The Transverse Spin Structure of the Nucleon

Patrizia Rossi

Jefferson Lab

29th Annual Hampton University Graduate Studies Program Jefferson Lab - June 3-5, 2014

Lessons Scheme

LECTURES 1 \& 2

- Introduction
- Deep Inelastic Scattering and 1D parton distribution functions
- From 1D to 3D nucleon structure: Transverse Momentum Dependent (TMD) parton distribution functions
- TMD Measurements @ Jlab in Hall B

LECTURES 3 \& 4

- Data analysis
- Monte Carlo simulations
- Asymmetries extraction
- TMDs extraction

LECTURE 5

- Where are we? What's next

Kinematical Coverage

$$
x_{B}=\frac{Q^{2}}{2 M \nu} \quad \nu=E-E^{\prime} \quad y=\frac{\nu}{E} \quad W^{2}=M^{2}+2 M \nu-Q^{2}
$$

Kinematical Coverage

> Data are binned in: Q^{2}, ϕ_{h}, z, $\mathrm{P}_{\mathrm{h} \perp}, \mathrm{x}_{\mathrm{B}}$

Polarized SIDIS Cross Section

For a longitudinal polarized target at leading twist:

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d z d \phi_{S} d \phi_{h} d P_{h \perp}^{2}}=\frac{\alpha^{2}}{x Q^{2}} \frac{y}{2(1-\varepsilon)} \\
& \times\left\{F_{U U, T}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}+S_{L} \varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right) \\
& +S_{L} \lambda_{e} \sqrt{1-\varepsilon^{2}} F_{L L}+\left|\boldsymbol{S}_{T}\right|\left[\sin \left(\phi_{h}-\phi_{S}\right) F_{U T, T}^{\sin \left(\phi_{h}-\phi_{S}\right)}\right. \\
& \left.+\varepsilon \sin \left(\phi_{h}+\phi_{S}\right) F_{U T}^{\sin \left(\phi_{h}+\phi_{S}\right)}+\varepsilon \sin \left(3 \phi_{h}-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi_{h}-\phi_{S}\right)}\right] \\
& \left.+\left|\boldsymbol{S}_{T}\right| \lambda_{e}\left[\sqrt{1-\varepsilon^{2}} \cos \left(\phi_{h}-\phi_{S}\right) F_{L T}^{\cos \left(\phi_{h}-\phi_{S}\right)}\right]\right\}
\end{aligned}
$$

Asymmetries

$$
\sigma=\sigma_{U U}+\lambda_{l} \sigma_{L U}+S_{L} \sigma_{U L}+\lambda_{l} S_{L} \sigma_{L L}+S_{T} \sigma_{U T}+\lambda_{l} S_{T} \sigma_{L T}
$$

For a longitudinally polarized target $\mathrm{S}_{\mathrm{T}}=0$

$$
\sigma=\sigma_{U U}+\lambda_{l} \sigma_{L U}+S_{L} \sigma_{U L}+\lambda_{l} S_{L} \sigma_{L L} \quad \lambda= \pm 1, S_{L}= \pm 1
$$

The Target Spin asymmetry is defined as:

$$
\mathbf{A}_{\mathbf{U L}}=\frac{\mathbf{1}}{\mathbf{f}} \frac{\left(\mathbf{N}^{++}+\mathbf{N}^{-+}\right)-\left(\mathbf{N}^{+-}+\mathbf{N}^{--}\right)}{\left|\mathbf{P}_{\mathbf{t}}^{-}\right|\left(\mathbf{N}^{++}+\mathbf{N}^{-+}\right)+\left|\mathbf{P}_{\mathbf{t}}^{+}\right|\left(\mathbf{N}^{+-}+\mathbf{N}^{--}\right)}
$$

Dilution factor

$$
\stackrel{\lambda S_{\llcorner }}{N^{++}}=\sigma^{++}=\sigma_{U U}+\sigma_{L U}+\sigma_{U L}+\sigma_{L L}
$$

Target Polarization

$\mathbf{A}_{\mathbf{U L}} \propto \frac{\sigma_{\mathbf{U L}}}{\sigma_{\mathbf{U U}}}$

