

The Transverse Spin Structure of the Nucleon

PATRIZIA ROSSI JEFFERSON LAB

29th Annual Hampton University Graduate Studies Program Jefferson Lab - June 3-5, 2014

Lessons Scheme

LECTURES 1 & 2

- Introduction
- Deep Inelastic Scattering and 1D parton distribution functions
- From 1D to 3D nucleon structure: Transverse Momentum Dependent (TMD) parton distribution functions
- TMD Measurements @ Jlab in Hall B

LECTURES 3 & 4

- Data analysis
- Monte Carlo simulations
- Asymmetries extraction
- TMDs extraction

LECTURE 5

Where are we? What's next

Kinematical Coverage

Kinematical Coverage

4

Data are binned in: Q^2 , ϕ_h , z, $P_{h\perp}$, x_B

Polarized SIDIS Cross Section

For a longitudinal polarized target at leading twist:

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,dz\,d\phi_S\,d\phi_h\,dP_{h\perp}^2} &= \frac{\alpha^2}{xQ^2}\,\frac{y}{2\,(1-\varepsilon)} \\ \times \left\{ F_{UU,T} + \varepsilon\cos(2\phi_h)\,F_{UU}^{\cos\,2\phi_h} + S_L\,\varepsilon\sin(2\phi_h)\,F_{UL}^{\sin\,2\phi_h} \right. \\ &+ S_L\lambda_e\,\sqrt{1-\varepsilon^2}\,F_{LL} \not \Rightarrow |\boldsymbol{S}_T| \left[\sin(\phi_h - \phi_S)\,F_{UT,T}^{\sin(\phi_h - \phi_S)} \right. \\ &+ \varepsilon\,\sin(\phi_h + \phi_S)\,F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon\,\sin(3\phi_h - \phi_S)\,F_{UT}^{\sin(3\phi_h - \phi_S)} \right] \\ &+ |\boldsymbol{S}_T|\,\lambda_e \left[\sqrt{1-\varepsilon^2}\,\cos(\phi_h - \phi_S)\,F_{LT}^{\cos(\phi_h - \phi_S)} \right] \right\}, \end{aligned}$$

Asymmetries

 $\sigma = \sigma_{UU} + \lambda_l \sigma_{LU} + S_L \sigma_{UL} + \lambda_l S_L \sigma_{LL} + S_T \sigma_{UT} + \lambda_l S_T \sigma_{LT}$

For a longitudinally polarized target $S_T = 0$

 $\sigma = \sigma_{UU} + \lambda_l \sigma_{LU} + S_L \sigma_{UL} + \lambda_l S_L \sigma_{LL} \qquad \lambda = \pm 1, S_L = \pm 1$

The Target Spin asymmetry is defined as:

Asymmetries

$$\frac{d\sigma}{dx\,dy\,dz\,d\phi_S\,d\phi_h\,dP_{h\perp}^2} = \frac{\alpha^2}{xQ^2}\frac{y}{2(1-\varepsilon)} \mathbf{h}_{1L}^{\perp}\mathbf{H}_{1}^{\perp}$$

$$\times \begin{cases} F_{UU,T} + \varepsilon\cos(2\phi_h)\,F_{UU}^{\cos 2\phi_h} + S_L\varepsilon\sin(2\phi_h)\,F_{UL}^{\sin 2\phi_h} \\ g_1D_1 \\ + S_L\lambda_e\,\sqrt{1-\varepsilon^2}\,F_{LL} + \dots \end{cases}$$

$$\mathbf{A_{UL}} = \frac{\sigma_{\mathbf{UL}}}{\sigma_{\mathbf{UU}}} = \frac{\mathbf{F_{UL}^{\sin 2\phi}}}{\mathbf{F_{UU,T}}} \frac{\sin 2\phi_{\mathbf{h}}}{(1 + \epsilon \cos 2\phi \frac{\mathbf{F_{UU}^{\cos 2\phi}}}{\mathbf{F_{UU,T}}})} \propto \mathbf{A_{UL}^{\sin 2\phi}} \sin 2\phi_{\mathbf{h}}$$

The moment, $A_{UL}^{sin2\phi}$ contains the twist 2 TMD h_{1L}^{\perp} convoluted with the Collins FF H_1^{\perp}

Polarized target

The target stick used during the experiment. The first two cups contained ammonia and the third had a carbon disk. The last one was left empty for background studies. The cross-hairs at the bottom were used to align the beam on the target.

Dilution factor

In the measurement of the asymmetry we have to account for the unpolarized contribution from the target.

