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Plan of the Lectures

The Standard Model and 1ssues beyond it
Origin of particle masses: Higgs boson or?

Supersymmetry

Searches for supersymmetry: LHC & dark
matter

Extra dimensions and string theory

Beyond the Standard Model for Montafieros
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Summary of the Standard Model

« Particles and SU(3) x SU(2) x U(1) quantum numbers:
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Gauge Interactions of the Standard Model

« Three separate gauge group factors:
.| —SU@B)*SU@2) x U(1)
— Strong % electroweak

- |+ Three different gauge couplings:

- = — g39 g29 g
|+ Mixing between the SU(2) and U(1) factors:

“:"" ZH . COS(@ H-'") Sill(en.f) 1173# | .92 Oir) — g 2 7 R
( A+ ) - ( —sin(fy ) cos(by ) B+ sin”(Ow) = 9%+ g% |

|« Experimental value: sin’0y, = 0.23120 = 0.00015

~ Important clue for Grand Unification



Weak Interactions

Charged-current interactions:
—9
L. = Y vl WV + he
\/5 Lo /L

a=e,[,T

Neutral—current interactions

L. = l;, Z" h.c
2 cos 9‘4 Z VLa') l'La +

a=e,[,T

Effective four-fermion interaction:

G2 = g2/8my2 [;_C\;/ima(l— V) peva(l -
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Status of the Standard Model

* Perfect agreement with all
accelerator data

* Consistency with precision electroweak data
(LEP et al)

* Agreement seems to require

welghing

» Raises many unanswered questions:




Precision Tests of the Standard Model

"
Lepton couplings Pulls 1n global fit

| Measurement Fit  |O™*-0"|/g™*

_0.032 | T T T | T T T T T T 5 c} 4 |2(5. 3
| | m,[GeV] 91.1875+0.0021 91.1874
| | W r,icev] 24952+00023 24959
ol [nb] 4154040037 41478
00354 e 1 IR 20.767 +0.025  20.742
' ' A 0.01714 +0.00095 0.01643
R 1 AR 0.1465+0.0032  0.1480
c? | R, 0.21629 +0.00066 0.21579
2 . 1 1| R 0.1721+0.0030  0.1723

. |
= Ay 0.0992+0.0016  0.1038
| -0.038+ TRt mipe] A4\ | Al 0.0707 +0.0035  0.0742
3 T CA A, 092340020  0.935
3 | - ete ) 1 1| A 0.670+0.027  0.668
| 1 | | | AGLD) 01513200021 0.1480
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N i (Q
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Parameters of the Standard Model

* Gauge sector:

/4

— 3 gauge couplings: g, g, g Unification?
— 1 strong CP-violating phase

|* Yukawa interactions:

<

—' — 3 charge-lepton masses - =

= Flavour? ==
- | — 6 quark masses

| — 4 CKM angles and phase
| * Higgs sector:

| — 2 parameters: p, A Mass?

ol Total: 19 parameters




Open Questions beyond the
Standard Model

What is the origin of particle masses?

due to a Higgs boson? + other physics? Supersymm

Why so many types of matter particles?

Unification of the fundamental forces? -
Supersymmetry -

at very high energy ~ 101 GeV?

Quantum theory of gravity? Supersymmetry -

-




At what Energy 1s the New Physics?

GRAVITATION
QUANTIQUE

EXTRA DIMENRSIONS ?

Dark matter

A lot accessible Some accessible only indirectly:
to the LHC? Astrophysics & cosmology?
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Why do Things Weigh?

Newton: . ‘ |
Weight proportional to Mass [N - 1
| Einstein: =
3 544
| Energy related to Mass |
ING'S
, Nelther explalned orlgln of Mass College
= = LONDON

pe= Where do the masses
 come from‘7

e
-s...?' ¢ o v gy -
- - N .

Are masses due to nggs boson‘?

(the hs1c1sts’ Holy Grail)



The Seminal Papers

BROKEN SYMMETRY AND THE MASS OF GAUGE VECTOR MESONS*

F. Englert and R. Brout
Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
(Received 26 June 1964)

BROKEN SYMMETRIES, MASSLESS PARTICLES AND GAUGE FIELDS

P. W. HIGGS
Tuil Instérute of Mathematical Physies, Vntverstly of Edinburph, 5S¢ otland

Received 27 July 1964

VoLuME 13, NUMBER 16 PHYSICAL REVIEW LETTERS 19 OcTOBER 1964

BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs
Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland
(Received 31 August 1964)

GLOBAL CONSERVATION LAWS AND MASSLESS PARTICLES*

G. S. Guralnik,¥ C. R. Hagen,{ and T. W. B. Kibble
Department of Physics, Imperial College, London, England
(Received 12 October 1964)




The Englert-Brout-Higgs Mechanism

 Vacuum expectation value of scalar field

« Englert & Brout: June 26" 1964 -

« First Higgs paper: July 27t 1964

* Pointed out loophole 1in argument of Gilbert 1f
gauge theory described in Coulomb gauge

* Accepted by Physics Letters

* Second Higgs paper with explicit example sent on |
| July 315t 1964 to Physics Letters, rejected!

| * Revised version (Aug. 315 1964) accepted by PRL |
|» Guralnik, Hagen & Kibble (Oct. 12 1964) =

v"t
L SEE——



The Englert Brout-Higgs Mechamsm

Guralnik, Hagen & Kibble |

We consider, as ou b hich

~was partially solved b nd

: omje resemblaree S8 ory
- Our starting pomt is the ordmary
: : rmamics of massless spin-zero particles,
- characterized by the Lagrangian

