2 3 %107
0 1 10°F %
' . )
o 05 10° L s L
E£2 0 qlm’]
i 3 [ ] —_ . 05
A =6.0fm" 2=3.0 fm! 2 =20 fm! A=15fm"

@ Decoupling = High momentum components suppressed
@ Integrated value does not change, but nature of operator does
@ Similar for other operators: (r?), (Qq), (1/r) (1), (Gg), ...



Looking for missing strength at large Q?
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Subedi et al., Science 320, 1476 (2008)
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Egiyan et al. PRL 96, 1082501 (2006)

AL A2

What is this vertex?

q=k—kK
V=E)C—Ekr
N
2
P’z N T = @
2myv

Higinbotham, arXiv: 1010.4433

SRC interpretation:

NN interaction can scatter
states with py,ps < kp

to intermediate states with
Py, ph > kr which are
knocked out by the photon

@ SRC explanation relies on high-momentum nucleons in structure!



Looking for missing strength at large Q?

PN o What is this vertex?
k-
N e ¢
5.9, v=FE—E
=By, — Ey
e - @ N e
/A( ' T
O B 2myv
. Amem—]m——A-2
Subedi et al, Science 320, 1476 (2008) Higinbotham, arXiv: 010.4433
sfa ‘,"
Fest st + ; SRC interpretation:
2 eoete . .
Tk et NN interaction can scatter
15 LI L L L L .,
E .t states with p1,p2 < kp
Taf . . - .
i z Jeessee’ ' to intermediate states with
et Py, ph > kr which are
s ' knocked out by the photon
£ L
SE PR i °
TRt ‘ How to explain cross sections in terms of

.
L L L L L L
1 125 15 175 2 225 25 275

14<Q?<26GeV?| ™

Egiyan et al. PRL 96, 1082501 (2006)

low-momentum interactions?
Vertex depends on the resolution!

@ Changing resolution changes physics interpretation!



Changing the separation scale with RG evolution

n(k) (fm°)

@ Conventional analysis has (implied) high momentum scale
e Based on potentials like AV18 and one-body current operator

E bt 10°E 4
H E —— AVI8 E
L -1
1L --=- Vg, atA=2fm ]
: - N
F N = Vigath=15fm
1()n E -:=- CD-Bonn 3
. E N\ e NLO (500 MeV)
E '
= £
F 100
10°g
: ; ; 107 YN e
0 1 2 3 4 E P 3
- \
-1 -5 | LN | 1
k (fm™) 10 1 2 3 4

[From C. Ciofi degli Atti and S. Simula]

@ With RG evolution, probability of high momentum decreases, but
n(k) = (Alaja|A) = ((AlU') Uala, U (U|v,)) = (A|Uaa,U'|A)

is unchanged! |7\> is easier to calculate, but is operator too hard?



Nuclear scaling from factorization (schematic!)

@ Factorization: when k < X and g > A, Ux(k, q) — K\(k)Q\(Q)

na(q) _ (Al0232aU"1A) _ (Al JUL(K.q')3qqUL(. K)A)
na(q)  (d|Uala,Utld)  (d| [ Ur(K',q")dqqUL(q, k) d)

= na(q) ~ CAnD( ) at Iarge q Test case: A bosons in toy 1D model

——A=2, 2-body only
--+A=3, 2-body only
- -=-A=4, 2-body only |
* A=2, PHQ 2-body only, A.=2
©  A=3, PHQ 2-body only, 2=2
x A=4, PHQ 2-body only, A=2 | |

n(k) (fm®)

Universal

p>>\
dependence o«
given by e} X

QoQ

k (fm™)
[From C. Ciofi degli Atti and S. Simula] [Anderson et al., arXiv:1008.1569]



n(k) (fm®)

Nuclear scaling from factorization (schematic!)