The **dilution factor** is the ratio of counts from polarized target nucleons to unpolarized target nucleons.

$$f = \frac{n_{proton}}{n_{NH_3} + n_{He} + n_K + n_{Al}}$$

n = SIDIS event rate

 n_i = proportional to the product of the areal density ρ and semi-inclusive DIS cross section

 $\mathbf{A_{UL}} = \underbrace{(\mathbf{N^{++} - N^{-+}})}_{(\mathbf{N^{++} + N^{-+}})} \text{ this from NH}_3 + \text{He} + \text{K} + \text{Al} \rightarrow \text{the asymmetries are ``diluted''}}$

The value of *f* depends on the reaction kinematics (Q², x_B , z, P_{hT} , ϕ_h). *f* ~ 0.2

Monte Carlo Studies

- A LUND-MC based on single particle production is used at JLab energies for hard scattering process.
- The output of the generator is used as input for CLAS GEANT simulation package (GSIM).
- The main goal of MC studies is:
 - to identify the kinematical region where the contamination in the pion sample from target fragmentation is small
 - To calculate the detector acceptance
 - to provide tests for extraction of spin and azimuthal asymmetries
 - to estimate systematic uncertainties from extraction and fitting procedures

Monte Carlo Studies

The primary hadrons produced in string fragmentation come from the string as a whole, rather than from an individual parton

LUND Event

 $ep \rightarrow e' \Lambda K^{*+} \rightarrow e' \pi^- p K^+ \pi^0 \rightarrow 2\gamma$

CLAS data compared to LUND Monte Carlo

CLAS data compared to LUND Monte Carlo

ep→ $e' π^+X (E_{e-}=5.7 \text{ GeV})$

 $M_{x}^{2} = (p_{e} + p_{p} - p_{e'} - p_{\pi +})^{2}$

MC reasonably describes the resolution of the M_{χ}

CLAS MC: Acceptance Studies

Only ~25% of epX events are reconstructed (0.5<PT<0.6)
 Artificial azimuthal moments are introduced!!

Two different initial generated distributions, give similar reconstructed ϕ -distributions

acceptance effects may dominate the reconstructed ϕ -distributions

3 Methods to analize the Azimuthal Moments

 $\frac{\sigma}{\sigma_0} = 1 + p_0 \cos \phi + P_B p_1 \sin \phi + P_B p_2 \sin 2\phi + \dots$

$$A_{LU}^{\sin\phi} = p_1 \qquad \qquad N^{\pm} \to \pm P_B$$

$$\mathbf{I} \qquad A_{LU} = \frac{\pi}{2P_B} \frac{N(0 < \phi < \pi) - N(\pi < \phi < 2\pi)}{N(0 < \phi < \pi) + N(\pi < \phi < 2\pi)}.$$

$$II A_{LU}^{\sin\phi} = \frac{\sum_{i=1}^{N^{\pm}} \sin\phi_i}{P_B \sum_{i=1}^{N^{\pm}} \sin^2\phi_i}$$

$$III A(\phi)_{LU} = \frac{1}{P_B} \frac{N^{+} - N^{-}}{N^{+} + N^{-}} \xrightarrow{\text{fit}} \frac{p_1 \sin\phi + p_2 \sin 2\phi}{1 + p_0 \cos\phi}$$

Different methods have different sensitivity to acceptance corrections

From measured moments we can calculate the cross section moments

Moments Extractions

$$\mathbf{A_{UL}} = \frac{1}{f} \frac{\mathbf{N^{++}} + \mathbf{N^{-+}} - (\mathbf{N^{+-}} + \mathbf{N^{--}})}{|\mathbf{P_t^+}|(\mathbf{N^{++}} + \mathbf{N^{-+}}) + |\mathbf{P_t^-}|(\mathbf{N^{+-}} + \mathbf{N^{--}})} \propto \mathbf{A_{UL}^{\sin 2\phi}} \sin 2\phi_{\mathbf{h}}$$

Kotzinian-Mulders Asymmetry

- Significant sin2φ modulation for π⁺ and π⁻
- A relatively small sin2φ term for π⁰
 → the Collins function for π⁰ is suppressed

 $D_{u}^{\pi+}(z) = D_{d}^{\pi-}(z) = D_{d}^{\pi+}(z) = D_{u}^{\pi-}(z) = D^{+}(z) \qquad fa$ $D_{d}^{\pi+}(z) = D_{u}^{\pi-}(z) = D_{u}^{\pi-}(z) = D_{u}^{\pi-}(z) = D^{-}(z) \qquad un$

favored $\pi^+ = u \bar{d}$ unfavored $\pi^- = d \bar{u}$

 \rightarrow Indication that favored and unfavored Collins functions are \sim equal and have opposite signs \rightarrow they largely cancel for π^0