Englert & Brout

£-= "%F“V(apAfauAu) +}F“"Fw

+¢“a“¢ +%¢“¢u +ieo¢“q¢A“,

- With no loss of generality, we can take N, =0,
= and find

(-a2 *7112)‘P1 =0
-az(pz = 0,

2, T
k

(a) (b) ;

FIG. 1. Broken-symmetry diagram leading to a (-82 + nl JA
mass for the gauge field. Short-dashed line, {(¢,);

long-dashed line, ¢, propagator wavy line, A, propa- « where the superscript T denotes the transverse

gator. (a)—(2m'ie’gy, (9%, (b)— —(2m)ie*(quq,/q") | part. The two degrees of freedom of A kT com-

=0,

oy bine with ¢, to form the three components of a



The Higgs Boson

|+ Higgs pointed out a massive scalar boson
{82402 V' (@,2) Ag,) =0, (2b)

Equation (2b) describes waves whose quanta have
(bare) mass 2¢,{V"" (@) }'2

|+ "... an essential feature of [this] type of theory |
| ... is the prediction of incomplete multiplets of
- | vector and scalar bosons”

« Englert, Brout, Guralnik, Hagen & Kibble did

| not comment on 1ts existence

| « Discussed in detail by Higgs in 1966 paper




Nambu EB, GHK and Higgs

4

V)
— (

Spontaneous symmetry breaking: massless Nambu-
Goldstone boson ‘eaten’ by gauge boson

Accompanied by massive particle



Without Higgs ...

. there would be no atoms

| — Electrons would escape at the speed of
| light
| ... weak interactions would not be weak

— Life would be impossible: there would be
no nuclei, everything would be radioactive |
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Masses for Gauge Bosons

Kinetic terms for SU(2) and U(1) gauge bosons:

1 1
L= G,G" — F, P
g ’

where G, =0, W, —0,Wi +igeWiWk\F, = 9, W, LM |

Kinetic term for Higgs field:

Expandmg around vacuum: FEETEEEY:

12
D) ‘L‘

9
n VT o Y, iy R,
~ g% = By B* 4+ g ¢v* B, W — g* — W3 W

(1”3—(/B _ IR o e
oMz =gVet gy

\/q +q




Constraints on Higgs Mass

» Electroweak observables sensitive via quantum loop
corrections: [NNGE s o T |
My Sin” OBy = m7, cos” By, sin” Oy, = 5 (1+ Ar)

V 2 F

 Sensitivity to top, Higgs masses:

| » Preferred Higgs mass:

e Compare with lower limit from direct searches:




2011: Combining Information from
Previous Direct Searches and quirect Dta

20
18
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Theory uncertainty
—— Fit including theory errors
---- Fit excluding theory errors




Ala
' recherche du
Higgs perdu

a(pp —-H+X)
Vs =14 TeV
m, = 175 GeV
CTEQ4M

— —
o o
o)) ~

-
o
(8]

S o
w =N
events for 10° pb™’

-
o
no

M. Spira et al.
NLO QCD

HO

0 200 400 600 800 1000

WW, ZZ fusion

Many productlon modes measurable 1f Mh ~ 125 GeV



Higgs Decay Branching Ratios

a

aq 10-3

o Couphngs proportlonal to masses (‘7)
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* Important couplings t

hrough loops

—(gluon + gluon — Higgs —{ vy




There must be New Physics ...,
w Beyond the Standard Model | —
-

UL
§ What is this? e
i,, I O R B Precision
--------.llll==

_...... | Electroweak
, data??

1| —

a
L=
—
o
o
=]
el

potential nggs couphng less coupling

collapses than in Standard Model blows up!!
TR I

%90 500
it} mass GeV/c?




l Uﬁofﬁcial Combination of Higgs Se“aﬂr_ch !
Data from July 4th

mass = 126
ohs = 2.237

G Is this the

sigma = 6.02
e XSIGMN = 2,44

viXra

Higgs Boson?

-—

Best fit o/g™

0 -
- ‘.

No Higgs here! S & No Higgs here!

110 120 130 140
Higgs boson mass GeV/c?

B LT, S A RN . v




The Particle Higgsaw Puzzle

o 1’\‘

Is LHC finding the missing piece?
Is 1t the right shape?
Is it the right size?




Do we already know the "‘Higgs’
has Spin Zero ?

T

Decays into yy, so cannot have spin 1

Spin 0 or 2?

If 1t decays 1nto 1t or b-bar: spin 0 or 1 or
orbital angular momentum

Can diagnose spin via

— angular distribution of yy

— angular correlations of leptons in WW, ZZ decays

Does selection of WW events mean spin 07

T e D
- . 4 - - -
* Wi L SE——.



Couplings ~ Mass

Bast Fit Af =249 +22, ¢ =0.03 +0.08

~<

(@)}
£
310
-0

o
Q

JE & Tevong You: arXiv:1207.1693

Scale as expected for Higgs Boson




Couplings ~ Mass

GLOBAL Coupling-Mass Proportionality

-1.0

100 200 300 400
M [GeV]

Scale as expected for Higgs Boson } p—




Imagine a
Room ...

... Open
The Door



What lies
Beyond?

Black holes

T b
.

< .‘1\ &







Elementary Higgs or Composite?

« Higgs field:

tree

loops

<OH|0> £ 0
e Quantum loop problems

e Fermion-antifermion -

Cutofft
A=10TeV

m]'] ~

(200 GeV) ~

) gauge

higgs
£

[«

2 AN

condensate

o Just like QCD, BCS
superconductivity

* Top-antitop condensate?

needed m, > 200 GeV

New force?

-Heavy scalar resonance?

B -Inconsistent with

precision electroweak data?