@ Factorization: when k < X and g > ), Uy(k, q) — K\(k)Q:\(q)
na(a) _ (AlUahaqUNIA) _ (A] [Ka(K)L[ Qx(q)3qa@u(@)]Kx (K)IA)
na(q)  (d|UahaqUtld)  (d] [Ka(K)[[ Qx(q)dqqQur()]KA(K)|d)

= na(q) ~ CAnD( ) at Iarge q

Test case: A bosons in toy 1D model

—A 2, 2- body only

--+A=3, 2-body only

- -=-A=4, 2-body only |
* A=2, PHQ 2-body only, A.=2

©  A=3, PHQ 2-body only, 2=2

1072 x A=4, PHQ 2-body only, A=2 | |
04 %«,
[o PR
-3 T,
L S
10 Universal g,
p>>h g%’:%%
" dependence > >y
10 given by D\G‘x\
Qo S
10* L L . . . . .
0 1 2 3 4 0 2 4 6 8 10 12
=, P
k (fm™)

[From C. Ciofi degli Atti and S. Simula] [Anderson et al., arXiv:1008.1569]



Nuclear scaling from factorization (schematic!)

@ Factorization: when k < X and g > A, Ux(k, q) — K\(k)Q\(Q)

na(q) _ (AlUahaqU'|A) (Al [Ky(K)K\(K)|A)

n4(q)

= na(q) = Canp(q) at large q

n(k) (fm®)

107 BN\ 2. E
\ H
X 4
" \ He
10 b E
He
10° E
56
Fe <
10" =
z
10?
10°
|0" 1 1 1
0 1 2 3 4
A
k (fm™)

[From C. Ciofi degli Atti and S. Simula]

(d|UalaqUt|d)  (d| [Kx(K")Ka(K)|d)

——A=2, 2-body only
--+A=3, 2-body only
1| - -=-A=4, 2-body only |
* A=2, PHQ 2-body only, A.=2
©  A=3, PHQ 2-body only, 2=2
2| x A=4, PHQ 2-body only, A=2 | |
>,
Universal (e
p>>A g%’:%%
dependence O S x
given by D\G‘x\
Qoa AN * -
L L ° ; Y
0 2 4 6 8 10 12
P

Ca

Test case: A bosons in toy 1D model

[Anderson et al., arXiv:1008.1569]



Factorization with SRG [Anderson et al., arXiv:1008.1569]
@ Factorization: U, (k, q) — K\(k)Qx(q) when k < Aand g > A

@ Operator product expansion for nonrelativistic wf’s (see Lepage)
A A
V@ = (@) [ B ZOWe) +(@) [ Pdppt Z()W(p) + -

@ Construct unitary transformation to get U, (k, q) = Ki\(k)Q\(q)

Ur(h.@) = 3 (k12 610) = [ [ P ZvA(p)] (@ +

QO ' o e et v s

@ Test of factorization of U:

Ui(ki, q) . Kix(
Un(ko,q)  Ki(
N

ki) Qx(q)
ko)Qx(q)’
K

so for g > A = 2H 124

[U(k,q) / Uky,a)l

@ Look for plateaus: k; < 2fm'< g
= it works!

@ Leading order = contact term! Ol




Factorization with SRG [Anderson et al., arXiv:1008.1569]
@ Factorization: U, (k, q) — K\(k)Qx(q) when k < Aand g > A

@ Operator product expansion for nonrelativistic wf’s (see Lepage)
A A
V@ = (@) [ B ZOWe) +(@) [ Pdppt Z()W(p) + -

@ Construct unitary transformation to get U, (k, q) = Ki\(k)Q\(q)

Xlow

Us(k.) = 3 (kiud) 0 la) = [S_kIud) | P ZO)wi(p)] (@) + -

@ Test of factorization of U:

Ui(ki, q) . Kix(
Un(ko,q)  Ki(
N

ki) Qx(q)
ko)Qx(q)’
K

so for g > A = 2H 124

@ Look for plateaus: k; < 2fm'< g
= it works!

@ Leading order = contact term!
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Summary: Atomic Nuclei at Low Resolution

@ Strategy: Lower the resolution and track dependence
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Summary: Atomic Nuclei at Low Resolution

@ Strategy: Lower the resolution and track dependence

e High resolution = high momenta can be painful!
( “It hurts when | do this.” “Then don’t do that.”)

@ SR correlations in wave functions reduced dramatically
e Non-local potentials and many-body operators “induced”

@ Flow equations (SRG) achieve low resolution by decoupling

e Band (or block) diagonalizing Hamiltonian matrix (or ...)

e Unitary transformations: observables don’t change
but physics interpretation can change!