Asymmetries

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d z d \phi_{S} d \phi_{h} d P_{h \perp}^{2}}=\frac{\alpha^{2}}{x Q^{2}} \frac{y}{2(1-\varepsilon)} \\
& \times\left\{F_{U U, T}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}+S_{L} \varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right. \\
& \quad+S_{L} \lambda_{e} \sqrt{1-\varepsilon^{2}} \mathbf{F}_{\mathbf{1}}^{\perp} \mathbf{H}_{1}^{\perp} \\
& \mathbf{F}_{1} \ldots .
\end{aligned}
$$

The moment, $\mathrm{A}_{\mathrm{UL}}^{\sin 2 \phi}$ contains the twist 2 TMD $\mathrm{h}_{1 \mathrm{~L}}^{\perp}$ convoluted with the Collins FF_{1}^{\perp}

Polarized target

$\mathbf{N H}_{3}$ solid

 state targetCarbon disk
Empty Cup
Cross Hair

The target stick used during the experiment. The first two cups contained ammonia and the third had a carbon disk. The last one was left empty for background studies. The cross-hairs at the bottom were used to align the beam on the target.

Dilution factor

In the measurement of the asymmetry we have to account for the unpolarized contribution from the target.
The dilution factor is the ratio of counts from polarized target nucleons to unpolarized target nucleons.

$$
f=\frac{n_{\text {proton }}}{n_{N H_{3}}+n_{H e}+n_{K}+n_{A l}}
$$

$\mathrm{n}=$ SIDIS event rate
$n_{i}=$ proportional to the product of the areal density ρ and semi-inclusive DIS cross section

$$
\mathbf{A}_{\mathbf{U L}}=\frac{\left(\mathbf{N}^{++}-\mathbf{N}^{-+}\right)}{\left(\mathbf{N}^{++}+\mathbf{N}^{-+}\right)} \text {this from the polarized protons in NH3 }
$$

The value of f depends on the reaction kinematics $\left(\mathrm{Q}^{2}, \mathrm{x}_{\mathrm{B}}, \mathrm{z}, \mathrm{P}_{\mathrm{h} T}, \phi_{\mathrm{h}}\right)$.

$$
f \sim 0.2
$$

Monte Carlo Studies

- A LUND-MC based on single particle production is used at JLab energies for hard scattering process.
- The output of the generator is used as input for CLAS GEANT simulation package (GSIM).
- The main goal of MC studies is:
- to identify the kinematical region where the contamination in the pion sample from target fragmentation is small
- To calculate the detector acceptance
- to provide tests for extraction of spin and azimuthal asymmetries
- to estimate systematic uncertainties from extraction and fitting procedures

Monte Carlo Studies

LUND Fragmentation Functions

- Before
- After Target remnant

The primary hadrons produced in string fragmentation come from the string as a whole, rather than from an individual parton

LUND Event

$$
\text { ep -> e' } \Lambda \mathrm{K}^{*+}->\mathrm{e}^{\prime} \pi^{-} \mathrm{pK}^{+} \pi^{0} \rightarrow 2 \gamma
$$

CLAS data compared to LUND Monte Carlo

$\mathrm{Q}^{2}>1 \mathrm{GeV}^{2}$, $\mathrm{W}^{2}>4 \mathrm{GeV}^{2}$, $\mathrm{z}>0.5, \mathrm{y}<0.85$

CLAS data compared to LUND Monte Carlo

$$
\mathrm{ep} \rightarrow \mathrm{e}^{\prime} \pi^{+} \mathrm{X}\left(\mathrm{E}_{\mathrm{e}-}=5.7 \mathrm{GeV}\right)
$$

$$
\mathrm{M}_{\mathrm{x}}^{2}=\left(\mathrm{p}_{\mathrm{e}}+\mathrm{p}_{\mathrm{p}}-\mathrm{p}_{\mathrm{e}^{\prime}}-\mathrm{p}_{\pi+}\right)^{2}
$$

$M C$ reasonably describes the resolution of the M_{x}

CLAS MC: Acceptance Studies

$$
\begin{aligned}
& N_{\text {gen }}=\text { generated events } \\
& N_{\text {rec }}=\text { reconstructed events }
\end{aligned}
$$

■ Only ~25\% of epX events are reconstructed ($0.5<\mathrm{PT}<0.6$)
■ Artificial azimuthal moments are introduced!!