Interpolating Models

|* Combination of Higgs boson and vector p

light Higgs

partial unitarization neavy.rp

~|* Two main parameters: m

, and coupling g,

~ |+ Equivalently ratio weak/strong scale:

g,/ m,

Grojean, Giudice, Pomarol, Rattazzi

A



General Analysis of Generalized
Higgs Models

|+ Parameterization of effective Lagrangian:

2
L@ = %(a,,hf +Tr (D,E'D*5) (1

(N i i
- 2o @.d0) 2 (), 0)" (1

V2

Universal Rescaling: 95% CL Exclusions

T T T T T T T
1 | 1 | T T T R B B |
1 | 1 | T T N R B B |

L E
' | cMs combined: |

a
Azatov, Contino, Galloway: arXiv:1202.3415 Espinosa, Grojean, Muhlleitner, Trott: arXiv:1202.3697




Combination of LHC & Tevatron

» Rescale couplings: to bosons by a, to fermions by ¢

GLOBAL Combination |

analysis s

B Standard Model: a =c=1



The Stakes 1n the Higgs Search

How 1s gauge symmetry broken?
Is there any elementary scalar field?
Likely portal to new physics

Would have caused phase transition in the Universe when
it was about 10-1Z seconds old

May have generated then the matter in the Universe:
electroweak baryogenesis

A related inflaton might have expanded the Universe
when it was about 103> seconds old

Contributes to today” s dark energy: 10’ too much!

. w .




Theoretical Constraints on Higgs Mass

Large M, — large self-coupling — blow up at
low-energy scale A due to

renormalization

Small: renormalization

due to t quark drives
quartic coupling <0
at some scale A

— vacuum unstable

Vacuum could be stabilized by Supersymmetry

LHC 95%

exclusion

L B |

—— Perturbativity bound
___| Stability bound

[ ] Finite-T metastability bound
B Zero-T metastability bound

Shown are 1o error bands, w/o theoretical errors

LI B |
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Elemef S0 Statlstlcs

Fundamental Concepts




Goal

Describe the fundamental concepts of statistics for HEP

Explore these concepts with Root-Macros for hands-on experience
Usng the random number generator ... seeing some sampling theory ....

Finally be able to understand the following plot !

E l . . T T ' J T T T T T T

g ATLAS Preliminary 2011 +2012 Data ATLAS Preliminary 2011 + 2012 Data
& 10 E_ —— Obs. V\s=7TeV: det =4.6-4.81fb" —E —— Obs. \s=7TeV: ILdt -46-481"
& 5 D Exp. Vs=8TeV: [Ldt=5.8591b" - --- Exp. \s=8TeV: JLdt =585.91b"
= L +10 _
-E - [J+20 .
- ]
O
X 1 Bl ~
To) - .
() - .

107 - E

2 CLs Limits ] ’ ’
100 200 300 400 500 600 - 200 300 400 500 600

M, [GeV] m, [GeV]
Appreciate there is a lot more for you/us to learn about statistical techniques
In particular concerning the treatment of systematics
Apply these results to Discovery and Exclusion in ATLAS
So be patient and take some time to understand the techniques step by step...
HHES 2014: Stats for



Disclaimer :
What this lecture is not going to be about...

- It will not be a lecture on the fundamental theory of statistics

- Multivariate techniques
- Bayesian confidence intervals
- Goodness of fit theory

- In depth discussion of systematics and their treatment

- Bayesian vs. Frequentist diatribe

HUGS 2014: Stats for



Why are Statistics so Important in Particle Physics ?

Because we need to give quantitative statements about processes that
have some inherent randomness...

... May this randomness be of measurement nature or quantum ...

How did it all start ?

Liber de ludo aleae
To study games of chance !

G. Cardano (1501-1576)

‘ -
oo
%

And many others to follow (Pascal, Fermat, etc.. )

“La theorie des probabilités n’est, au fond,
que le bon sens reduit en calcul”

“The theory of probabilities is at ultimately
nothing more than common sense reduced to

/ / t "
calculation P. S. Laplace (1749-1824)
HUGS 2014: Stats for




From the very innocuous seeming assumption ....

“There is a random process characterised by a constant average event rate, u.”

... many significant and fundamental results follow — perhaps the prime
example of the dramatic yield of results from an assumption in all physics.

The random deviate represented by the waiting time between such events
may be shown to be drawn from the exponential probability density
distribution (PDF): p

—u

pe(t;u) = ue

The random deviate represented by the number of such
events within a time bin T is drawn from the Binomial
Distribution, well approximated by the Poisson Distribution:

_. n _;
pp(nsn)=—e
n!
Where the expectation value n=Tu a

HUGS 2014: Stats for



What is a Statistical Error ?

Imagine | have a billion white ©and blue @ golf balls

| decide to throw one million of them into a well and decide an admixture of 15 out
of one hundred blue ones...

| then know PRECISELY the
probability that if you pick one at
RANDOM, it will be blue...

p=15%

You of course don’t know this number
and you want to measure it...

All you have is a bucket...

Which contains exactly 300 balls

HUGS 2014: Stats for



This is approximately how the well looks like inside...
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You throw the bucket and pull out the following outcome

HUGS 2014: Stats for

Aha! You have a measurement!
n =300 The probability is. ..
k=36 P=12%

... But how preciseisit ?

Remember you are not supposed to know the true value!



The difference between a measurement and the true value is the Statistical Error

Precise definition of statistical error

In this case it would be 3% absolute (20% relative), but since you don’t know the true
value you don’t know at all what your statistical error really is !

Of course had you thrown your bucket on a different spot, you would have probably
had a different measurement and the statistical error would be different...

What you want to know is your measurement error, or what the average statistical
variation of your measurement is...