@ Nuclear case: evolve until few-body forces start to explode
or use in-medium SRG
@ Applications to nuclei and beyond
o Cl, coupled cluster, ...converge faster =—- greater reach
e IM-SRG, microscopic shell model = role of 3-body forces
e MBPT works = improved nuclear density functional theory
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Confluence of progress in theory and experiment

@ Theory advances, catalyzed by large-scale collaboration

Explosion of complementary many-body methods
Computational power and advanced algorithms

Inputs: effective field theory and renormalization group
Unified and consistent treatment of structure and reactions

@ Experimental facilities and technology

e Precise + accurate mass measurements (e.g., Penning traps)
@ Access to exotic nuclei (isotope chains, halos, etc.)
@ Knock-out reactions (of many varieties)

e Neutrino experiments (e.g., neutrinoless double beta decay)

@ Precision comparisons are increasingly possible if we can

e control (and minimize) model dependence
e quantify theory error bars from all sources
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Challenges: Precision nuclear structure and reactions

@ We're in a golden age for low-energy nuclear physics
e Many complementary methods able to incorporate 3NFs
e Synergies of theory and experiment
e Large-scale collaborations facilitate progress
e Many opportunities and challenges for precision physics

@ EFT and RG have become important tools for precision

e Consistent N3LO EFT to be tested soon! Need As?
@ Scale and scheme dependence is inevitable = deal with it!

@ Challenges for which EFT/RG perspective + tools can help

Can we have controlled factorization at low energies?

How should one choose a scale/scheme in particular cases?
What is the scheme-dependence of SF’s and other quantities?
What are the roles of short-range/long-range correlations?
How do we consistently match Hamiltonians and operators?
...and many more. Calculations are in progress!



Long-term gameplan:

. 100
Nuclei

i

RG evolution
NN---N

i

Chiral EFT
NN---N

i

Lattice QCD
— LEC’s

Proton Number

Fully connected descriptions

—_—
[y
o

T

Density Functional Theory A>100

Coupled Cluster, Shell Model
A<100

L Exact methods A<12
GFMC, NCSM

Low-mom.
interactions

[ Lattice
QCD

Chiral EFT interactions -
(low-energy theory of QCD)

QCD
Lagrangian
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Neutron Number ——
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What parts of wf’s can be extracted from experiment?

@ Measurable: asymptotic (IR) properties like phase shifts, ANC’s

@ Not “pure” observables, but well-defined theoretically given a
Hamiltonian: interior quantities like spectroscopic factors

e These depend on the scale and the scheme

e Extraction from experiment requires robust factorization of
structure and reaction; only the combination is scale/scheme
independent (cross sections) [What if weakly dependent?]

@ Short-range correlations (SRCs) depend on the Hamiltonian and
the resolution scale (cf. parton distribution functions)

o Are there RG-invariant quantities to extract?
@ High-momentum tails of momentum distributions?

@ Nuclear tails depend on scale and scheme



Deuteron scale-(in)dependent observables
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@ Vi« RG transformations labeled by A (different Vj’s)
= soften interactions by lowering resolution (scale)
= reduced short-range and tensor correlations

@ Energy and asymptotic D-S ratio are unchanged (cf. ANC’s)

@ But D-state probability changes (cf. spectroscopic factors)



Unevolved long-distance operators change slowly with \

Matrix elements dominated by long
range run slowly for A > 2fm™"

Here: examples from the deuteron

(compressed scales)

@ Which is the correct answer?

@ Are we using the complete

bare r 4 [fm]

operator for the experimental
quadrupole moment?
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EMC effect from the EFT perspective

@ Exploit scale separation between short- and long-distance
physics
e Match complete set of operator matrix elements (power
count!)
e Cf. needing a model of short-distance nucleon dynamics
e Distinguish long-distance nuclear from nucleon physics

@ EMC and effective field theory (examples)

o “DVCS-dissociation of the deuteron and the EMC effect”
[S.R. Beane and M.J. Savage, Nucl. Phys. A 761, 259 (2005)]

“By constructing all the operators required to reproduce the matrix
elements of the twist-2 operators in multi-nucleon systems, one sees
that operators involving more than one nucleon are not forbidden by
the symmetries of the strong interaction, and therefore must be
present. While observation of the EMC effect twenty years ago may
have been surprising to some, in fact, its absence would have been
far more surprising.”