Acceptance moments from MC

Two different initial generated distributions, give similar reconstructed ϕ-distributions
acceptance effects may dominate the reconstructed ϕ-distributions

3 Methods to analize the Azimuthal Moments

$\frac{\sigma}{\sigma_{0}}=1+p_{0} \cos \phi+P_{B} p_{1} \sin \phi+P_{B} p_{2} \sin 2 \phi+\ldots$

$$
A_{L U}^{\sin \phi}=p_{1} \quad N^{ \pm} \rightarrow \pm P_{B}
$$

I $\quad A_{L U}=\frac{\pi}{2 P_{B}} \frac{N(0<\phi<\pi)-N(\pi<\phi<2 \pi)}{N(0<\phi<\pi)+N(\pi<\phi<2 \pi)}$.
II $\quad A_{L U}^{\sin \phi}=\frac{\sum_{i=1}^{N^{ \pm}} \sin \phi_{i}}{P_{B} \sum_{i=1}^{N^{ \pm}} \sin ^{2} \phi_{i}}$
III $A(\phi)_{L U}=\frac{1}{P_{B}} \frac{N^{+}-N^{-}}{N^{+}+N^{-}} \xrightarrow{\text { fit }} \frac{p_{1} \sin \phi+p_{2} \sin 2 \phi}{1+p_{0} \cos \phi}$
Different methods have different sensitivity to acceptance corrections
(28) 17 Jefferson Lab

Acceptance moments from MC

We measure the convolution of the acceptance with cross section

$$
\sigma_{M}(\phi)=\sigma(\phi) * A(\phi)
$$

$$
\sigma_{M}(\phi)=\sigma_{0} A_{0}\left(1+\frac{1}{2}\left(\sum_{i=1}^{M} A_{i} a_{i}+\sum_{i=1}^{N} B_{i} b_{i}\right)\right.
$$

$$
\begin{aligned}
& +\cos \phi\left[a_{1}+A_{1}+\frac{1}{2}\left(\sum_{i=1}^{M-1} A_{i} a_{i+1}+\sum_{i=1}^{M-1} A_{i+1} a_{i}-\sum_{i=1}^{N-1} B_{i} b_{i+1}-\sum_{i=1}^{N} B_{i+1} b_{i}\right)\right] \\
& +\sin \phi\left[b_{1}+B_{1}+\frac{1}{2}\left(\sum_{i=1}^{M-1} B_{i} a_{i+1}-\sum_{i=1}^{M-1} B_{i+1} a_{i}+\sum_{i=1}^{N-1} A_{i} b_{i+1}-\sum_{i=1}^{N} A_{i+1} b_{i}\right)\right]
\end{aligned}
$$

From measured moments we can calculate the cross section moments

Acceptance moments from MC

Moments Extractions

$$
\mathbf{A}_{\mathbf{U L}}=\frac{\mathbf{1}}{\mathbf{f}} \frac{\mathbf{N}^{++}+\mathbf{N}^{-+}-\left(\mathbf{N}^{+-}+\mathbf{N}^{--}\right)}{\left|\mathbf{P}_{\mathbf{t}}^{+}\right|\left(\mathbf{N}^{++}+\mathbf{N}^{-+}\right)+\left|\mathbf{P}_{\mathbf{t}}^{-}\right|\left(\mathbf{N}^{+-}+\mathbf{N}^{--}\right)} \propto \mathbf{A}_{\mathbf{U L}}^{\sin 2 \phi} \sin 2 \phi_{\mathbf{h}}
$$

Bin in $x_{B}, P_{h \perp}$ integrated over Q^{2} and z

Kotzinian-Mulders Asymmetry

- Significant $\sin 2 \phi$ modulation for π^{+} and π^{-}
- A relatively small $\sin 2 \phi$ term for π^{0}
\rightarrow the Collins function for π^{0} is suppressed

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{u}}{ }^{\pi+}(\mathrm{z})=\mathrm{D}_{\mathrm{d}}^{\pi-}(\mathrm{z})=\mathrm{D}_{\mathrm{d}}^{-\pi+}(\mathrm{z})=\mathrm{D}_{\mathrm{u}}^{-\pi-}(\mathrm{z})=\mathrm{D}^{+}(\mathrm{z}) \text { favored } \pi^{+}=u \bar{d} \\
& D_{d^{\pi+}}(z)=D_{u^{\pi}}^{\pi-}(z)=D_{u^{\pi+}}^{\pi+}(z)=D_{\bar{d}^{\pi-}}(z)=D^{-}(z) \quad \text { unfavored } \quad \pi^{-}=d \bar{u}
\end{aligned}
$$

\rightarrow Indication that favored and unfavored Collins functions are \sim equal and have opposite signs \rightarrow they largely cancel for π^{0}