This can be done provided that you know the law of probability governing the possible
outcomes of your experiment ... (and the true value of p, but assume that 12% is a close enough)

You want to know what the probability for an outcome of & golf balls to be blue is.
For one specific outcome the probability is:
P=p‘x(1-p""

What are all possible combination of outcomes of k blue balls out of n?
HUGS 2014: Stats for



What are all possible combination of outcomes of & blue balls out of n?

_{ For the first blue ball there are n choices, once this choice is made the second ball
has n-1 choices,... the &" ball has (n-k) choices.

In a simple case... n=10 and k=3 this can be seen as:
@O0 O®OOOOOOO

B

T~~~

TH& séitbadhines ha £ otibese s
So the number of combinationsis: n x (n—-1) x (n-2)
n!
Inthe generalcase: nx(n-1)x(n-2)x(n-3)..x(n-k+1) = Y
n— .
—— Because we do not care about the order in which we have picked the balls

Ol N NONON NONOHNON® ... avoid the double counting!

1 2 3 )

1 3 2

§ 1 2 ' Each configuration is counted 6 times

2 3 1

3 2 1/

HUGS 2014: Stats for



This number corresponds in fact to the number of combinations of £ blue balls out of &
balls and therefore :

kx(k=1)x(k=2)x(k=3)..x1 =k
Aka the number of re-arrangements of the & blue balls.

In order to account for each combination only once you just need to divide by the
number of re-arrangements of the & blue balls.

So the number of combinations of £ elements among n is given by :

¢ n!

" (= k)]

The probability to pick £ blue balls among =, given a probability P that the a ball is
blue is thus :

P=Cixp‘x1-p)"*

This is an absolutely fundamental formula in probability and statistics!
It is the so called Binomial Probability!

HUGS 2014: Stats for



The Binomial Probability
Binomial coefficients were known since more than a thousand years...

... they were also the foundation of modern probability theory!

W 2 #F X 3 &

B. Pascal (1623-1662) The Pascal Triangle (~1000 AD)
HUGS 2014: Stats for



So what is the precision of your measurement ?

A good measure of the precision (not the accuracy) is the Root Mean Square Deviation
(square root of the variance) of possible outcomes of the measurement.

You will compute it yourself. To do so you need two steps...
(see next slide for the full derivation)

Step 1 : Compute the mean value of the binomial probability
u=n~P

Step 2 : Compute the variance of the binomial probability
Variance = nP(1- P)

So now you know the variance of your distribution for a given probability P...

In your case : P=12% Assuming P is close enough to the true value, the precision is :

RMSD = A/[nP(1- P) =5.6

The relative precision ~15% is rather poor and the accuracy questionable! (Remember, your
statistical error is 45 - 36 = 9, although you are not supposed to know it !)

HUGS 2014: Stats for



Step 1 : Compute mean value

Step 2 : Compute variance
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But walit...

Now you are curious to see what happens if you repeat your measurement!

You have noticed that the average binomial probability is the expected value!

Intuitively you will therefore try to repeat and average your measurements...

You will do it 50,000 times and meticulously plot the number of counts. This is what you get :

3000

Throws

2500

2000

1500

1000

500

r L I I IS I I IS
- A :‘ E Nthrows = 50000
3 . . E The average number of blue
- o . = balls in 50,000 throws :
3 : . E (Numbery,,, ) = 44.98
w‘T.l 11111111111.T.YM <P>=14-99%
0 10 20 30 |40 50 60 70 80

Number of Blue Balls

See Binomial.C

Your initial measurement (36) !

Now you decide that your measurement is the average, what is its precision ?
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What is the variance of the average ?

Let’s start from one straightforward and general property of the Variance for two random
variables X and Y:

Var(aX +bY)=((aX +bY - (aX +bY))*) = <[a(X ~(X)+b(Y - <Y>)]2>
= a’Var(X) + b*Var(Y) + 2abCov(X.Y)

Where the covarianceis: Cov(X,Y) = <(X — <X>)(Y - <Y>)>

n

EaiXi

i=0

= Ea?Var(Xi) + EaiajCav(Xi,Xj)

i=0 O=i< j=n

This formula generalizes to... Var

Therefore assuming that each of the bucket throws measurement N, _ is independent from
the previous one, the mean value being a simple sum of the measurements divided by the
number of throws :

1 NThrows ‘
<N umberBlue> = N Blue
Throws k=1
The ensemble variance then is :
N N
R 1 Throws 1 Throws 1 nP 1 _ P
G* =Var X |= Var(X,) = N s Var (X;) = q-7
N i N2 i 2 Throws i N
Throws k=1 Throws k=1 Throws Throws
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The precision being given by the Root Mean Square Deviation -

np(l - P) _ RMSDIndividual
N Throws \ N Throws

Very interesting behavior : Although you do not know the true value p, you see that the
average is converging towards it with increasing precision!

=0.01%

RMSD = \/

§ 48 :'- l L ] I 1 L] ] 1 l L ] L L I ] 1 L] ] I L L] ] 1 I—_'
S s 1 Iy S E . .
m - -Hhrlfrmiii-;—;;,ﬁ,:;;zﬁééﬁmtﬁrhtﬁééééé-~ <«—— The line here is the true value !
w  aal ldUHIppHITIIIRRIIIE -
o - I[l ]
S af -
- - _
S - -
(O] B _
) - -
S a8 7
<>E = -
36 < - Your initial measurement
-l 1 A L I 1 A 1 1 l L 1 1 ' l 1 1 A 1 l 1 A 1 1 l =
0 10 20 30 40 50

See Binomial.C
Number of throws averaged (x10)

This is an illustration of the LAW of LARGE NUMBERS ! Extremely important, intuitive but
not trivial to demonstrate...
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What is the meaning of our first measurement v, = 36 ?