e “Universality of the EMC Effect”
[J.-W. Chen and W. Detmold, Phys. Lett. B 625, 165 (2005)]



Dependence of EMC effect on A is long-distance physics!
@ EFT treatment by Chen and Detmold [Phys. Lett. B 625, 165 (2005)]

=" @xqf(x) = Ra(x)=FH(x)/AFN(x)

“The x dependence of Ra(x) is governed by short-distance
physics, while the overall magnitude (the A dependence) of
the EMC effect is governed by long distance matrix elements
calculable using traditional nuclear physics.”

@ Match matrix elements: leading-order nucleon operators to
isoscalar twist-two quark operators = parton dist. moments

» /
= (x"MgvHo .- v NTN[1 + apNTN] + - -

Ra(x) = AFZN(X) 1405, ()G(A) where  G(A) = (AI(N'N)?|A) /Ao

— the slope 2% scales with G(A [Why is this not cited more?]
p ax



Scaling and EMC correlation via low resolution

@ SRG factorization, e.g.,

Us(k.q) — Ky (K)Q () S e omis]
when k < Aand g>> A 2041 a 0.07879+0.006376 e
s |
e Dependence on high-g %
independent of A !
= universal

e Adependence from
low-momentum matrix
elements = calculate!

@ EMC from EFT using OPE: r
o Isolate A dependence, which I

| L L | | L L L |
4 6
factorizes from x a,(A/d)
° EMC A dependence from L.B. Weinstein, et al., Phys. Rev. Lett. 106, 052301 (2011)

long-distance matrix elements

If same leading operators dominate, then linear A dependence of ratios?
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‘Non-observables’ vs. Scheme-dependent observables
@ Some quantities are in principle not observable

o T.D. Lee: “The root of all symmetry principles lies in the

assumption that it is impossible to observe certain basic
quantities; these will be called ‘non-observables’.”

e E.g., you can’t measure absolute position or time or a gauge
@ Directly measurable quantities are “clean” observables
e E.g., cross sections and energies

o Note: Association with a Hermitian operator is not enough!

@ Scale- and scheme-dependent derived quantities

o Critical questions to address for each quantity:

@ What is the ambiguity or convention dependence?

@ Can one convert between different prescriptions?

@ |Is there a consistent extraction from experiment such that
they can be compared with other processes and theory?

e Physical quantities can be in-practice clean observables if
scheme dependence is negligible (e.g., (e, 2e) from atoms)
e How do we deal with dependence on the Hamiltonian?



Scale/scheme dependence: spectroscopic factors

T T
" Mean Field Theory | @ Spectroscopic factors for valence
i ] protons have been extracted from
08 160 Ca %0 . , .
T 31p r (e, € p) experimental cross
] sections (e.g., Nikhef 1990’s at left)
o 06 i
& | “Ca  208py | @ Used as canonical evidence for
B ol 2c 4 “correlations”, particularly
short-range correlations (SRC’s)
02 7 @ But if SFs are scale/scheme
VALENCE PROTONS .
dependent, how do we explain
s 11l L sl L .
00 0 02 the cross section?
target mass —»
—0-0—
...................... € < e
1Py —o0-0—— 1pyp, 50-100 MeV < ——O—0——
—OO-C0— 1py, ~10 MeV X —-0—— 1p;;, —0—
—_—0-O0— 1s — 00— 1s —O0-0— 1s

IPM LRC SRC (2p2h)



(Assumed) factorization of (e, €p) cross section
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= p1,2 Spectroscopic factor ~ 0.63

= KUep X P(pm) X |¢Oé(pm)|2



(Assumed) factorization of (e, € p) cross section

1p,,

oo 6 o Sdd |
—0—0—90-90—
/ 1p3/2 160 . Keloon |

Pa/2
gs F - sc E. = 6.3 MeV

S—0 151/2

Pp1/2(Prm) «

B

— O 1py,

p(pe) ((GeV/c] )

P Y WS 1p3/2
gs

PN 151/2

@ Knock out py /» proton from '®O to

>N ground state in IPM —200  -100 T A
@ Adjust s.p. well depth and radius to do 5
identify ¢o(pm) 7dp’edp;\, = KO'ep X p(Pm) X |da(Pm)l