Now that we know (after 50,000 throws) to a high precision that the probability of a
blue ball is very close to 15%.

The frequency of an outcome as low as 12% is ~10% (not so unlikely!)

What difference would it make if you had known true value ?

Frequency at which the measurement is within the precision as estimated from the
truth :

|Pmeas — p| < \/np(l — p) = 70% (of the cases the measurement is
within the true statistical RMSD)

Frequency at which the true value is within the precision as estimated from the
measurement :

|Pmeas - p| = \/ nP, (-P, ) = 67% ofthe cases the true value is
within the measured error)

See Coverage.C
The true value coverage is similar in the two cases, keep these values in mind...

Here all results are derived from a simulation in terms of frequencies...

Computing Binomial probabilities with large numbers of N can be quite difficult !
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The Gaussian or Normal Probability

Is there a way to simplify the computation ? Not so trivial to compute 300! directly...

A very nice approximation of the Binomial Probability can be achieved using
Stirling’s Formula !

n!z’\/zﬂ,’n(ﬁ) Inn!=nlnn-n+3In2an
e

10" +

10° b

In x!

XInx-x

107!
10°
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10!

10>

10°

10

10°

Formula is valid for large values of n...

Cp'A=p) =g

0 =+/np(1- p)

(See derivation in the next slide)



Binomial convergence towards Normal
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Validity of the Normal Convergence (Approximation)

Does the approximation apply to our bucket experiment (n=300 and p=15%) ?

See NormalConvergence.C

3500

1 I L} L\l T ) l L] L} T T I T T L] L] I Al Ll T T l L] L] 1 Ll

Throws

3000

2500

2000

1500

1000

500

llllllllllll[llllllllllllllllllll-l-

o—illllllIIIIIIIIIIIIIIIIIIIIIIIIIIIT

I 4 1 I 1 1 1 1 1 1 Il l 1 1 1 1 l
20 30 40 50 60 70
Number of Blue Balls

C. F. Gauss (1777-1855)
Not bad (although not perfect) !

In practice you can use the normal law when approximately n>30 and np>5
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What is so “Normal” About the Gaussian?
The Central Limit Theorem... ... at Work !

When averaging various independent random variables (and identically
distributed) the distribution of the average converges towards a Gaussian

distribution
See CLT.C
4500:1_1 T I T T ] T I L l L l T T l T T l T™rr T I T™r T T l T ..1__.
4000}~ =
3500} _ 30—
T o1 1
2500} - RMS = X
2000} E V12 /B0
1500 =
1000f- =
500k - At N=10 an excellent agreement with a
bt S T gaussian distribution is observed
o 01 02 03 04 05 06 07 08 09 1

The CLT is one of the main reasons for the great success of the Gaussian law...

On the one hand the CLT is very powerful to describe all those phenomena that result from the
superposition of various other phenomena... but on the other hand it is just a limit...
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The Notion of Standard Error

(x-p)’?
2

Starting from the gaussian PDF : 1
GPDF (xau’g) = e

270

Let’s give a first definition of a central confidence interval as the deviation from the
central value...

u+ao 1 _(X—M)2
P(ao) = f =e 20% dx
. u—ao N 27O
- Thenfor: -a=1:P(ac)=68.3%
S -a=2:P(ac) = 95.4%
S 34.1% 34.1% -a=3:P(aoc)=99.7 %
S See NormalCoverage.C

If you knew the true value of the “error” (o) then you could say that the in the gaussian limit
that the true value has 68.3% probability to be within the 1o, but in many practical examples
(such as the well) the true value of the error is not known...
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How does the Bucket Experiment Relate to Particle Physics?

The bucket experiment is the measurement of an abundance (blue balls)...

This is precisely what we call in particle physics cross sections...

... except that the bucket contains all collisions collected in an experiment so...

- We try to fill it as much as possible (N is very large and not constant!)

- The processes we are looking for are very rare (p is very small)

The very large N makes it difficult to compute the binomial probability...
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The Poisson Probability

In the large » and small p limit and assuming that np = u is finite you can show

(see next slide) that ...
C* k(l B )n—k _ (np)k o) M_ke—u
PP X X

Much simpler formulation! In practice you can use the normal law when approximately »>30 and np<5

See PoissonConvergence.C
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Poisson Intervals (or Errors)

Now how will you define a central confidence interval in a non symmetric case ?

0.40 ,
0.35} %
030} |

c e ©

> > >
|

—_— s

—~ 025+ |
4
g 0.20F | ee |
o_ | \/ ; |
0.15F | @& | ® |
v i ' OO
o.10f i/ |1 e %
0.00'

Equiprobable boundaries

 68%

The integration needs to start from the most probable value downwards...

Here is our first encounter with the necessity of an ordering !
HUGS 2014: Stats for



What have we learned ?

...and a few by-products...

1.- Repeating measurements allows to converge towards the true value of an
observable more and more precisely ...
But never reach it with infinite precision !!!

Even more so accounting for systematics...
(what if the balls do not have an homogeneous distribution ?)

2.- Binomial variance is also useful to compute the so-called binomial error, mostly

for efficiencies :
used for efficiencies . _0, _ |el-e)  p=np
¢ N N For an efficiency you must consider n fixed !

3.- We came across a very important formula in the previous slides

= Ea?Var(Xi) + EaiajCav(Xi,Xj)

i=0 O=i< j=n

n

EaiXi

i=0

Var

That generalizes (with a simple Taylor expansion) to...

E iicov(xl.,xj)

27
var(f(x,,...,x,)) = ;(&xi) var(x,) + ox, &xj
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Likelihood

Unfortunately in High Energy physics experiments, events (balls) don’t come in
single colors (white or blue) ... Their properties are not as distinct !

For instance take this simple event :

Could be many things ...

) H Let alone that they can be
Higgs ? .. Background ? indistinguishable (quantum
interference)
® O
Y & Y
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How can we distinguish between the two ?
Very vast question, let’s first start with how to measure their properties

(Which is also a very vast question!)

One clear distinctive feature is that the signal is a narrow mass resonance, while
the background is a continuum !

>400_llll'lllllllll'llIllllllllllllllll'llllllllllllll_l
- ATLAS Preliminary Bl signal x10
350 (Simulation) H—yy (m =120 GeV
1fo'\s=7TeV [ ]yv (Born & Brem)
{ ] vy (Box) o
250 + 0 v-jet To measure properties in
B D jet general (a.k.a. parameter
200 B Drell Yan

Number of Ea)/ents/Ge
o
o

estimation) among the most
commonly used tools is the
maximum likelihood fit...

—e— Toy sample (1 fb )

llllllllllIlIllllllI]IIlIlTlIl

llllllllllllllITIIIIIIIIIIIII

fbo 105 110 115 120 125 130 135 140 145 150
M,, [GeV]
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What is a Likelihood ?

A simple way of defining a Likelihood is a Probability Density Function (PDF) which
depends on a certain number of parameters...

Simplistic definition is a function with integral equal to 1...

Let’s return to the well experiment but under a different angle this time...

(but this applies to any parameter estimate)

-t T L UL B . .
0.07 Under certain hypothesis :
o.oe;— - Gaussian centered at 45 (p=15%)
0.0sF- - Width equal to error for 1 bucket
F (~6.2 blue balls)
0.04}
0.03}
0.02f- 1 Here is its probability !
0.011 or Likelihood

Q2030 1a0 50 80 70
I Not so likely !

Here is your first measurement (36) !
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N
What happens when we throw more buckets ? L(w) = Hf (n.)

u l
Then the probability of each bucket can be multiplied! i=1

See Fit.C

’—l LI | ] L T ] UL l LB I L |1 I TR l L I LI l T L l T : 100 :l' I L] Ll ] T T L Ll I L] L] Ll Ll l T T T Ll I L] .I T T l T T T L I E
350 E 90 ’ . E
- | o . - . 3
300 N\ N 1 O OO — 80 o r
- L . = ¢ =
2501 = 70 3 . . E
s . 60} . : E
2001~ 1 sof : , E
150} 2 ao0f- . . =
100}~ - 30E . . E
- . 20f- o . =
50 - - . Y .
: . 10F- . < E

% e - el A el M o 0 :l l PR T ] PR S S S BN T.gol TR R I [ T - l ;

0 25 30 35 40 45 50 55 60 65 70 43.5 44 44.5 45 45.5 46 46.5

This probability will soon be very very small (O(0.1))'%0--1t is easier to handle its log :
In(L(w) = ¥ In(f,(1,))
i=1

Then to estimate a parameter one just has to maximize this function of the parameter
u (or minimize -2InL you will see why in a slide)...

See how the accuracy translates in the sharpness of the minimum!
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In our simple (but not unusual) case we can see that :

(”i—M)Z n

-2In(L(w)) = —22 In(f,(n;)) = —2Eln(ﬁ e 2 ) = E (, _z‘u) + cste

2
This is also called X

There is an exact equivalence between maximizing the Likelihood or minimizing
the v? (Least Squares Method) in the case of a gaussian PDF

4__I . '.' | I ‘__.
3_52_ * See Fit.C . _ You can also see that. the error on
JF . . 3 the measured value will be given by
25§ N . ; a variation of -2 In L of one unit :
2E " o E A(=21In(L(w))) =1
1.5;_ ‘.i i .. _-':-
o — C S — N 3 .
: ", : i =44.95+0.06
0-5;_ | .“. .o. | _; N )
oé.. ----------------------- :'-‘w!'-.-. ----------------------- q..g o
PR EPUPRTIE I IR SRR IS P EPUPR B Which is precisely ———
448 4485 449 4495 45 4505 45.1 \n
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“Proof” : Estimation of variance of model parameters (errors)

) raf cov(l,2) cov(l,3) ) 1 5
n .
s= Y Yi—J(X; a)) S| o}  cov23) ...l (Y )y=— oS
i=1 ag; ~ O'% 2 8(1,-8(1/-

: : )
The errors in the parameters are estimated by

the diagonal elements of the covariance matrix,
which for linear least squares is given by the
inverse of the double partial derivative.

The likelihood function -
The mean is estimated by a model
a; are model parameters

, |1 &s|!

g = |— ——
2 . .
A robust procedure varies the twice
If we expand S in Taylor series about the minimum  l0g likelihood function about the

In 1d .... simple case

{ &S minimum 6* by 1 to find the root of the
S(0) = 5(9*)+? Yz (60— 6*) variance in the model parameter.
= S(0*) 4+ (6- %) For higher dimensionality, the tested
a’ model parameter is stepped while the
At the point 8= 6* + g, we thus find that others are varied to maintain the

minimum condition.
S(0*+0)=S(6%)+1.
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What have we learned?

How to perform an unbinned likelihood fit :

For n=1000 the fit yields
=4491%0.19

SR RS L AN RS L RS RS LR R
40—
30[

{1 Using a simple binned fit (as shown here
1  with 100 bins) in the same data yields :

- i =44.81+0.20
| LSM between the PDF and the bin value

20

10

=70

This can of course be applied to any parameter estimation, as for
instance the di-photon reconstructed mass !
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The %2 value is itself a statistic (random variable).