@ Final state interactions (FSI) added

= p1,2 Spectroscopic factor ~ 0.63
using optical potential(s)



Deuteron electromagnetic form factors

@ G, Gg, Gu in deuteron with 10° —
chiral EFT at leading order * SRG Evoled
(Va|derrama et a|) o ~ with Bare Operator

@ NNLO 550/600 MeV potential &

@ Unchanged at low q with 107
unevolved operators

@ Independent of A with evolved 107 : 5 R
operators " q(m™

10° Unevolved
g;gn&l;gﬁ/ o * SRG Evolved
" SRG Evolved wf
] o= \?vﬁr?Bi‘;ghgse:\gtor ol "~ with Bare Operator
10 gv
o o§
© N = A=15
R A=15 N 1072
10 N
-3
107 105, 1 2 3 4 5
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Generic knockout reaction [e.g., Dickhoff/Van Neck text]
@ Consider a scalar external probe that just transfers momentum q

pA)=po Y e = 5(q)=po Y (ple "|p')a}a,
j= p.p’
e First assumption: one-body operator (scale dependent!)

/

p

@ Then the cross section from Fermi’s golden rule is
do ~ Y 8(w+ E — En)(Wilp(@)|w))[?

@ Complication: ejected final particle A interacts on way out (FSI)
2

A A
HA_;§,§7+i§1 V(i,j) = Ha_ 1+ +ZVI A)
o If we neglect this interaction = PW (no FSI)
W) =vg), W) =aflvat) = (U= (Vg
— factorized knockout cross section « hole spectral fcn:

do ~ p§ > 8(Em — Eg + EZ W5 8p,|W6) I = p§ Sh(Pm. Em)
n

@ Does it still factorize when corrected for (scale dependent!) FSI?



Now repeat with a unitary transformation U

@ The cross section is guaranteed to be the same from Utu =1

do ~ 30w+ E — E)|(Wla(a)|w)
= Y 8w+ E — EDlWAU D@ )i
= Y 8w+ Ei = EDI((W| UN(Up(@) UM (Uw)

but the pieces are different now.

@ Schematically, the SRG has U =1+ }(U — 1)afalaa+ ---
e U is found by solving for the unitary transformation in the
A = 2 system (this is the easy part!)
e The - --’s represent higher-body operators

e One-body operators (x aa) gain many-body pieces
(EFT: there are always many-body pieces at some level!)

e Both initial and final states are modified (and therefore FSI)



New pieces after the unitary transformation

@ The current is no longer just one-body (cf. EFT current):

Up(q)Ut = +a + e

@ New correlations have appeared (or disappeared):

y R [ €F €
U‘w0> o U 00 P12 — P12 Ta —0-0— 1Py, +
HO-00— 1py, 00— 1py, 00— 1py,
—0-0—1s —0-0—1s —_—0-0—1s

o Similarly with [W) = ah|wp™")
@ So the spectroscopic factors are modified
@ Final state interactions are also modified by ]

@ Bottom line: the cross section is unchanged only if all pieces are
included, with the same U: H()\), current operator, FSI, ...



Changing resolution shifts physics: Not unique!

@ From D. Higinbotham, arXiv:1010.4433

a) b)

N
N
AeicFF7—7——"—— A-1 A A-2

“The simple goal of short-range nucleon-nucleon correlation studies
is to cleanly isolate diagram b) from a). Unfortunately, there are
many other diagrams, including those with final-state interactions,
that can produce the same final state as the diagram scientists would
like to isolate. If one could find kinematics that were dominated by
diagram b) it would finally allow electron scattering to provide new
insights into the short-range part of the nucleon-nucleon potential.”

@ What is in the blob in b)? A one-body vertex and an SRC, or a
two-body vertex? Depends on the resolution! (Also FSI+ will mix.)



Deuteron-like scaling at high momenta from factorization
C. Ciofi and S. Simula, Phys.Rev C53, 1689(1996)

2
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Almost Flat!

High resolution: Dominance of Vyy and SRCs (Frankfurt et al.)
Lower resolution —> lower separation scale — fall-off depends on
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