One can repeat the measurement, (throw of the bucket, collection of the data),
and one would get a different data set, and then calculate a different 2.

This means that the value of %2 belongs to a distribution.

As we could write down the 2 exactly when the single point distribution was
gaussian, it follows that the y2distribution is amenable to analysis, and can be
calculated as: (u/ 2)(V/2)-1€-u/2

Plu)= 2T (v/2)

We have used u = y? to avoid confusion with the exponent.
I'(v/2) represents the gamma function and v the degrees of freedom (see later).

1.0 Lo

0.8 0.8
0.6 0.6
0.4 04l

0.2 | 0'2

0.0

0.0

0 2 -+ 6 8
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Hypothesis Testing

How to set limits or claim discovery ?

Hypothesis Testing in HEP Boils Down to One Question :

Is there a Signal ?
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Exclusion, Observation or Discovery ?

The goal here is to assess quantitatively the compatibility of our observation with two
hypotheses :

No-Signal (H,) and presence of Signal (H,)...

We need to be able to have estimate whether an experiment is more Signal-like or
Background-Like.

~400

w
(6
O

Number of %rents/Ge
o
o

‘pOO 105 110 115 120 125 130 135 140 145 150

[T rrTT IIIIII llllllll l llllllllllll IIIIIIIII

-ATLAS Prehmmary I Signai x10
(Simulation) H-yy (m =120 GeV}

1fo'\s = 7 TeV [:]yy(Born&Brem)
| [ ] yv(Box)

0 v-jet

B Di- jet

B Drell Yan

—s— Toy sample (1 fo }

L1l

lllllllllllllllllllllll

IIIIIIIIIIIIII ll]lllllllllll

M,, [GeV]
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Neyman construction (1933)

Let’'s again take the example
of the H—gg analysis at LHC
(in ATLAS)



The Neyman-Pearson Lemma

The underlying concept in ordering experiments is really to quantify the compatibility
of the observation with the signal hypothesis (H1) ...

The problem of testing Hypotheses was studied in the 30’s by Jerzy Neyman and
Egon Pearson...

They have shown that the ratio of likelihoods of an observation under the two
hypotheses is the most powerful tool (or test-statistic or order parameter) to

_ P(H, | x)

F =
P(H, | x)
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The F-Test
Consider the case where the test statistic is defined as R
lE (f(x;:h,0)=y,)°
_ x (H, 1x)/v, R o’

X (Hylx)/v, 1 2<f<x,-;é>—yl->2
v, o’

F

With reference to the High Energy Physics example, in H,, 4 is the height of a
(gaussian)peak (of assumed known width) on a smooth background characterised by
a function of parameters 6, and in H,, there is only the smooth background.

The ratio of two x? distributions will be well defined because the x? is well defined.
The ratio is the F statistic, which itself belongs to a distribution.

O(F lv,v,)=1I (V_z,ﬁ)

V2 +V2F

Where [ is the incomplete beta function.
Note : We are asking if the two distributions (with and without the peak) are different.
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v, and v, are the degrees of freedom for H, and H, respectively.
H, is described by f{x,h,0) which has »n data points and m free parameters.
Then, v, = n —m. H, will have one more degree of freedom than H,.

o _ Q
N T
F PDF
© F CDF
0 _| o —
T — di=1, d2=1 © —
d1=100, d2=1 S g}zé’ ggzl
0 - T _
g \ d1=100, d2=100 g a d1=5, d2=2
X d1=100, d2=1

© N I l | I l © T ' ! ! | !

0 1 2 3 4 5 0 1 2 3 4 5

FCL

A confidence limit for the rejection (acceptance) of H,, the null hypothesis, that there is
no peak, corresponds to discovery (exclusion).

In this analysis, the confidence limit is set at CL%, and the F distribution is integrated
to the the F-value of F;, . Based on the cumulate F distribution to the point F , we
are CL% certain that a measured F-value larger than F_ is not statistically acceptable
as being consistent with H,,.
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This analysis is didactic and illustrative, but it suffers from several drawbacks. It does
not respect the “look elsewhere” effect, it assumes a normal distribution for the data, it

cannot easily take into account the full systematics of the measurement, amongst
other issues.

The “look elsewhere” effect considers that we do not know where the peak should be.
The estimated probability of the peak must be multiplied by the number of ways that it

could have been manifested (roughly the factor of the measurement interval divided
by the peak width — assuming the peak width is also not free).

>400_ llllllll Il LI} Il llllllll I llllllllllll Ill LI} ] LI
3 -ATLAS Prellmlnary B Signai x10 -
H =120 GeV . .

2950F,  (Simulation) 2rim, "1 Animprovement is to develop toy
3 - 1fo'\s =7 TeV Dy*{(Born&Brem) R M Carl g )
300 ] vy Box) g onte Carlo pseudo experiments
3250:_+ 0 - et E for H, and H,.
Sk B Di- jet -
§2oo:— I Drell Yan =

1505_ —s— Toy sample (1 fbo ) _é

50[ P(H, | x)

1000 105 110 115 120 125 130 135 140 145 150
M,, [GeV]
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The “y2” statistic for H, and H, can be calculated using the synthetic data.
The toy MC pseudo experiment can be repeated many times, billions of times, and the
PDF’s of the “y2” statistic for H#, and H, can be numerically assembled.

The same can be done for the statistic

E =

107
10°
10°
10*
10°
10°

| IIIIII|T| ]IIII[II| I[IIIIII| T IIIIII IIIIIIIII

—
(=

—

WMIIIII

I

|
10

o'|T|'|| IIIIIII]| T TTTITT

|
20

|
30

[ L
40

50

2*Iog(Lmale0) (MC simulation)
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P(H, |x)

P(H, | x)

The “look elsewhere” effect will be
accommodated if the peak
position is a free parameter, and it
could then range freely in the
position where the statistical
fluctuations allow it to be found
most favorably. Other effects
(width variations, systematics are
conceivably able to be included in
developing the PDF’s.

The process of setting a CL% and
determining a p-value from the
CDF can now follow based on
these distributions.



The Profile Likelihood

A very useful tool to compute limits, observation or discovery sensitivties and treat
systematics is the Profile Likelihood ... based on toy MC pseudo experiments.

Let's again take the example of the H—gg analysis at LHC (in ATLAS)

—s— Toy sample (1 fb ) )
Assume a very simple model for

the signal :

400 T T T T T T
> - | | | | | - .
K -ATLAS Prehmmary - s.gna| %10 . We have a simple model for the
2350 (Simulation) H-ry (m =120 GeV) baCkg round :
2300 1o '\ =7 TeV %”‘B°’"&Brem)_‘ b — 0o
Y7 (Box) ] m =0e "2
S 5ol B e E (m,0) =0,
Qo B Di- jet - _
5200 B Drell Yan E Relies only on two parameters

s(m,u) = us x Gauss(m)

fo0 105 110 115 120 125 130 135 140 14(55 150 The Gaussian is centered at 120 GeV/c2 and
My, [GeV] a width of 1.4 GeV/c?
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The Profile Likelihood

The overall fit model is very simple :

L(w.0 1 data) = | | (s(m,.u) + b(m,.0))

IEdata

This model relies essentially only on two types of parameters :

- The signal strength parameter (u) It is essentially the signal normalization

- The nuisance parameters (0) Background description in the “side bands”

L(u,0(u) | data) Test of a given signal hypothesis w
L(u,0 | data) < Best fit of the data

A(u) =

Prescription similar to the Feldman Cousins

Usually work with the estimator : g, = —2In(A(u)) Because ...
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Wilks’ Theorem

Under the H, Signal hypothesis the PL is distributed as a x? with 1 d.o.f. !

(v.i.z a well know analytical function)

To estimate the overall statistical behavior, toy MC full experiments are simulated and fitted !

f(q“|H) med[qulu’]

f Yo | f(q )

/ p-value

Signal-plus-background
Toy experiments

D Background-likeliness >
Background only
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95% CL Limits

The observed 95% CL upper limit on u is obtained by varying u until the p value :

+00
f(qulu) med[qu"-l,] 1 —_ CLS+b = p = ff(qﬂ | M)qu = 5%
/ Yoa | Q) Gons
/ Analytically simple
p-value

This means in other words that if there
is a signal with strength u, the false
exclusion probability is 5%.

q

1

The 95% CL exclusion sensitivity is obtained by varying u until the p value :

p= ff(qu lwdq, =5%

med(qu 10)
%{_J
Background only experiments
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Exclusion Results

Performing this analysis for several mass hypotheses and using CL,, the exclusion
has the same problem as the simple Poisson exclusion with background...

No-Signal (H,) and presence of Signal (H,)...
i.e. a signal of 0 can be excluded with a fluctuation of the background

J Al l A L) A T I A AJ Ld L4 I L . . . I Al T L AJ l T T L) Ll ' L L4 L L ' .

O 5L ATLAS Preliminary E
S - (Simulation) —— Modian .
g) 5 H-— vy T Madian (no systematcs) ’
= 201 \’§=71T9V [ ecian: o _:
Q - 1fb [ ] median: 26 ]
&> - -
~ 15f :
T . -
< 10 .
o i ]
m o -4
x - -
© Sl =

0 PR B 1

P BN EPEPEPEPE BRI EPEPE B I
110 115 120 125 130 135 140

M, [GeV]
We thus apply the (conservative) “modified frequentist” approach that requires :

CL =CL,,/CL,=5% where  CL,= [ f(q,10)dg,
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Observation and Discovery

The method is essentially the same, only the estimator changes...we now use q,

In this case the f(q,|0) will be distributed as a x? with 1 d.o.f. (Wilks’ theorem)

p= [ f(g,10)dg,

49 obs
- To claim an observation (3 o) : the conventional p-value required is 1.35 10-3

- To claim an observation (5 o) : the conventional p-value required is 2.87 107

This means in other words that in
absence of signal, the false discovery
probability is p.

p-value
/

| « a probability of 1 in 10 000 000 is almost

k— Zo—| X impossible to estimate »
Corresponds to the “one sided” convention

R. P. Feynman

(What do you care what other people think?)
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Conclusion

We went through an overview of the fundamental concepts of statistics for HEP

If possible take some time to play with the Root-Macros for hands-on experience

You should now be able to understand the following plot !

s ; ' ' —
»n - T T T T T
L o A"'gf Prelminary 2011 +2012Dall ATLAS Preliminary 2011 + 2012 Data
c F .. EX:’ bl ; 19\\;: }tg: - :2;2 :; . — Obs. (§=7TeV: |Ldt = 46-4.8 0"
2 [ Mo 18=B TR R =SSR - EXp. (§=8TeV: [Lot=5859 1"
E - [J+20 7
4 | |
0
X 1 Bl -
o) L ]
@ T .
107 o =
El CLs Limits ] '
100 200 300 400 500 600 260 360 4(')0 5(')0 660

m, [GeV] m, [GeV]

There is a lot more for you/us to learn about statistical techniques
In particular concerning the treatment of systematics
So be patient and take some time to understand the techniques step by step...

... and follow Laplace’s advice about statistics !
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